
Mainstream Big Data Parallel Computing System
Performance Optimization

Yarong Lv1, *
1Information Engineering College, Xi'an Mingde Institute of Technology, Xi’an, 710000, Shaanxi, China
lvyr@mdit.edu.cn

Abstract:
In recent years, with the widespread application of the Internet and information technology in people's production and
life, the amount of data generated by all walks of life every day has shown a geometric and explosive growth trend, and
the real-time nature of data analysis has become increasingly high. Therefore, big data parallel computing is widely
used. The main purpose of this paper is to analyze and research the performance optimization of parallel computing
systems based on mainstream big data. This paper mainly analyzes the design requirements and elastic resource
scheduling strategy of the big data parallel computing system, introduces the framework and module design and the
main functional modules, and preprocesses the data. The experimental results show that as the parallelism of Shuffle
increases, the running time of Task decreases. This is because as the degree of parallelism increases, the amount of data
processed by a single task decreases and the processing speed becomes faster. However, the proportion of shuffle data
read I/O waiting time is the smallest only when the shuffle parallelism is 800, which is optimal.

Keywords: Big Data, Parallel Computing, Parallel Computing System, System Performance Optimization

1 INTRODUCTION

The Shuffle framework of the existing big data
processing system still has some problems in terms of
stability and computing performance. On the one hand,
with the expansion of the application data scale, the scale
of the cluster is also increasing, and the node failure is
frequent, which leads to the failure of Shuffle and reduces
the computing performance. On the other hand, the
parallelism of Shuffle also has a great impact on
performance. If the parallelism of Shuffle is too small, it
will be difficult to make full use of computing resources
to speed up. If the parallelism of Shuffle is too large, it is
easy to cause more network communication overhead. It
is difficult for developers to set a reasonable Shuffle
parallelism to achieve a balance between computational
overhead and network communication overhead [9] [5].

In the research on big data parallel computing
systems, Badri et al. believed that it is crucial to consider
the dynamics of the system when designing the
application placement mechanism, and modeled the
energy-aware application placement problem in the edge
computing system as a multi-stage stochastic program [1].
The goal is to maximize the QoS of the system while
considering the limited energy budget of edge servers. A
novel parallel sample averaging approximation (SAA)

algorithm is designed. Sangaiah proposes that the
integration of big data analytics and cognitive computing
yields a new model that can take advantage of the most
complex advancements in the industry and their
associated decision-making processes, as well as address
the glitches faced during big data analytics; EPPS
problem, develop a hybrid fuzzy multi-objective
optimization algorithm named NSGA-III-MOIWO [8],
including non-dominated sorting genetic algorithm III
(NSGA-III) and multi-objective invasive weed
optimization (MOIWO) algorithm. The goal is to
simultaneously minimize variance, skewness, and
kurtosis as measures of risk, and maximize total expected
return.

With the explosive and geometric growth of data
scale, the era of massive data has arrived. How to process
massive data quickly, efficiently and accurately will be
an important research topic faced by a large number of
researchers. Therefore, in recent years, new computing
technologies, computing platforms and solutions have
been proposed one after another, including high-
performance single-computer computing solutions,
distributed computing solutions composed of clusters,
and finally distributed computing solutions composed of
large-scale clusters. Because of its low cost and high

© The Author(s) 2023
B. Fox et al. (Eds.): IC-ICAIE 2022, AHCS 9, pp. 1036-1042, 2023.
https://doi.org/10.2991/978-94-6463-040-4_156

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-040-4_156&domain=pdf

efficiency, it has been applied and promoted on a larger
scale in the industry.

2 DISCUSSION

2.1 Demand Analysis

Support large data query under multi-user: Since the
national center stores about 2TB of data every day, it
takes 11 hours to scan the data serially at a speed of
50MB/s, so parallel processing is the only way. In
addition, since the national center needs to support the
data query of hundreds of users at the same time, and the
number of connections to the Oracle database is limited,
the server often crashes or works abnormally in the case
of multiple users, so a new architecture needs to be
designed to solve the problem. this problem [3] [6].

Provide high-performance query efficiency: A high-
performance query engine should include at least three
aspects:

(1) Index, that is, a specially designed arrangement
form for queries. By analyzing the hoofs to select the
most commonly used queries of earthquake users, and
then establishing corresponding indexes for these queries,
the query performance can be optimized;

(2) Result buffering, that is, the definition of the
query and the returned result are stored in advance. When
the same query is submitted again, the result can be
directly returned to the user to speed up the execution of
the query;

(3) Parallel processing, according to the optimization
method of the data layer of the p-DOT model, in the
earthquake precursor network management system with
multiple data copies, the query is pressed into the
corresponding database Gan points, and by accessing
these nodes in parallel, A speedup of at least 3 times can
be achieved.

Maintain the independent integrity of each database:
Since the databases of each station, regional center and
national center have independent job responsibilities,
such as operational duty, system management, data
management, equipment management, operation status
management and data collection, etc. Personnel are
already familiar with these daily operations, so if the new
architecture is built from scratch, the cost of personnel
training is very high. In addition, since each database has
a complex relational data model and huge historical
legacy data, the new architecture is preferably compatible
with these databases, maintaining the independent
integrity of their original functions [2].

2.2 Resource Scheduling Strategy

A good elastic resource scheduling strategy for a
parallel computing system needs to consider the
following issues:

First, accurately locate the cluster performance
bottleneck. That is, the elastic resource scheduling
strategy should be able to accurately detect when the
cluster has a performance bottleneck, specifically which
operator has insufficient computing resources to cause
the performance bottleneck, and even accurately locate
the performance bottleneck caused by the cluster. Being
able to find problems in a timely and accurate manner is
a necessary condition for formulating a reasonable and
flexible resource scheduling plan.

Second, formulate the optimal flexible resource
scheduling plan. On the basis of accurately locating the
cluster performance problem, the strategy should be able
to formulate the optimal elastic resource scheduling plan,
that is, calculating how many computing resources
should be added, how to increase and other specific
scheduling measures, which is the core content of the
elastic resource scheduling plan .

Third, minimize the extra overhead caused by elastic
resource scheduling. In fact, any operation that
intervenes externally on a computational task is bound to
generate additional computational and transmission
overhead. Therefore, the elastic resource scheduling
strategy should reduce this unnecessary overhead as
much as possible, and have as little negative impact on
the normal execution of computing tasks as possible.
Research an online, real-time elastic resource scheduling
strategy to avoid triggering during the scheduling process
as much as possible. Operations such as job stagnation,
restart, etc., will be the key issues and hot directions of
future research in the field of elastic resource scheduling
strategies. Because whether the extra overhead generated
in the scheduling process can be avoided as much as
possible is one of the important factors for whether a
scheduling strategy can be applied and promoted in the
actual industrial environment.

A good task scheduling strategy should have the
following three excellent characteristics:

First, make a reasonable task scheduling plan. That is,
it can accurately judge and analyze the execution of the
job topology, and accurately discover the high-load
nodes and low-load nodes in the cluster.

Second, try to reduce the extra overhead generated in
the task scheduling process. Because in the process of
task scheduling, information such as computing tasks,
computing loads, and status data will inevitably be
migrated, and additional computing and transmission
overhead will be introduced during the migration process.
A good task scheduling strategy should minimize this

Mainstream Big Data Parallel Computing ... 1037

additional overhead, thereby reducing the performance
impact of task scheduling on the entire job topology.

Third, online task scheduling is superior to offline
task scheduling strategies. Because the offline task
scheduling strategy requires the entire job to suspend
execution during the execution process, and restart the
entire job after the scheduling and migration are
completed. However, in many practical application
scenarios, this kind of job stagnation is unacceptable, and
this kind of job stagnation itself is an additional and
unnecessary time overhead [4].

2.3 Stateful Streaming Computing

In big data streaming computing, there is a special
kind of application scenario, that is, stateful streaming
computing. In the traditional streaming computing
platform, the data is calculated and processed in the
memory, and the intermediate results of the calculation
are not saved. However, in a stateful streaming
computing environment, state data is stored on disk or
other external storage media. Once the computing task is
restarted after sending an error, the state data of the
previous calculation can be automatically obtained, and
then the subsequent calculation can be continued from a
certain moment, and the correctness and consistency of
the final calculation result can be ensured during the
calculation process [7]. At the same time, in the state data
management of stream computing, there are the
following four typical fault tolerance levels of state data
management:

(1) At most once: that is, each piece of data is
processed at most once, which may not be processed due
to job failure, exception or data omission.

(2) At least once: that is, each piece of data is
processed at least once, and may be repeatedly processed
due to job failure, restart and data blocking.

(3) End-to-end exactly once: that is, it is guaranteed
that in the entire link from the source to the sink, each
piece of data is processed and processed only once,
neither missing nor repeated processing.

2.4 Implementation of Distributed SVM
Trainer

For a dataset {(xi, yi)}i=1
n containing n sample pairs,

denote the division of sample numbers on m nodes as
{B1, ⋯ , Bm} , then the pairwise classification learning
problem can be written in the following form:

mjzwtosubject

zwxwyCz

j

m

j
j

m

j Bi
i

T
jizww

j
m

,,1,0

2
)0,1max(

2
1min

1

2

1

22

2,,,1

==−

−+−+
==

(1)

where ρ is the fixed iteration step size, wj is the weight
vector of the sub-dataset xBj, z is the regularization
vector, and ∑

ρ

2
‖wj − z‖

2m
j=1 is used to strengthen the

convergence of the algorithm.

The Lagrange transform can be written in the
following form:

ℒ(w, z, λ) =
1

2
‖z‖2

2 + C ∑ ∑ max(1 − yiw
Txi, 0)2

i∈Bj

m

j=1

+ ∑(
ρ

2
‖wj − z‖

2
+ λj

T(wj

m

j=1

− z))

(2)

where λ is a binary variable. Let λj = ρuj and after a
series of formula derivation, the (k+1)th iteration in the
problem can be written in the following form:

2

2

21

2
)0,1max(minarg k

j
k

i
T

iw

k
j uzwxwyCw +−+−= +

 (3)

1
)(1

11

+

+
=
 +

=+

m
uw

z
k
j

k
j

m
jk (4)

111 +++ −+= kk
j

k
j

k
j zwuu (5)

3 EXPERIMENT

3.1 Framework and Module Design

The overall architecture of the distributed Shuffle
framework based on the multi-copy data model relies on
the computing engine, and is a master-slave distributed
structure, including a Driver process and multiple
Executor processes. The Driver process is responsible for
generating the computing job DAG, computing task
scheduling and job information management, and the
Executor process starts multiple Task threads responsible
for the specific computing tasks of each partition data.
Data multi-copy shuffle is divided into three modules:
metadata management, fault tolerance management, and
data backup. The first two modules run in the Driver
process, the data backup process and multiple Executor
processes run together on the computing node, and there
is only one data backup process on a computing node.
The three modules are described in detail below.

3.1.1 Metadata Management

The metadata management module is responsible for
the management and storage of Shuffle metadata
information, as well as the life cycle of backup data.

1038 Yarong Lv

Since this paper proposes the backup file metadata
information based on the computing job structure, as
described in Section 2.2.3, the backup file storage path
and the mapping relationship between the backup file and
the original file are generated with specific backup file
naming rules and backup directory construction rules to
avoid storage of metadata information for backup files.

3.1.2 Fault-Tolerant Management

The fault-tolerance management module provides
fault-tolerance by combining the fault-tolerant method of
recalculation of the computing framework with the
backup data fault-tolerance mechanism of the data multi-
copy model Shuffle. Specifically, fault tolerance is
carried out in a prioritized manner. First, consider the
fault tolerance mechanism of Shuffle with multiple
copies of data, that is, backup data fault tolerance. If this
method does not work, then recalculate fault tolerance.

3.2 Introduction of Main Functional Modules

Database Connector: Connects Hadoop with the
database so that Map Reduce can directly access the
Oracle database. It first uses the DBInput Format class
provided by Hadoop to access the Oracle database, and
then uses the Text Output Format class to write the
obtained results into HDFS.

Data Loader: Loads the data dictionary table and the
local index of the data table from the database into the
data node of HDFS. For the data dictionary table, due to
its high query frequency, but the amount of data is small
and the table is basically fixed, all the data dictionary
tables are loaded into the data cache layer; for the data
table, only its local indexes are loaded into HDFS the
global index layer. It can be seen that the data loader of
H-DB has a small workload and will not become the
bottleneck of the system.

Index generator: Using the Map Reduce
programming model, the local indexes loaded into HDFS
are merged into global indexes and stored in the data
nodes of HDFS. When the global index is generated, the
local index in HDFS will be released to reduce space. If
the global index is too large, it will be automatically
divided into appropriate sizes, and the index directory
will be used to record the location of each block. The
index directory is in XML format and is stored in the
name node of HDFS. The index buffer uses the LRU
(Least Recently Used) algorithm to move the most
frequently used global index blocks from the HDFS data
node to the name node.

Query engine: Provides different execution strategies
for different query requests. When querying the data
dictionary table, it will directly access HDFS; when
querying the fields that have not been indexed in the data
table, it will directly access the database of the National

Center; when querying the fields that have been indexed
in the data table, it will first access the data in HDFS. The
global index layer obtains which databases should be
accessed, and then accesses these databases in parallel,
each database completes part of the query, and finally
merges and returns the obtained results.

4 EXPERIMENTAL ANALYSIS

4.1 Data Preprocessing of H-DB System

Data preprocessing of the H-DB system includes
loading the data dictionary table into the database and
creating global indexes on the fields of the data table.
Table 1 Shows the performance of H-DB data
preprocessing.

Table 1. Data preprocessing performance of H-DB
system

Preprocessing of data dictionary tables

Load time

Table stationInfo 28s

Table pointInfo 26s

Total Time 54s

Index

generation

time

Local index loading 493.5s

Global index creation 364.3s

Global index chunking 109.4s

Total time 967.2s

Global

index size

Global index per block

space
97.6MB

Total space 877.4MB

Figure 1. Data preprocessing performance analysis of

H-DB system

As can be seen from Figure 1, the total loading time
of the data dictionary table is less than 1 minute; it takes
a total of 16 minutes to generate the global index on the
data table, including loading the local index from the
Oracle database into HDFS (about 8 minutes), The index

28 26 54

493.5
364.3

109.4

967.2

97.6

877.4

0

200

400

600

800

1000

1200

Ti
m

e/
Si

ze

Tables

Preprocessing of data dictionary tables

Preprocessing of data dictionary tables

Mainstream Big Data Parallel Computing ... 1039

is merged into a global index (about 6 minutes) and the
global index is divided into an appropriate size (about 2
minutes); the space occupied by the global index is
877.4MB, which is 0.9% of the table minuteDate space
(95GB).

In summary, H-DB can complete the preprocessing
process of a 95GB dataset in only 17 minutes, and the
loaded data dictionary table and the generated global
index are only 0.9% of the original table space, so data
preprocessing will not Become the bottleneck of the H-
DB query system.

4.2 Shuffle Parallelism Tuning Performance
Evaluation

For the same job, when the parallelism of Shuffle is
400, 800 and 2400, the comparison results of the task-
level indicators are shown in Table 2. The table mainly
lists the task running time and the I/O waiting time of
Shuffle data reading. A job contains multiple tasks, and
due to data distribution and execution logic, the
difference between the task with the shortest running
time and the task with the longest is often large.
Therefore, the table gives the indicators within the
distribution of each running time of the task, and 50th
represents the median of the running time of the task.

Table 2. Comparison of multiple indicators at the Task level for jobs under different Shuffle parallelisms

Shuffle parallelism

Task-level metrics 25th 50th 75th 90th 95th

400 Task Duration/s 132 156 180 198 210

Shuffle Read Blocked Time/s 96 114 138 150 168

% 73 73 77 76 80

800 Task Duration/s 55 60 72 72 84

Shuffle Read Blocked Time/s 30 40 48 53 60

% 55 67 67 74 71

2400 Task Duration/s 26 31 36 41 43

Shuffle Read Blocked Time/s 17 22 28 32 34

% 65 71 78 78 79

Figure 2. Comparative analysis of multiple indicators under different Shuffle parallelism

It can be seen from Figure 2 that as the parallelism of
Shuffle increases, the running time of Task decreases.
This is because as the degree of parallelism increases, the
amount of data processed by a single task decreases and
the processing speed becomes faster. However, the

proportion of shuffle data read I/O waiting time is the
smallest only when the shuffle parallelism is 800, which
is optimal, and the job achieves a good balance in the
utilization of CPU, disk, and network bandwidth.

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

25th 50th 75th 90th 95th

Pr
op

or
tio

n

Ti
m

e

Parallelism

400 Task Duration/s
400 Shuffle Read Blocked Time/s
800 Task Duration/s
800 Shuffle Read Blocked Time/s
2400 Task Duration/s
2400 Shuffle Read Blocked Time/s
400 Proportion
800 Proportion
Proportion

1040 Yarong Lv

5 CONCLUSIONS

The analysis and processing of large-scale data will
be one of the important challenges for the development
of information technology in the future. How to extract
valuable information from large-scale and complex data
and ensure the timeliness of data statistics and analysis is
very important. To a large extent, it determines whether
the enterprise can accurately locate the development
trend of the market and find suitable business
opportunities in the future development, so as to take the
lead. Secondly, the value density of many data begins to
decline significantly after missing the effective time of
features. Therefore, the real-time processing and analysis
of large-scale data will be another important challenge in
the field of information technology.

REFERENCES

[1] Badri H , Bahreini T , Grosu D , et al. Energy-Aware
Application Placement in Mobile Edge Computing:
A Stochastic Optimization Approach[J]. IEEE
Transactions on Parallel and Distributed Systems,
2020, 31(4):909-922.

[2] Czarnul P , Proficz J , Drypczewski K . Survey of
Methodologies, Approaches, and Challenges in
Parallel Programming Using High-Performance
Computing Systems[J]. Scientific Programming,
2020, 2020(5):1-19.

[3] Grant Z P. Crisis and Convergence: How the
Combination of a Weak Economy and Mainstream
Party Ideological De-Polarization Fuels Anti-
System Support:[J]. Comparative Political Studies,
2021, 54(7):1256-1291.

[4] Kaur M, Khan M Z, Gupta S, et al. MBCP:
Performance Analysis of Large Scale Mainstream
Blockchain Consensus Protocols[J]. IEEE Access,
2021, PP(99):1-1.

[5] Licht J, Besta M, Meierhans S, et al.
Transformations of High-Level Synthesis Codes for
High-Performance Computing [J]. IEEE
Transactions on Parallel and Distributed Systems,
2021, 32(5):1014-1029.

[6] Lowther D , Ghorbanian V , Mohammadi M H , et
al. Design tools for electromagnetic- driven multi-
physics systems using high performance
computing[J]. Compel, 2020, 39(1):198-205.

[7] Narayanan M , Kumar R G , Jayasundaram J , et al.
Big Data Analytics and an Intelligent Aviation
Information Management System[J]. Turkish
Journal of Computer and Mathematics Education
(TURCOMAT), 2021, 12(11):4328-4340.

[8] Sangaiah A K , Goli A , Tirkolaee E B , et al. Big
Data-Driven Cognitive Computing System for
Optimization of Social Media Analytics[J]. IEEE
Access, 2020, PP(99):1-1.

[9] Soeung S. A REVIEW OF CAMBODIAN
PRIVATE TUTORING: PARASITIC AND
SYMBIOTIC FUNCTIONS TOWARDS THE
MAINSTREAM SYSTEM[J]. Journal of Nusantara
Studies (JONUS), 2020, 6(1):42-58.

Mainstream Big Data Parallel Computing ... 1041

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International
License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter s Creative Commons license and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder.

’
’

1042 Yarong Lv

