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Abstract: 
In recent years, with the widespread application of the Internet and information technology in people's production and 
life, the amount of data generated by all walks of life every day has shown a geometric and explosive growth trend, and 
the real-time nature of data analysis has become increasingly high. Therefore, big data parallel computing is widely 
used. The main purpose of this paper is to analyze and research the performance optimization of parallel computing 
systems based on mainstream big data. This paper mainly analyzes the design requirements and elastic resource 
scheduling strategy of the big data parallel computing system, introduces the framework and module design and the 
main functional modules, and preprocesses the data. The experimental results show that as the parallelism of Shuffle 
increases, the running time of Task decreases. This is because as the degree of parallelism increases, the amount of data 
processed by a single task decreases and the processing speed becomes faster. However, the proportion of shuffle data 
read I/O waiting time is the smallest only when the shuffle parallelism is 800, which is optimal. 
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1  INTRODUCTION 

The Shuffle framework of the existing big data 
processing system still has some problems in terms of 
stability and computing performance. On the one hand, 
with the expansion of the application data scale, the scale 
of the cluster is also increasing, and the node failure is 
frequent, which leads to the failure of Shuffle and reduces 
the computing performance. On the other hand, the 
parallelism of Shuffle also has a great impact on 
performance. If the parallelism of Shuffle is too small, it 
will be difficult to make full use of computing resources 
to speed up. If the parallelism of Shuffle is too large, it is 
easy to cause more network communication overhead. It 
is difficult for developers to set a reasonable Shuffle 
parallelism to achieve a balance between computational 
overhead and network communication overhead [9] [5]. 

In the research on big data parallel computing 
systems, Badri et al. believed that it is crucial to consider 
the dynamics of the system when designing the 
application placement mechanism, and modeled the 
energy-aware application placement problem in the edge 
computing system as a multi-stage stochastic program [1]. 
The goal is to maximize the QoS of the system while 
considering the limited energy budget of edge servers. A 
novel parallel sample averaging approximation (SAA) 

algorithm is designed. Sangaiah proposes that the 
integration of big data analytics and cognitive computing 
yields a new model that can take advantage of the most 
complex advancements in the industry and their 
associated decision-making processes, as well as address 
the glitches faced during big data analytics; EPPS 
problem, develop a hybrid fuzzy multi-objective 
optimization algorithm named NSGA-III-MOIWO [8], 
including non-dominated sorting genetic algorithm III 
(NSGA-III) and multi-objective invasive weed 
optimization (MOIWO) algorithm. The goal is to 
simultaneously minimize variance, skewness, and 
kurtosis as measures of risk, and maximize total expected 
return. 

With the explosive and geometric growth of data 
scale, the era of massive data has arrived. How to process 
massive data quickly, efficiently and accurately will be 
an important research topic faced by a large number of 
researchers. Therefore, in recent years, new computing 
technologies, computing platforms and solutions have 
been proposed one after another, including high-
performance single-computer computing solutions, 
distributed computing solutions composed of clusters, 
and finally distributed computing solutions composed of 
large-scale clusters. Because of its low cost and high 
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efficiency, it has been applied and promoted on a larger 
scale in the industry. 

2  DISCUSSION 

2.1  Demand Analysis 

Support large data query under multi-user: Since the 
national center stores about 2TB of data every day, it 
takes 11 hours to scan the data serially at a speed of 
50MB/s, so parallel processing is the only way. In 
addition, since the national center needs to support the 
data query of hundreds of users at the same time, and the 
number of connections to the Oracle database is limited, 
the server often crashes or works abnormally in the case 
of multiple users, so a new architecture needs to be 
designed to solve the problem. this problem [3] [6]. 

Provide high-performance query efficiency: A high-
performance query engine should include at least three 
aspects: 

(1) Index, that is, a specially designed arrangement 
form for queries. By analyzing the hoofs to select the 
most commonly used queries of earthquake users, and 
then establishing corresponding indexes for these queries, 
the query performance can be optimized; 

(2) Result buffering, that is, the definition of the 
query and the returned result are stored in advance. When 
the same query is submitted again, the result can be 
directly returned to the user to speed up the execution of 
the query; 

(3) Parallel processing, according to the optimization 
method of the data layer of the p-DOT model, in the 
earthquake precursor network management system with 
multiple data copies, the query is pressed into the 
corresponding database Gan points, and by accessing 
these nodes in parallel, A speedup of at least 3 times can 
be achieved. 

Maintain the independent integrity of each database: 
Since the databases of each station, regional center and 
national center have independent job responsibilities, 
such as operational duty, system management, data 
management, equipment management, operation status 
management and data collection, etc. Personnel are 
already familiar with these daily operations, so if the new 
architecture is built from scratch, the cost of personnel 
training is very high. In addition, since each database has 
a complex relational data model and huge historical 
legacy data, the new architecture is preferably compatible 
with these databases, maintaining the independent 
integrity of their original functions [2]. 

 

 

 

2.2  Resource Scheduling Strategy 

A good elastic resource scheduling strategy for a 
parallel computing system needs to consider the 
following issues: 

First, accurately locate the cluster performance 
bottleneck. That is, the elastic resource scheduling 
strategy should be able to accurately detect when the 
cluster has a performance bottleneck, specifically which 
operator has insufficient computing resources to cause 
the performance bottleneck, and even accurately locate 
the performance bottleneck caused by the cluster. Being 
able to find problems in a timely and accurate manner is 
a necessary condition for formulating a reasonable and 
flexible resource scheduling plan. 

Second, formulate the optimal flexible resource 
scheduling plan. On the basis of accurately locating the 
cluster performance problem, the strategy should be able 
to formulate the optimal elastic resource scheduling plan, 
that is, calculating how many computing resources 
should be added, how to increase and other specific 
scheduling measures, which is the core content of the 
elastic resource scheduling plan . 

Third, minimize the extra overhead caused by elastic 
resource scheduling. In fact, any operation that 
intervenes externally on a computational task is bound to 
generate additional computational and transmission 
overhead. Therefore, the elastic resource scheduling 
strategy should reduce this unnecessary overhead as 
much as possible, and have as little negative impact on 
the normal execution of computing tasks as possible. 
Research an online, real-time elastic resource scheduling 
strategy to avoid triggering during the scheduling process 
as much as possible. Operations such as job stagnation, 
restart, etc., will be the key issues and hot directions of 
future research in the field of elastic resource scheduling 
strategies. Because whether the extra overhead generated 
in the scheduling process can be avoided as much as 
possible is one of the important factors for whether a 
scheduling strategy can be applied and promoted in the 
actual industrial environment. 

A good task scheduling strategy should have the 
following three excellent characteristics: 

First, make a reasonable task scheduling plan. That is, 
it can accurately judge and analyze the execution of the 
job topology, and accurately discover the high-load 
nodes and low-load nodes in the cluster. 

Second, try to reduce the extra overhead generated in 
the task scheduling process. Because in the process of 
task scheduling, information such as computing tasks, 
computing loads, and status data will inevitably be 
migrated, and additional computing and transmission 
overhead will be introduced during the migration process. 
A good task scheduling strategy should minimize this 
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additional overhead, thereby reducing the performance 
impact of task scheduling on the entire job topology. 

Third, online task scheduling is superior to offline 
task scheduling strategies. Because the offline task 
scheduling strategy requires the entire job to suspend 
execution during the execution process, and restart the 
entire job after the scheduling and migration are 
completed. However, in many practical application 
scenarios, this kind of job stagnation is unacceptable, and 
this kind of job stagnation itself is an additional and 
unnecessary time overhead [4]. 

2.3  Stateful Streaming Computing 

In big data streaming computing, there is a special 
kind of application scenario, that is, stateful streaming 
computing. In the traditional streaming computing 
platform, the data is calculated and processed in the 
memory, and the intermediate results of the calculation 
are not saved. However, in a stateful streaming 
computing environment, state data is stored on disk or 
other external storage media. Once the computing task is 
restarted after sending an error, the state data of the 
previous calculation can be automatically obtained, and 
then the subsequent calculation can be continued from a 
certain moment, and the correctness and consistency of 
the final calculation result can be ensured during the 
calculation process [7]. At the same time, in the state data 
management of stream computing, there are the 
following four typical fault tolerance levels of state data 
management: 

(1) At most once: that is, each piece of data is 
processed at most once, which may not be processed due 
to job failure, exception or data omission. 

(2) At least once: that is, each piece of data is 
processed at least once, and may be repeatedly processed 
due to job failure, restart and data blocking. 

(3) End-to-end exactly once: that is, it is guaranteed 
that in the entire link from the source to the sink, each 
piece of data is processed and processed only once, 
neither missing nor repeated processing. 

2.4  Implementation of Distributed SVM 
Trainer 

For a dataset {(xi, yi)}i=1
n  containing n sample pairs, 

denote the division of sample numbers on m nodes as 
{B1, ⋯ , Bm} , then the pairwise classification learning 
problem can be written in the following form: 
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where ρ is the fixed iteration step size, wj is the weight 
vector of the sub-dataset xBj, z is the regularization 
vector, and ∑

ρ

2
‖wj − z‖

2m
j=1  is used to strengthen the 

convergence of the algorithm. 

The Lagrange transform can be written in the 
following form: 
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where λ is a binary variable. Let λj = ρuj  and after a 
series of formula derivation, the (k+1)th iteration in the 
problem can be written in the following form: 
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3  EXPERIMENT 

3.1  Framework and Module Design 

The overall architecture of the distributed Shuffle 
framework based on the multi-copy data model relies on 
the computing engine, and is a master-slave distributed 
structure, including a Driver process and multiple 
Executor processes. The Driver process is responsible for 
generating the computing job DAG, computing task 
scheduling and job information management, and the 
Executor process starts multiple Task threads responsible 
for the specific computing tasks of each partition data. 
Data multi-copy shuffle is divided into three modules: 
metadata management, fault tolerance management, and 
data backup. The first two modules run in the Driver 
process, the data backup process and multiple Executor 
processes run together on the computing node, and there 
is only one data backup process on a computing node. 
The three modules are described in detail below. 

3.1.1  Metadata Management 

The metadata management module is responsible for 
the management and storage of Shuffle metadata 
information, as well as the life cycle of backup data. 
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Since this paper proposes the backup file metadata 
information based on the computing job structure, as 
described in Section 2.2.3, the backup file storage path 
and the mapping relationship between the backup file and 
the original file are generated with specific backup file 
naming rules and backup directory construction rules to 
avoid storage of metadata information for backup files. 

3.1.2  Fault-Tolerant Management 

The fault-tolerance management module provides 
fault-tolerance by combining the fault-tolerant method of 
recalculation of the computing framework with the 
backup data fault-tolerance mechanism of the data multi-
copy model Shuffle. Specifically, fault tolerance is 
carried out in a prioritized manner. First, consider the 
fault tolerance mechanism of Shuffle with multiple 
copies of data, that is, backup data fault tolerance. If this 
method does not work, then recalculate fault tolerance. 

3.2  Introduction of Main Functional Modules 

Database Connector: Connects Hadoop with the 
database so that Map Reduce can directly access the 
Oracle database. It first uses the DBInput Format class 
provided by Hadoop to access the Oracle database, and 
then uses the Text Output Format class to write the 
obtained results into HDFS. 

Data Loader: Loads the data dictionary table and the 
local index of the data table from the database into the 
data node of HDFS. For the data dictionary table, due to 
its high query frequency, but the amount of data is small 
and the table is basically fixed, all the data dictionary 
tables are loaded into the data cache layer; for the data 
table, only its local indexes are loaded into HDFS the 
global index layer. It can be seen that the data loader of 
H-DB has a small workload and will not become the 
bottleneck of the system. 

Index generator: Using the Map Reduce 
programming model, the local indexes loaded into HDFS 
are merged into global indexes and stored in the data 
nodes of HDFS. When the global index is generated, the 
local index in HDFS will be released to reduce space. If 
the global index is too large, it will be automatically 
divided into appropriate sizes, and the index directory 
will be used to record the location of each block. The 
index directory is in XML format and is stored in the 
name node of HDFS. The index buffer uses the LRU 
(Least Recently Used) algorithm to move the most 
frequently used global index blocks from the HDFS data 
node to the name node. 

Query engine: Provides different execution strategies 
for different query requests. When querying the data 
dictionary table, it will directly access HDFS; when 
querying the fields that have not been indexed in the data 
table, it will directly access the database of the National 

Center; when querying the fields that have been indexed 
in the data table, it will first access the data in HDFS. The 
global index layer obtains which databases should be 
accessed, and then accesses these databases in parallel, 
each database completes part of the query, and finally 
merges and returns the obtained results. 

4  EXPERIMENTAL ANALYSIS 

4.1  Data Preprocessing of H-DB System 

Data preprocessing of the H-DB system includes 
loading the data dictionary table into the database and 
creating global indexes on the fields of the data table. 
Table 1 Shows the performance of H-DB data 
preprocessing. 

Table 1. Data preprocessing performance of H-DB 
system 

Preprocessing of data dictionary tables 

Load time 

Table stationInfo 28s 

Table pointInfo 26s 

Total Time 54s 

Index 

generation 

time 

Local index loading 493.5s 

Global index creation 364.3s 

Global index chunking 109.4s 

Total time 967.2s 

Global 

index size 

Global index per block 

space 
97.6MB 

Total space 877.4MB 

 

 
Figure 1. Data preprocessing performance analysis of 

H-DB system 

As can be seen from Figure 1, the total loading time 
of the data dictionary table is less than 1 minute; it takes 
a total of 16 minutes to generate the global index on the 
data table, including loading the local index from the 
Oracle database into HDFS (about 8 minutes), The index 
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is merged into a global index (about 6 minutes) and the 
global index is divided into an appropriate size (about 2 
minutes); the space occupied by the global index is 
877.4MB, which is 0.9% of the table minuteDate space 
(95GB). 

In summary, H-DB can complete the preprocessing 
process of a 95GB dataset in only 17 minutes, and the 
loaded data dictionary table and the generated global 
index are only 0.9% of the original table space, so data 
preprocessing will not Become the bottleneck of the H-
DB query system. 

4.2   Shuffle Parallelism Tuning Performance 
Evaluation 

For the same job, when the parallelism of Shuffle is 
400, 800 and 2400, the comparison results of the task-
level indicators are shown in Table 2. The table mainly 
lists the task running time and the I/O waiting time of 
Shuffle data reading. A job contains multiple tasks, and 
due to data distribution and execution logic, the 
difference between the task with the shortest running 
time and the task with the longest is often large. 
Therefore, the table gives the indicators within the 
distribution of each running time of the task, and 50th 
represents the median of the running time of the task. 

Table 2. Comparison of multiple indicators at the Task level for jobs under different Shuffle parallelisms 

Shuffle parallelism 

Task-level metrics 25th 50th 75th 90th 95th 

400 Task Duration/s 132 156 180 198 210 

Shuffle Read Blocked Time/s 96 114 138 150 168 

% 73 73 77 76 80 

800 Task Duration/s 55 60 72 72 84 

Shuffle Read Blocked Time/s 30 40 48 53 60 

% 55 67 67 74 71 

2400 Task Duration/s 26 31 36 41 43 

Shuffle Read Blocked Time/s 17 22 28 32 34 

% 65 71 78 78 79 

 

 
Figure 2. Comparative analysis of multiple indicators under different Shuffle parallelism 

It can be seen from Figure 2 that as the parallelism of 
Shuffle increases, the running time of Task decreases. 
This is because as the degree of parallelism increases, the 
amount of data processed by a single task decreases and 
the processing speed becomes faster. However, the 

proportion of shuffle data read I/O waiting time is the 
smallest only when the shuffle parallelism is 800, which 
is optimal, and the job achieves a good balance in the 
utilization of CPU, disk, and network bandwidth. 

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

25th 50th 75th 90th 95th

Pr
op

or
tio

n

Ti
m

e

Parallelism

400 Task Duration/s
400 Shuffle Read Blocked Time/s
800 Task Duration/s
800 Shuffle Read Blocked Time/s
2400 Task Duration/s
2400 Shuffle Read Blocked Time/s
400 Proportion
800 Proportion
Proportion

1040 Yarong Lv



  

 

5  CONCLUSIONS 

The analysis and processing of large-scale data will 
be one of the important challenges for the development 
of information technology in the future. How to extract 
valuable information from large-scale and complex data 
and ensure the timeliness of data statistics and analysis is 
very important. To a large extent, it determines whether 
the enterprise can accurately locate the development 
trend of the market and find suitable business 
opportunities in the future development, so as to take the 
lead. Secondly, the value density of many data begins to 
decline significantly after missing the effective time of 
features. Therefore, the real-time processing and analysis 
of large-scale data will be another important challenge in 
the field of information technology. 
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