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Abstract 
With the development of artificial intelligence (AI) in recent years, meteorological departments have also begun to 
improve algorithms and revise short-term forecasts via AI, expecting to timely capture meteorological clues in massive 
weather data, to “prevent meteorological disasters”, and “calculate precipitation faster and more accurately”. At present, 
AI has been initially applied to the meteorological field, especially to the analysis of massive meteorological data. For 
instance, the AI-based data analysis technology can rapidly judge the cloud type and the meteorological prototype in 
satellite images. The AI-based data fusion technology contributes to more three-dimensional and refined atmosphere 
data, which improves the temporal and spatial resolutions of precipitation data. If the big data in AI are used to analyze 
typhoons and identify the typhoon track and source, the errors resulting from the naked-eye observation of images by 
meteorologists can be avoided, thus considerably improving the scientificity and accuracy of weather forecasts. During 
data fusion, the severe convective weather characteristics reflected by massive historical precipitation data can be 
learned through machine learning methods to predict the evolution trend of disastrous weather within the future 1 to 2 
h. Furthermore, precipitation data errors are corrected through AI data analysis, and a daily precipitation fusion dataset 
with a spatial resolution of 1 km is obtained. 
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1. INTRODUCTION 

As the main driving force of the global water cycle, 
precipitation plays a critical role in the substance-energy 
relation [3] [6]. Precipitation data is the most important 
data basis for hydrological, meteorological, and 
ecological studies [18]. Precipitation data are usually 
subjected to low accuracy and spatial resolution, which, 
if uncertain, will lead to uncertainties in the final output. 
Hence, it is of great importance to improve the temporal 
accuracy and spatial resolution of precipitation data in 
various fields such as hydrology, weather, and ecology 
[2]. 

Precipitation data is mainly derived from ground 
observation data and radar and satellite-derived 

precipitation data. The precipitation observation, which 
can only represent the precipitation features within a 
certain range, is easily affected the nonuniform 
distribution of ground observation stations. The satellite 
retrieval of precipitation data integrates the merits of a 
large scale and a high temporal-spatial resolution, but the 
physical principles and algorithms of precipitation 
satellite retrieval are limitations, which result in a low 
satellite retrieval accuracy [8]. Radar-based precipitation 
estimation can extract the precipitation value at the 
highest spatial resolution, but its accuracy can be easily 
affected by complex geographical environments [17]. 

To improve the accuracy and temporal-spatial 
resolution of precipitation data, precipitation data fusion 
has been extensively explored at both home (China) and 
abroad in recent years. Meanwhile, some multi-source 
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data analysis and fusion methods are prospering [12] [13] 
[14]. In the aspect of ground-satellite precipitation data 
fusion, scholars have explored different precipitation 
fusion models specific to different fields, including 
geographically weighted regression [7], optimum 
interpolation method [11], Kalman filtering [4], Bayesian 
estimation [5], probability density function (PDF) 
matching [15], and machine learning method [4]. To 
improve the spatial resolution while not affecting the 
accuracy, not a few experts have fused ground radar-
based precipitation estimation based on ground-satellite 
technology fusion and proposed a basic idea of ground-
satellite-radar three-source precipitation combination. 
First, the bias between radar and satellite-derived 
precipitation data is calibrated using the PDF method. 
Then, the optimal initial fields between ground radar and 
satellite-derived precipitation are fused using the BMA 
technology. Finally, ground observation data are 
integrated through the OI technology [9]. 

Although the multi-source precipitation data fusion 
has achieved certain progress, the fusion of IMERG 
satellite-derived daily-resolution precipitation data has 
been less investigated. In addition, the traditional 
precipitation data fusion method is not necessarily 
applicable to fuse mass data. The machine learning 
method integrates the advantages of overfitting 
prevention, high calculation efficiency, and accurate loss 
calculation [10]. However, the fusion of multi-source 
precipitation data based on machine learning algorithms 
has been less explored. Given this, the hourly 
precipitation data from 241 observation stations on 
Qilian Mountain during 2019-2020 were mainly used and 

analyzed together with such auxiliary variables as radar-
derived precipitation and landform data. Then, the 
observed precipitation data was associated with 
precipitation and geomorphic factors in radars, thus 
forming a multi-source precipitation data fusion model 
based on Gaussian process regression [10] to improve the 
precipitation prediction accuracy in complex 
geomorphological regions. 

2. RESEARCH AREA AND DATA 

In this research, the precipitation data were derived 
from the measured hourly precipitation data of 241 
observation stations on different underlying surfaces in 
Qilian Mountain during 2019-2020. Such observation 
stations included national stations, regional stations, and 
field stations. Satellite data came from the dataset 
(http://pmm.nasa.gov/data-access/downloads/) released 
by GFSC, with a spatial resolution of 0.25°×0.25° and a 
temporal resolution of 1 d. Radar-derived precipitation 
data were obtained from the radar-based quantitative 
precipitation estimation provided by Qilian Mountain, 
with a spatial resolution of 3 km and a temporal 
resolution of 1 h.  

Auxiliary topographic parameters were selected from 
the SRTM [1] v41 fragmented data provided by the 
geographical spatial data cloud of the Chinese Academy 
of Sciences (CAS) [16]. The SRTM v41 fragmented data 
were subjected to format conversion, splicing, and 
clipping via Python to obtain a DEM data model with a 
spatial resolution of 90 m. The DEM data model of Qilian 
Mountain is shown in Figure 1. 

 
Figure 1: DEM Data Model of Qilian Mountain 
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3. METHODOLOGY 

3.1 Multi-source precipitation data fusion 
model based on Gaussian process 
regression 

Gaussian process regression is applied to computer 
mathematics on a certain theoretical basis. In this 
research, the linear kernel of linear Bayesian process 
regression was replaced by a kernel variable through the 
linear Bayesian regression technology, thus endowing 
the Gaussian process regression technology with 
favorable applicability to solving complex problems like 
high dimensions, small sample size, and high 
uncertainties. 

As for the layout flow of complex function methods 
described by the Gaussian process from the spatial 
perspective of functions, its attribute is decided by the 
mean value function ℎ(𝑥)  and covariance function 
𝐺(𝑥, 𝑥′), which are expressed in the following forms, 
respectively: 

ℎ(𝑥) = 𝐸[𝑓(𝑥)]                            (1) 

𝐺(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − ℎ(𝑥))(𝑓(𝑥′) − ℎ(𝑥′))]  (2) 

where 𝑥 and 𝑥′  refer to random variables of 𝑅𝑑 . 𝐺𝑃 is 
defined as 𝑓(𝑥) − 𝐺𝑃(ℎ(𝑥), 𝐺(𝑥, 𝑥′)). 

The following assumption is made for the Gaussian 
process: 

y = f(x) + ε, and ε~N(0, σn
2)              (3) 

where 𝑥 is an input variable, 𝑦 denotes the observation 
value subjected to noise pollution, 𝑓  represents 𝐺𝑃 -
predicted function value, and 𝜀 stands for noise. 

The prior distribution of observation value 𝑦  is as 
below: 

𝑦~𝑁(0, 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼𝑛)                  (4) 

The joint prior distribution of observation values 𝑦 
and 𝑓∗ is expressed as follows: 

[
𝑦
𝑓∗

] ~𝑁 〈0, [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼𝑛    𝐾(𝑋, 𝑥∗)

𝐾(𝑥∗, 𝑋)       𝐾(𝑥∗, 𝑥∗)
]〉        (5) 

where 𝐾(𝑋, 𝑋) = 𝐾n = (𝐾𝑖𝑗)  stands for a 𝑛 × 𝑛 -order 
positive definite covariance matrix, and the element 
𝐾𝑖𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗)  represents the measure of 𝑥𝑖 -
𝑥𝑗 correlation; 𝐾(𝑋, 𝑥∗) = 𝐾(𝑥∗, 𝑋)𝑇  is a covariance 
matrix between the input training sample sets 𝑋 and 𝑥∗; 
𝐼𝑛 is a unit matrix. 

Through the above equation, the prior probability 
density distribution of the predicted value 𝑓∗ is as follows: 

f∗  |  X, y, x∗~N (f∗̅, cov(f∗))                 (6) 

where 

𝑓∗̅ = 𝐾(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼𝑛] − 1   (7) 

𝑐𝑜𝑣(𝑓∗) = 𝐾(𝑥∗, 𝑥∗)

−  𝐾(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋)

+ 𝜎𝑛
2𝐼𝑛]−1𝐾(𝑋, 𝑥∗) 

(8) 

The covariance function most extensively selected in 
the Gaussian process is a square exponential covariance 
function. 

𝐾(𝑥, 𝑥′) = 𝜎𝑓
2𝑒𝑥𝑝(−(𝑥 − 𝑥′)𝑇𝑀−1(𝑥 − 𝑥′))  (9) 

To determine the Gaussian process model, the 
hyperparameter set 𝜃 = {𝑀, 𝜎𝑓

2, 𝜎𝑛
2} should be solved, 

which is usually estimated using the maximum likelihood 
method for hyperparameter training. 

3.2 Accuracy evaluation 

The evaluation indexes used in this research included 
correlation coefficient 𝑅, ot-mean-square error, and 𝐵𝑖𝑎𝑠, 
are expressed as follows: 

𝑅 =
∑ (𝑌𝑖 − 𝑌̅)(𝑂𝑖 − 𝑂̅)𝑛

𝑖=1

√∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1 √∑ (𝑂𝑖 − 𝑂̅)2𝑛

𝑖=1

 

(10) 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖 − 𝑂𝑖)
2𝑛

𝑖=1
𝑛⁄  

(11) 

𝐵𝑖𝑎𝑠 =
∑ 𝑌𝑖

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

− 1 

(12) 

where n represents the number of samples from a station; 
Y stands for the value of IMERG precipitation data; O is 
the value of observed precipitation data; Bias is the 
average bias level between two groups of data. 

4. RESULTS AND ANALYSIS 

4.1 The correlation analysis between 
precipitation and auxiliary variables 

Variables mostly strongly correlated were chosen to 
explore the main influencing factors of precipitation and 
establish a multi-source precipitation data fusion model. 
The daily ground precipitation data and radar-derived 
precipitation data during one-time precipitation from July 
6 to July 11, 2020, were collected, and their correlation 
coefficients with auxiliary ground parameters were 
obtained, followed by the correlation data analysis 
(Figure 3). It could be discovered from Figure 3 that 
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when the correlation coefficient between ground 
precipitation and radar-derived data was the maximum, 
the correlation coefficient was always greater than 0.8 
except on the first precipitation day, namely, July 6. The 
constructed concrete multi-source precipitation data 
fusion model is listed in Table 1. 

Table 1: Multi-Source Precipitation Data Fusion Model 

Date Model 

2020.07.06 𝑃𝑟𝑒𝑐𝑋𝐺𝐵𝑜𝑜𝑠𝑡,06
̂

= 𝑓𝑋𝐵𝐺𝑜𝑜𝑠𝑡(𝑅𝑎𝑑𝑒𝑟, 𝐿𝑜𝑛, 𝐿𝑎𝑡, 𝐷𝐸𝑀) 

2020.07.07 𝑃𝑟𝑒𝑐𝑋𝐺𝐵𝑜𝑜𝑠𝑡,07
̂ = 𝑓𝑋𝐵𝐺𝑜𝑜𝑠𝑡(𝑅𝑎𝑑𝑒𝑟, 𝐿𝑜𝑛) 

2020.07.08 𝑃𝑟𝑒𝑐𝑋𝐺𝐵𝑜𝑜𝑠𝑡,08
̂

= 𝑓𝑋𝐵𝐺𝑜𝑜𝑠𝑡(𝑅𝑎𝑑𝑒𝑟, 𝐿𝑜𝑛, 𝐿𝑎𝑡) 

2020.07.09 𝑃𝑟𝑒𝑐𝑋𝐺𝐵𝑜𝑜𝑠𝑡,09
̂

= 𝑓𝑋𝐵𝐺𝑜𝑜𝑠𝑡(𝑅𝑎𝑑𝑒𝑟, 𝐿𝑜𝑛, 𝐿𝑎𝑡) 

2020.07.10 𝑃𝑟𝑒𝑐𝑋𝐺𝐵𝑜𝑜𝑠𝑡,10
̂

= 𝑓𝑋𝐵𝐺𝑜𝑜𝑠𝑡(𝑅𝑎𝑑𝑒𝑟, 𝐿𝑜𝑛, 𝐿𝑎𝑡, 𝐷𝐸𝑀) 

4.2 Daily precipitation data fusion results 

In this research, the satellite-derived precipitation 
data on July 6, 2020, were chosen for tests. To keep the 
temporal consistency between high-resolution (1 km × 1 
km) DEM data and satellite-derived precipitation data, 
the satellite-derived precipitation data and ground 
observation data were fused using the point-surface 
fusion method (Scheme 1) and station bias correction 
method (Scheme 2). Meanwhile, the fusion results of 
daily precipitation data were calculated through MARS, 
RF, and GPR. The fusion results obtained by Schemes 1 
and 2 are displayed in Figures 2 and 3. 

 

 
Figure 2: Fusion Data Distribution Obtained through Point-Surface Fusion Method Based on GPR 

It could be observed from Figure 2 that the bias 
between MERRA2-derived precipitation data and 
observation data in Qilian Mountain presented a spatial 
distribution feature of “small on south and north slopes 
and large on ridges” along the mountain. Qilian Mountain 
is close to the Hexi corridor and adjoins the Qaidam basin 

and the Yellow River basin, where the altitude of south 
and north slopes is lower than that of ridges, 
accompanied by relatively simple landforms. The 
precipitation data bias in Qilian Mountain is associated 
with the altitude, climate, and underlying surfaces in this 
area. 
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Figure 3: Fusion Data Distribution Obtained through Station Bias Calibration Method Based on GPR 

It could be seen from Figure 3 that the annual 
precipitation fields of precipitation data and observation 
data on Qilian Mountain showed identical variation 
trends. The precipitation was distributed along the 
northwest-southeast direction, namely, the trend of the 
mountain, which corresponded to the altitude very well. 
From the north to the south, the precipitation showed a 
rising trend in a steplike fashion. The changes in the 
satellite-derived precipitation data reflected the change 
features of precipitation in this area. 

4.3 Accuracy evaluation of fusion results 

With the precipitation data from ground observation 
stations as true values, the two fusion schemes were 
quantitatively evaluated through the leave one-out cross 
validation method. The station verification results under 
Schemes 1 and 2 are listed in Tables 2 and 3, respectively. 

Table 2: Station Verification Results of Scheme 1 

Algorithm Model accuracy Verification accuracy 

𝑅 𝑅𝑀𝑆𝐸 𝐵𝑖𝑎𝑠 (%) 𝑅 𝑅𝑀𝑆𝐸 𝐵𝑖𝑎𝑠 (%) 

MARS 0.95 34.81 0.25 0.73 34.83 -0.08 

RF 0.96 13.05 0.05 0.77 31.34 0.02 

GPR 0.98 15.21 0.08 0.79 30.21 -0.02 

 

Table 3: Station Verification Results of Scheme 2 

Algorithm Model accuracy Verification accuracy 

𝑅 𝑅𝑀𝑆𝐸 𝐵𝑖𝑎𝑠 (%) 𝑅 𝑅𝑀𝑆𝐸 𝐵𝑖𝑎𝑠 (%) 

MARS 0.97 18.77 0.05 0.66 40.12 -0.02 

RF 0.87 25.49 0.01 0.68 36.41 -0.01 

GPR 0.08 17.43 0.16 0.77 32.24 -0.01 

5. CONCLUSIONS 

With Qilian Mountain as the main research area and 
the rainfall process on July 6, 2020, as the main research 
object, auxiliary variables like radar-derived 
precipitation data, satellite-derived precipitation data, 
soil longitude and latitude, and DEM were combined to 
comprehensively figure out the correlations of ground 

observation data, radar-derived precipitation data and 
satellite-derived precipitation data with auxiliary 
variables of the ground surface. On this theoretical basis, 
a machine learning algorithm was used to construct a 
multiple nonlinear regression model and a precipitation 
data fusion model applicable to the climatic conditions in 
Qilian Mountain. Next, the spatial distribution of 
residuals obtained by the Gaussian process regression 
model was estimated through the adaptive multi-spline 
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regression method and random forest algorithm. Finally, 
the daily fusion precipitation data with a spatial 
resolution of 1 km were obtained, followed by the 
accuracy test using ground observation data. The 
research conclusions were drawn as follows: 

(1) Ground observation precipitation data presented 
an evident positive correlation with radar-derived 
precipitation data, and its correlation with auxiliary 
ground surface parameters was changed with the ground 
precipitation process. For instance, the correlation 
coefficient between ground observation data and latitude 
change reached 0.49, but it turned into a negative value 
(-0.43) on July 9. 

(2) The fusion results obtained by the RF method 
would generate massive traces, while those obtained by 
the MARS method were relatively ambiguous. However, 
the fusion results obtained by the newly proposed GPR 
method displayed reasonable changes, and its detailed 
data information presented a higher quality than the 
results obtained through the direct interpolation of station 
data information. The accuracy of point-surface fusion 
results acquired through the three algorithms exceeded 
the accuracy of the fusion result obtained through error 
correction, and some interpolation traces in error 
correction conclusions were reduced. 

(3) When the GPR method was used to realize the 
point-surface fusion of satellite-derived precipitation 
data and ground observation data, the accuracy of fusion 
results ( 𝑅 = 0.69 and 𝐵𝑖𝑎𝑠 = −0.03% ) was 
considerably improved in comparison with the original 
satellite-derived precipitation data. 
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