

Research On the Teaching Method of Programming
Course by Using Computational Thinking

Lei Chen1, Xuebo Zhang1 *
1School of Space Information, Space Enigneering University, Beijing, China
my_shitou320@163.com, 178140615@qq.com

Abstract:
The programming course is an important public course for undergraduate, which mainly cultivates students’ ability to
solve and analysis professional problems by using computational thinking. Taking C language programming course as
example, this paper proposes the teaching method of programming course which is oriented by computational thinking,
and carries out research from four aspects: classroom teaching, experimental teaching, course assessment and stratified
teaching. The teaching practice shows that compared with the traditional teaching mode, the teaching method
incorporating computational thinking can effectively improve students' learning effect.

Keywords: program design course; computational thinking; stratified teaching.

1 INTRODUCTION

Computational thinking is one of the three major
scientific thinking for human beings to understand and
transform the world. Its concept was first systematically
put forward by American computer scientist Professor
Zhou Yizhen in 2006. She believes that computational
thinking is a series of science thinking methods that use
the basic concepts of computer science to solve
problems, design systems, and understand human
behaviour. Its essence is abstract and automatic [5].
Computational thinking can help people extract the
necessary details from real problems, describe problems
in a way that computers can understand, implement the
problem solving process automatically. Computational
thinking includes logical thinking, decomposition,
generalization, pattern recognition, modeling,
abstraction, automation and evaluation, among which
abstraction and automation are the core concepts of
computational thinking. Computational thinking has
been highly valued by China's Computer Education
Research Association. In the Joint Statement of The
Development Strategy of Computer Basic Teaching
issued by the Nine Universities Alliance (C9) in China,
the cultivation of college students' computational
thinking ability is taken as the core goal of college
computer basic teaching [2], which has since opened the
prelude of the teaching reform of computer basic courses
oriented by computational thinking. It also lays the core
position of the cultivation of computational thinking

ability in the teaching of basic computer courses in
universities [1] [4].

Programming design is a basic computer course for
science and engineering majors, which cultivates
students' ability to solve and analyse professional
problems by writing programs from the level of program
language. The study of computational thinking in
programming courses has aroused plenty of scholars’
interest. For example, Chen (2011) systematically
summarizes the training points of computational thinking
designed in each chapter of C language programming
course. Hong (2014) explains the construction and
practice of C language from the aspects of course
construction objectives, teaching content and methods,
resource construction, co-construction and sharing, etc.
Ye (2017) [7], Yu (2011) [8], Zhang (2012) [9], Wu
(2011), Su (2012) [6] explores the teaching reform of
programming courses from the perspectives of case
design and project process, but ignores the discussion on
the nature of computational thinking. How to integrate
computational thinking into programming teaching, so
that students can use computational thinking such as
abstraction, automation and so on to solve the problems
in the field of analysis is a challenge facing the teaching
reform under the new situation. This paper takes C
language programming course as an example, and on the
basis of summarizing the corresponding relationship
between computational thinking and course knowledge
points, studies how to integrate computational thinking
into classroom teaching, experimental teaching and

© The Author(s) 2023
B. Fox et al. (Eds.): IC-ICAIE 2022, AHCS 9, pp. 383-389, 2023.
https://doi.org/10.2991/978-94-6463-040-4_58

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-040-4_58&domain=pdf

course assessment. At last, this paper introduces the
hierarchical teaching method which is integrated with
computational thinking.

2 THE CLASSROOM TEACHING
METHOD INTEGRATING
COMPUTATIONAL THINKING

As the main field of teaching, classroom teaching
determines the teaching effect to a great extent. By
integrating computational thinking into the classroom
teaching of programming course, students can contact
and feel computational thinking in theoretical learning,
thus laying a solid foundation for correct use of
computational thinking in programming practice.
According to the textbook "Programming" edited by
Professor Tan Haoqiang, we have integrated the abstract,
automatic, exhaustive, divergent, reverse and
generaliztion thinking of computational thinking into
each chapter of knowledge points in classroom teaching,
forming our own teaching characteristics.

2.1 Abstract Thinking

For C programs, abstraction is embodied in using
symbolic systems to accurately and strictly describe the
solution of the problem, which runs through all the
chapters of C programming courses. We integrate
computational thinking into the process of explaining
theoretical knowledge from the following aspects.

(1) The program is the abstraction of the actual
system, it abstracts the characteristics of the system to the
operation object, and abstracts the functions of the
system to the function. C program development process
is the process of system modeling. (2) C abstracts the
value range of features and allowed operations into data
types. Data types and operators are the vehicles for
system abstraction. Each data type has various value
ranges and operations. For example, course grades are
floating point numbers ranging from 0 to 100, which can
be used for arithmetic and logical comparison operations.
The course name is a string of data, so you can't do
arithmetic on it. (3) Constant is the abstraction of
invariable features in the system, such as PI; A variable
is an abstraction of the characteristics in the system that
can be changed, such as the radius of a circle. (4) the
selection and loop structure in the program are
abstractions of the solving steps. (5) Functions in C
language are abstractions of functional modules. Mutual
calls between functions shows the complexity of the
system. For example, a function that evaluates a definite
integral must call a function that implements fixed-point
evaluation of a variable expression. If the variable
expression is complex and contains trigonometric
functions, multi-level calls will be formed. When a
function needs to call itself during execution, it forms a
recursive call. (6) One-dimensional and

multidimensional arrays are abstractions of one and more
system properties with the same data type, respectively.
For example, a one-dimensional array is used to describe
the scores of all students in advanced mathematics, and a
two-dimensional array is used to describe the scores of
all students in advanced mathematics and English. (7)
Structure is the abstraction of several system attributes
with different data types, such as using structure to
describe the name, height, age and other characteristics
of a student. (8) The file is the abstraction of system
properties, so as to facilitate storage and automatic read
and write operations.

By integrating abstract thinking into the above
knowledge points, students can fully understand abstract
concepts and usage scenarios.

2.2 Automation Thinking

Another essential aspect of computational thinking is
automation. Automation refers to the imposition of some
operation on the various elements of the symbolic system
modeling and the automatic execution of some sequential
or non-sequential structure. In the theoretical knowledge
points of C program design course, the algorithm flow
reflects the automation thinking. Data type, operator,
sequence structure, selection structure, circular structure,
function, array, pointer, structure and file are all
automatic execution units of C program.

In order to enhance the students' understanding of
automatic thinking, we emphasize that the automation of
the c language program is reflected in the following two
aspects: one is that the internal statements of the function
are automatically executed under the support of the EIP
register addition operation, and the second is that the
mutual call of the function is realized through the
automatic jump in the inside stack. The program
statement is the execution object of the computer
automation, and the combination of the statements
constitutes the function. The essence of the program's
execution is to automatically execute the statements in a
certain function, and automatically jump between
multiple functions. Automatic execution requires the
support of computer software and hardware, and the
operating system provides the software base of the
program's automatic execution, and the computer
hardware structure and the thought of program storage
provides the hardware foundation for the automatic
execution of the program. The operating system
coordinates memory, CPU, and external hardware
resources to execute the process.

The automation process actually reflects the
algorithm flow of C language program to solve practical
problems. An algorithm is an execution step to solve a
problem. Generally speaking, before programming with
C language, it is necessary to design algorithms, that is,
to conceive ideas and steps to solve practical problems.

384 Lei Chen and Xuebo Zhang

When these steps are syntactically translated into C
statements and formed into a complete program, the
operating system can automatically execute them to
complete the corresponding work. In fact, automation is
one of the core reasons why computers can solve
problems so efficiently.

Through the introduction of the above knowledge, we
connect the automatic thinking with computer hardware
system, von Neumann program storage principle,
operating system resource scheduling and other
knowledge in the classroom teaching, so that students
intuitively and profoundly master the professional basic
knowledge of the computer discipline system.

2.3 Decomposition Thinking

Decomposition thinking method is a thinking method
that considers problems from the systematic perspective
of things and aims at obtaining the best solution (Dong,
2019). The thought of decomposition programming is the
perfect embodiment of system thinking. We guide
students to focus on the relationships between software
system and local modules, internal system and external
systems, and the mutual restriction between modules in
system design. In this way, the complex problem is
decomposed into several sub-problem modules that are
easier to solve at a macro level. Microscopically,
appropriate methods are selected to solve each sub-
problem based on its characteristics.

In the project practice of C program design course,
we require students to carry out simple information
system design, so as to further strengthen their
understanding and mastery of decomposition thinking.
For example, in the demand analysis stage, we require
students to consider the software function division, the
relationship between each function module, the
contradiction between hardware and software, the
contradiction between software development and user
demand and other factors from the perspective of the
system. The teaching practice proves that the cultivation
of decomposition thinking can effectively improve
students' ability to solve problems from a macroscopic
perspective.

2.4 Logistic Thinking

Logistic contains many factors, we take the
exhaustive thinking as example to demonstrate the
teaching way we use to enhance our students’ logistic
thinking ability. The Exhaustive method is the use of
computer operation speed, high precision characteristics,
to solve the problem of all possible situations, a leak to
find out the answer to the requirements. Exhaustive
thinking is a good way to solve problems that have no
rules, such as digital cryptography, which yields results
regardless of time. Exhaustive thinking in C language
loop, array has a wide range of applications, such as

daffodils, prime number, maximum, cryptography and
other problems can use the exhaustive method.

We guide students to master the positive and negative
aspects of exhaustive thinking through examples, and
guide them to understand the advantages and
disadvantages of exhaustive thinking through the
complexity of algorithm, so as to make rational use of
exhaustive thinking in future study and work.

2.5 Generalization thinking

Generalization thinking is an very important
composition of computational thinking, which can be
trained by the way of "one problem and many solutions".
In class, for the same problem, different groups of
students will come up with different solutions. Through
the comparison of different solutions, students'
generalization thinking is fully displayed. For example,
to find the maximum value of 3 numbers, four methods
were concluded after groups of discussions:

Method A: Using single branch structure.

max=x；

if(y>max) max=y;

if(z>max) max=z;

Method B: Using double branches structure
if(x>y) t=x; else t=y;

if(z>t) max=z; else max=t;

Method C: Using multi-branches structure
if(x>y&&x>z) max=x;

else if(y>z)max=y;

else max=z;

Method D: Using nested branch structure
if(x>y)

if(x>z)max=x;

else max=z;

else

if(y>z)max=y;

else max=z;

These four methods reflect different ideas. Although
there are still some imperfections, they are all the results
of independent thinking and full discussion by students.
Then, the teacher asked which method was more suitable
for a large amount of data, in order to guide students to
generalization thinking and deepen their understanding
of the problem.

Research On the Teaching Method … 385

3 EXPERIMENTAL TEACHING
METHOD INTEGRATING
COMPUTATIONAL THINKING

C language is a very practical course. In this section,
we will take abstraction, automation and decomposition
as examples to introduce how to integrate computational
thinking, such as into experimental teaching.

3.1 Abstraction and Automation

Abstraction and automation are the essence of
computational thinking. Different from classroom
teaching, in experimental teaching, we focus on
improving students' understanding of abstraction and
automation thinking from the perspective of using
programs to solve practical problems.

For example, C language data types are methods for
abstracting, representing and processing information in
the real world. We guide students through the following
3 steps to use abstract and automated thinking to design
systems. First, according to the requirements of the
system, the transformation of the system description from
the real world to the information world is realized.
Through analysis, abstract thinking is used to obtain a
conceptual model of the data that the system needs to
process. Second, realize the mapping from the
information world to the machine world. Convert the
conceptual model of the data to be processed into a data
structure supported by the C language grammar rules.
Finally, use C language to write a program, and the
computer automatically realizes data processing. The
specific process is shown in Figure 1

Figure 1: Abstraction and Automation in Programming

In the teaching process, teachers introduce
abstraction and automation methods through examples,
guide students to gradually understand abstraction and
automation thinking methods, and improve
computational thinking ability in the process of solving
problems.

3.2 Decomposition

The decomposition method of computational
thinking is to decompose a complex problem reasonably,
study the solutions of each sub-problem separately, and
finally solve the complex problem as a whole after
summarizing [3].

In the process of experimental teaching, we instruct
students to divide the program design into 7 steps. (1)
Analyze the problem to determine the required data
structure, (2) Assign initial values to the variables
involved in the operation, (3) Use the three basic
structures of sequence, selection, and loop to complete
the logical expression of problem solving, (4) Determine
the output, (5) Draw a flowchart, (6) Write the program,
(7) Debug on the computer. The tasks of each stage are
independent of each other, with clear completion signs.
The result of the task of the previous stage is the premise
and foundation of the task of the next stage, and the task
of the latter stage is the deepening of the task of the
previous stage.

For example, when writing a program to determine
whether a number is prime, follow the steps below.

Step 1: Analyze the problem and determine two
integer variables m and i, where m is the number to be
judged as the dividend, and i is the divisor.

Step 2: Assign initial values to the variables involved
in the operation. Input the value of m from the keyboard,
scanf ("% d", &m); A prime number is not divisible by
any other number except 1 and itself, so the initial value
of i is determined to be 2.

Step 3: Use the three basic structures to solve the
problem, which is the key to solving the problem. The
judgment of a prime number is to divide m by every
number in 2～m-1. If each number cannot be divisible, it
means that m is a prime number. Otherwise, as long as
there is a number that is divisible, then m is not a prime
number. Use loop structures to solve problems.

Step 4: Output the result. According to the analysis of
step (3), if every number in 2～m-1 is not divisible by m,
after the cycle ends i>=m, the output m is a prime
number. If m is not a prime number, i<m, the output m is
not a prime number, obviously the output of the result
needs to use the selection structure.

Step 5: Draw the flow chart as shown in Figure 2.

Step 6: Write the program
#include<stdio.h>

void main(){

 int m, i;

 scanf(“%d”, &m);

 for(i=2; i<m; i+{

386 Lei Chen and Xuebo Zhang

 if(m % I == 0) break;

 if(i>=m)

 printf(“m is a prime.”);

 else

 printf(“m is not a prime.”);

 }

}

Step 7: Debugging on computer.

Figure 2: The Flowchart of Prime Number Judgement

Through example explanation, students not only
master the basic knowledge of programming language,
but also practice the methods and steps of programming,
so as to avoid students being bored with learning because
they feel that the grammar knowledge is scattered and
complicated. Our teaching practice shows that using
decomposition method in experimental classes can
improve students' ability to comprehensively apply what
they have learned and design programs to solve practical
problems.

The optimization features of computational thinking
can also be well integrated into the C programming
process. There may be multiple algorithms for any
problem. When designing an algorithm, we must not only
solve the problem, but also consider the time complexity
and space complexity of the algorithm to find the optimal
algorithm. For example, in the above prime number
judgment method, the loop structure is used to solve the
problem part, and the number of loops is m-2 times. In
fact, it can be simplified. m does not need to be divided
by every integer between [2, m-1], but only needs to be
divided by integers between [2, √𝑚]. Therefore, the
program can be modified as follows to reduce the number
of loops.

4 COURSE ASSESSMENT METHODS
INCORPORATING
COMPUTATIONAL THINKING

In view of the computational thinking training
requirements of the C language programming course, we
have carried out the following two reforms on the final
assessment method of the course.

First of all, the assessment method must be changed
from mainly examining the grammar knowledge of the
language to mainly examining the students' system
modeling ability and algorithm design ability. The
examination of system modeling ability is mainly aimed
at the abstract characteristics of computational thinking.
For example, various system characteristics can be given
to test students' ability to describe using data types. The
test of algorithm design ability is mainly aimed at the
automatic characteristics of computational thinking. Of
course, C programming courses involve simple
algorithms such as iteration, enumeration, and sorting.
These algorithms can be encapsulated into various
functions, and the automation process can be understood
by studying the execution order of the statements in them,
and the parameter passing during function calls.
Therefore, we recommend focusing on simple algorithm
design and function calling, and highlighting the
assessment of function interface design and algorithm
process design.

Secondly, increase the score of programming
questions in the final exam paper, the proportion of which
will increase from 30% to 50%, and the setting of
programming questions should be done gradually to
assess students' ability to use C to abstract practical
systems, system modeling ability and Algorithm design
ability is the main purpose.

5 EVALUATION

In recent years, the teachers of the university
computer basic teaching team have implemented the
computational thinking-oriented programming teaching
method and achieved gratifying results, which are mainly
reflected in the following three aspects.

(1) The final exam scores of the programming course
have improved greatly, and the make-up exam rate is
reduced to 5% when the proportion of programming
questions is increased.

(2) Course students have achieved excellent results in
national professional competitions such as the "National
Green Computing Contest".

(3) The students' interest and enthusiasm for
programming in our school have been improved, and the
students' programming ability has been generally
improved.

Research On the Teaching Method … 387

6 CONCLUSION

Programming course is an important platform for
undergraduates to cultivate computational thinking
ability. Through teaching practice, this paper introduces
the teaching method of programming course integrating
computational thinking in detail. Practices in classroom
teaching, experimental teaching, and assessment have
proved that our teaching method has achieved good
results. In the future teaching research, we will continue
to improve the teaching method of programming courses
based on computational thinking, and further build an
online and offline hybrid teaching model that
incorporates computational thinking.

REFERENCES

[1] Chen Guoliang, Dong Rongshe (2011).
Computational thinking and university computer
foundation education. J. Chinese University
Teaching, 2011(1):7-10.

[2] He Qinming, Lu hanquan, Feng boqin (2010). The
core task of computer basic teaching is to calculate
the cultivation of thinking ability. J. Chinese
University Teaching 2010(9):5-9.

[3] He Mingting (2009). The separation of concerns is
the methodological significance of computational
thinking and software engineering. J. Computer
Science. 36(4):60-63.

[4] Hong Bing, Yao Lin, Wu Hangxing, etc (2014). The
analyzation of calculation of the design course in c,
J. Chinese University Teaching. 2014(9): 59-62.

[5] Jeannette M Wing (2006). Computational Thinking.
J. Communications of the ACM, 49(3): 33-35.

[6] Su Haiying (2011). The practice of programming
and teaching of programming in the direction of
computational thinking. J. Modern Computer. 2012
(4): 32-34.

[7] Ye Jun, Wang Lei, Han Yuzhen, etc (2017). The
construction and practice of the c language in the
provincial quality resources sharing course. J.
Computer Education, 2017(7):80-84.

[8] Yu Shaobing (2011). The cultivation of
computational thinking and programming ability. J.
Computer Education. (16): 11-14.

[9] Zhang Yaowen (2012). A study of the teaching
method of programming courses based on
computational thinking. J. Journal of chongqing
electronic engineering college, 21(3):149-150.

388 Lei Chen and Xuebo Zhang

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International
License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter s Creative Commons license and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder.

’
’

Research On the Teaching Method … 389

