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Abstract 
In Partial Multi-Label learning (PML), each training example is assigned with a candidate label set where only partial 
labels are correct. Existing PML methods only focus on global label correlation, while they lack the consideration of 
the local label correlation. To alleviate this issue, a novel framework is proposed to jointly consider the feature 
manifold structure over the global instances and local instances. Specifically, we firstly explore the global feature 
manifold and local feature manifold by the affinity information conveyed by feature vectors. Then, a trade-off 
parameter is introduced to character the relative contribution of the feature manifold structures optimized by different 
methods. Afterwards, in order to disambiguate the candidate labels, we utilize the joint feature manifold in the label 
space. Finally, the predicted results are learned by training a linear multi-label classification model. Extensive 
experiments on six PML datasets demonstrate the effectiveness of our proposed method. 
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1 INTRODUCTION 

Unlike traditional supervised learning framework, 
Partial Multi-Label Learning (PML) is a weakly 
supervised learning framework, in which each example 
is associated with candidate labels but only partial of 
which are correct. Since human annotators have difficult 
to giving the accurate labels when the human annotators 
are careless or weary [13], some images cannot be 
classified accurately. For example, as shown in Figure 1, 
the set of candidate labels are given by human 
annotators. Among the eight candidate labels, only some 
of them (Mountain, House, Car, Cloud, Tree) are 
correct, whereas other labels (Boat, People, Animal) are 
incorrect due to the potential untrustworthy annotators. 
The task of PML methods is to train a multi-label 
predictor from PML training data with uncertain labels 
and accurately predict the unseen examples. 

The main challenge for PML is how to disambiguate 
from the candidate labels and discriminate the ground-
truth labels. To tackle this problem, the PML methods 
can be divided into two strategies. For the first strategy, 
the whole process is separated into two-stage. For 
example, [9] proposed an effective approach 
PARTICES, where the credible labels with high 

confidences are recognized by iterative label 
propagation at the first stage and then a multi-label 
predictor is learned via virtual label splitting 
(PARTICE-VLS) or MAP reasoning (PARTICE-MAP) 
at the second stage. DRAMA [7] is also a novel two-
stage method, where a label confidence matrix is 
generated for disambiguation by utilizing the feature 
manifold, followed by a gradient boosting-based model 
that influences the feature space in each boosting round. 
For the second strategy, the whole process is unified. 
For example, PML-FP is proposed by [8], where a 
classification predictor along with label confidences are 
optimized in a coherent framework by minimizing the 
confidence weighted ranking loss and exploiting data 
information. One recent work [6] is another popular 
PML approach, which incorporates example-label 
assignment correlations, as well as example correlations 
and label correlations, into the proposed framework at 
the same time. 
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Figure 1: The image is partially tagging by human 
annotators. Among the eight candidate labels, only five 
of them in black font are ground-truth labels including 
mountain, house, car, cloud and tree, whereas three of 
them are false including boat, animal and people. 

We find that current PML methods only consider 
either global feature manifold or label correlations 
alone, whereas the global feature manifold and local 
feature manifolds are hardly taken into consideration 
together to induce the label manifold. However, the local 
feature manifold can better help to explore the local 
label correction. For example, instances containing both 
“Buck” and “Tiger” labels are often appear in a local 
data subset with the semantic “Animal”, while instances 
containing both “Buck” and “Laker” often appear in 
another data subset with the semantic “Basketball 
Teams”. Meanwhile, according to the smoothness 
assumption [1], closely related instances are more 
inclined to share same labels, implying that the local 
topological structure can be transferred from the feature 
space to the label space [4]. Based on this assumption, 
the local label subsets with the similar semantic have 
more similar labels. According to experimental results, 
considering global and local feature manifolds 
simultaneously is more beneficial.  

In this paper, we introduce a novel approach called 
Partial Multi-Label Learning with Global and LOcal 
MANifold disambiguation (GLOMAN). To better 
explored the relation between labels, we consider not 
only the global feature manifold but also the local 
feature manifold. Specifically, motivated by [5], we 
firstly separate our training data into multiple groups, 
with each group sharing a portion of label correlations. 
The groups can be generated by clustering algorithm. 
Then, we explore the local feature manifold in a group 
by an affinity graph reconstructed by each instance and 
its K-nearest neighbors. Afterwards, the local affinity 
information from different groups is fused into an 
aggregate feature manifold structure. After that, the 
global affinity information is directly explored over all 
instances. Secondly, we simply use a trade-off 
parameter to characterize the relative contribution of the 
both affinity information achieved by different ways and 
gain a joint affinity graph. Then, based on the 
smoothness assumption, we utilize the joint affinity 
graph to induce the manifold in the label space. Finally, 
a linear multi-label classification model is learned to 
predict the unseen instances. 

2 PROPOSED METHOD 

Specifically speaking, 𝑋 = ℝ𝑑×𝑚 represents the d 
dimensional feature space for m instances and 𝒴 =

{𝑦1, 𝑦2, … , 𝑦𝑞}  with q class labels denotes the label 
space. The goal of PML methods aims to train a multi-
label classifier 𝑓: 𝑋 ↦ 2𝒴 based on the PML training 
data 𝒟 = { (𝒙𝑖 , 𝑌𝑖) ∣∣ 1 ≤ 𝑖 ≤ 𝑚 },  in which the 
instance 𝒙𝒊 is described a d-dimensional feature vectors, 
and 𝑌𝑖 ⊆ 𝒴 denotes the candidate labels  associated with 
the instance 𝒙𝒊. 

Firstly, GLOMAN aims to explore the feature 
manifold structure over all training instances. Given an 
affinity Graph 𝐺 = (𝑉, 𝐸, 𝐒𝐆) based on the PML dataset 
𝒟 , 𝑉 = { 𝒙𝑖 ∣∣ 1 ≤ 𝑖 ≤ 𝑚 }  is equivalent to the set of 
training instances and 𝐸 =

{ (𝒙𝑖 , 𝒙𝑗) ∣∣ 𝑖 ∈ 𝑘𝑁𝑁(𝒙𝑗), 1 ≤ 𝑗 ≤ 𝑚 }  is equivalent to 
the edge set in which 𝑘𝑁𝑁(𝒙𝑗) denotes the index set of 
𝒙𝑗 's k-nearest neighbours. 𝑺𝑮 = [𝑠𝑖𝑗]𝑚×𝑚 is a affinity 
matrix which preserves the affinity information 
conveyed by feature vectors. For each instance 𝒙𝑖 , it 
can be linearly reconstructed from its nearest neighbours 
and the value 𝑠𝑖𝑗  of 𝑺𝑮 is optimized by sovling follow 
minimum error reconstruction problems: 

𝑚𝑖𝑛
𝐒𝐆

∑  

𝑚

𝑗=1

‖𝑥𝑗 − ∑  

(𝑥𝑖,𝑥𝑗)∈𝐸

𝑠𝑖𝑗 ⋅ 𝑥𝑖‖2
2

 

s.t.: ∑  

(𝑥𝑖,𝑥𝑗)∈𝐸

𝑠𝑖𝑗 = 1(1 ≤ 𝑗 ≤ 𝑚)

 
𝑠𝑖𝑗 ≥ 0(∀(𝑥𝑖 , 𝑥𝑗) ∈ 𝐸)

 
𝑠𝑖𝑗 = 0(∀(𝑥𝑖 , 𝑥𝑗) ∉ 𝐸)

 

 
 
 
 
 

(1) 

 
Conceptually, the resulting of (1) can be seen as a 

standard quadratic programming QP problem, which can 
be solved by any off-the-shelf quadratic programming 
QP solvers. By solving (1), the global feature manifold 
can be effectively exploited. 

Since local label correlations can only be affected by 
a local group, we consider the local feature manifold 
accordingly. As depicted in Figure 2, we assume that the 
dataset 𝑋 can be separated into g groups {𝑿1, … , 𝑿𝑔} via 
a clustering algorithm such as k-means. It is noteworthy 
that each instance in the group can only be linearly 
reconstructed by its k-nearest neighbors in this group 
and then the 𝑠𝑖𝑗   optimized in every group are also 
aggregated into a 𝑚 × 𝑚 affinity matrix. Compared to 
the 𝑆𝐺 , the affinity matrix 𝑆𝐿 is obtained by the local 
data subset instead of the global dataset. 
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Figure 2: The aggregate feature manifold is fused by every local feature manifold. For convenience, we simply 

describe the affinity graph of each group. 

By considering the local feature manifold, let 𝐸𝑢 =

{ (𝒙𝑖 , 𝒙𝑗) ∣∣ 𝑖 ∈ 𝑘𝑁𝑁(𝒙𝑗), 1 ≤ 𝑗 ≤ 𝑚𝑢 } be the sub edge 
set of 𝐸 and 𝑚𝑢 be to the number of instances in the 
group u. Then we have the following optimization 
problem: 

 

𝑚𝑖𝑛
𝐒 𝐋

∑  

𝑔

𝑢=1

∑  

𝑚𝑢

𝑗=1

‖𝒙𝑗 − ∑  

(𝒙𝑖,𝒙𝑗)∈𝐸𝑢

𝑠𝑖𝑗 ⋅ 𝒙𝑖‖2
2

 

s.t.: ∑  

𝑔

𝑢=1

∑  

(𝒙𝑖,𝒙𝑗)∈𝐸𝑢

𝑠𝑖𝑗 = 1(1 ≤ 𝑗 ≤ 𝑚𝑢)

 
𝑠𝑖𝑗 ≥ 0(∀(𝑥𝑖 , 𝑥𝑗) ∈ 𝐸)

 
𝑠𝑖𝑗 = 0(∀(𝑥𝑖 , 𝑥𝑗) ∉ 𝐸)

 

 
 
 
 
 
 

(2) 

 
Similar to (1), the (2) is also a standard QP problem 

which can also be solved by applying off-the-shelf QP 
toolbox. Global feature manifold and local feature 
manifold are encoded in the affinity matrix 
𝑆𝐺  𝑎𝑛𝑑 𝑆𝐿. By taking the basic assumption that global 
feature manifold and local feature manifold have 
different contribution for model inducing, we use a 
trade-off parameter 𝛼 (0 ≤ 𝛼 ≤ 1)  to characterize the 
relative contribution to the joint feature manifold 
structure: 

 
𝑆 = (1 − 𝛼)𝑆𝐺 + 𝛼𝑆𝐿(0 ≤ 𝛼 ≤ 1) (3) 

 
Where 𝑆  denote the joint feature manifold by fusing 

𝑆𝐺  𝑎𝑛𝑑 𝑆𝐿. 

According to smoothness assumption, similar 
examples in the feature space are more inclined to share 
the same topology in the label space. GLOMAN aims to 
disambiguate the irrelevant labels in a numerical label 
space, among which the values of the numerical label 
can be regarded as the labeling confidence. Formally, 
the label manifold is reconstructed by the following 
minimization: 

 

𝑚𝑖𝑛
F

∑  

𝑚

𝑗=1

‖𝑓𝑗 − ∑  

𝑚

𝑖=1

𝑠𝑖𝑗 ⋅ 𝑓𝑖‖2
2

 

 s.t. : ∑  

𝑞

𝑙=1

𝑓𝑗𝑙 = 1(1 ≤ 𝑗 ≤ 𝑚)

 
𝑓𝑗𝑙 ≥ 0(1 ≤ 𝑗 ≤ 𝑚, 𝑦𝑙 ∈ 𝑌𝑗)

 
𝑓𝑗𝑙 = 0(1 ≤ 𝑗 ≤ 𝑚, 𝑦𝑙 ∉ 𝑌𝑗)

 

 
 
 
 
 

(4) 

 
Here, 𝐅 = [𝑓1, 𝑓2, … , 𝑓𝑚]⊤ = {𝑓𝑗𝑙}  denotes the 

labeling confidence matrix, where 𝑓𝑗𝑙 denotes the 
confidence score of label 𝑦𝑙 being the ground-truth label 
of 𝑥𝑗 . 

To achieve the better solution of confidence scores 
matrix F with the off-the-shelf QP toolbox, we convert 
the (4) into (5). 

𝑚𝑖𝑛
�̃�

1

2
𝑓⊤Ψ𝑓

 s.t. 𝟎𝑚⋅𝑞 ≤ 𝑓 ≤ 𝒚, 𝐸𝑓 = 𝟏𝑚

 
 
 

(5) 
 

Here,  𝑓 ∈ {0,1}𝑚⋅𝑞  is the vector-wise of F and 𝒚 ∈
{0,1}𝑚⋅𝑞 is the vector-wise of the candidate labels Y. 
Moreover, 𝐄 = [𝐈𝑚×𝑚, 𝐈𝑚×𝑚, … , 𝐈𝑚×𝑚] ∈
{0,1}𝑚×𝑚⋅𝑞and 𝟏𝑚 ∈ 𝑅𝑚×1. Then, we define T = S⊤S +
(S⊤𝟏𝑚×𝑚S) ⊙ I𝑚×𝑚 − 2S , where ⊙  is the  the 
Hadamard product and I𝑚×𝑚 is an identity matrix. In 
addition, the Ψ  is calculated by 𝜓 + 𝜓⊤ , where 𝜓 ∈
𝑅𝑚⋅𝑞×𝑚⋅𝑞 is defined as:  

 

𝜓 = [

T 0𝑚×𝑚 ⋯ 0𝑚×𝑚

0𝑚×𝑚 T ⋱ ⋮
⋮ ⋱ ⋱ 0𝑚×𝑚

0𝑚×𝑚 ⋯ 0𝑚×𝑚 T

]

 

 

 
 

(6) 

 
The (5) is a standard QP problem, which can also be 

solved by any off-the-shelf QP toolbox. By solving (5), 
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the confidence value can be achieved to disambiguate 
the noise labels. 

Let 𝐷 = { (𝒙𝑖 , 𝑌�̂�) ∣∣ 1 ≤ 𝑖 ≤ 𝑚 } be the 
disambiguated counterpart, the ground-truth labels 
�̂� reformed by a threshold parameter 𝜃1: 

�̂�𝑖 = {𝑦𝑙 ∣ 𝑓𝑗𝑙 ≥ 𝜃1, 1 ≤ 𝑙 ≤ 𝑞} (7) 
 

The corresponding  𝑦𝑙 = 1  when the confidence 
value 𝑓𝑖𝑙 ≥ 𝜃1 , 𝑦𝑙 = 0. 

Finally, GLOMAN intends to train a linear multi-
label predictive model to make prediction on unseen 
instances. By solving the following ridge regression 
problem, the predictive model can be learned: 

𝑚𝑖𝑛
𝑊

1

2
‖�̂� − 𝑊⊤X‖𝐹

2 + 𝛾 ⋅ ‖𝑊‖𝐹
2   

(8) 
  

Here, X ∈ 𝑅𝑑×𝑚 and Ŷ ∈ 𝑅𝑞×𝑚  represents the 
instances matrix and the ground-truth labels matrix 
respectively. Accordingly, 𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑞] ∈

𝑅𝑑×𝑞 denotes the linear predictive matrix and 𝛾 denotes 
the regularization coefficient. To control model 
complexity, we apply the commonly utilized squared 
Frobenius norm for regularization. The solution of ridge 
regression can be solved with standard equation method: 

 
𝑊 = (XX⊤ + 𝛾 ⋅ I)−1X�̂�⊤ (9) 

 

Therefore, for unseen instance �̃� ∈ X ,  a threshold 
parameter 𝜃2 is introduced to predict the modeling 
outputs �̃�: 

 
�̃� = {𝑦𝑗 ∣ 𝑤𝑗

⊤ ⋅ �̃� ≥ 𝜃2, 1 ≤ 𝑗 ≤ 𝑞} (10) 

3 EXPERIMENTS 

3.1 Experimental Setup 

We conduct experiments on widely-used 6 synthetic 
PML datasets to evaluate the performance of our 
proposed GLOMAN approaches. Following the [12], we 
use the same protocol for adding label noise where the 
PML candidate label sets are produced from the original 
MLL datasets by  

Table 1: Characteristics of the partial multi-label 
datasets. 

Dataset N(E) N(F) N(L) Avg(L) Domains 

Emotions 593 72 6 1.87 music 

Medical 978 1449 45 1.25 text 

Image 2000 294 6 1.23 images 

Scene 2407 294 6 1.07 images 

Yeast 2417 103 14 4.23 biology 

Bibtex 7395 1836 159 2.40 text 

 
Table 2: Comparison of GLOMAN with well-established MLL and PML approaches on five evaluation 

measurements, where the best performances are shown in bold face (p=7, r=3).  

Datasets ML-KNN RANK-SVM 
PARTICE-

VLS 

PARTICE-

MAP 
DRAMA GLOMAN 

Hamming Loss  ↓ 

Emotions 0.635±0.025 0.605±0.018 0.254±0.020 0.294±0.033 0.364±0.011 0.240±0.027 

Medical 0.016±0.002 0.038±0.002 0.026±0.003 0.037±0.004 0.013±0.000 0.012±0.002 

Image 0.371±0.040 0.409±0.018 0.217±0.056 0.258±0.094 0.261±0.003 0.197±0.011 

Scene 0.252±0.017 0.460±0.043 0.141±0.032 0.175±0.047 0.249±0.002 0.116±0.011 

Yeast 0.209±0.011 0.246±0.010 0.207±0.005 0.233±0.005 0.231±0.001 0.245±0.008 

Bibtex 0.014±0.000 - 0.015±0.000 0.024±0.001 0.012±0.000 0.015±0.000 

Ranking Loss  ↓ 

Emotions 0.366±0.031 0.415±0.045 0.266±0.020 0.268±0.039 0.330±0.008 0.199±0.040 

Medical 0.068±0.018 0.139±0.016 0.106±0.030 0.108±0.024 0.038±0.000 0.032±0.011 

Image 0.240±0.017 0.201±0.017 0.239±0.061 0.296±0.094 0.215±0.004 0.207±0.014 

Scene 0.144±0.012 0.387±0.021 0.130±0.046 0.248±0.058 0.111±0.001 0.111±0.014 

Yeast 0.177±0.012 0.166±0.012 0.185±0.011 0.181±0.012 0.223±0.000 0.191±0.013 

Bibtex 0.230±0.010 - 0.310±0.009 0.329±0.008 0.139±0.000 0.147±0.006 

One Error ↓ 

Emotions 0.518±0.061 0.641±0.094 0.329±0.039 0.410±0.063 0.422±0.020 0.320±0.060 

Medical 0.272±0.032 0.724±0.040 0.244±0.062 0.517±0.075 0.175±0.005 0.155±0.040 
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Image 0.404±0.027 0.340±0.031 0.360±0.106 0.454±0.152 0.341±0.005 0.358±0.039 

Scene 0.305±0.022 0.677±0.028 0.281±0.091 0.439±0.115 0.243±0.003 0.291±0.030 

Yeast 0.239±0.028 0.228±0.030 0.216±0.022 0.250±0.024 0.240±0.000 0.231±0.028 

Bibtex 0.624±0.024 - 0.567±0.014 0.776±0.014 0.386±0.000 0.374±0.021 

Coverage  ↓ 

Emotions 0.473±0.031 0.489±0.043 0.357±0.044 0.389±0.051 0.444±0.008 0.333±0.039 

Medical 0.092±0.024 0.163±0.018 0.125±0.032 0.134±0.028 0.056±0.001 0.049±0.014 

Image 0.248±0.015 0.217±0.016 0.228±0.059 0.292±0.085 0.229±0.004 0.223±0.011 

Scene 0.136±0.009 0.337±0.018 0.113±0.047 0.224±0.048 0.111±0.001 0.108±0.011 

Yeast 0.471±0.017 0.446±0.016 0.468±0.017 0.469±0.014 0.529±0.001 0.507±0.016 

Bibtex 0.369±0.014 - 0.469±0.010 0.482±0.008 0.255±0.000 0.268±0.009 

Average Precision ↑ 

Emotions 0.619±0.027 0.567±0.028 0.731±0.024  0.704±0.034  0.674±0.010  0.767±0.039 

Medical 0.768±0.027  0.409±0.035 0.735±0.046  0.588±0.055 0.860±0.002 0.873±0.028  

Image 0.730±0.015  0.771±0.017  0.744±0.075  0.691±0.096  0.766±0.002 0.761±0.021  

Scene 0.798±0.134 0.528±0.020  0.803±0.069 0.699±0.072  0.843±0.001  0.820±0.018  

Yeast 0.754±0.017  0.761±0.018  0.753±0.012 0.741±0.014 0.721±0.000  0.742±0.016  

Bibtex 0.312±0.016 - 0.298±0.011 0.183±0.010 0.509±0.000  0.520±0.012 

 
randomly adding false positive labels under various 
configurations of variable 𝑝 and 𝑟.  

Specifically, 𝑝 ∈ (0,1) denotes the percentage of 
instances in the dataset that are partially tagged, and 𝑟 ∈
𝑁 represents the number of false positive labels 
appearing in the candidate labels. Table 1 illustrates the 
properties of partial multi-label datasets, such as the 
number of instances N(E), the number of features N(F), 
the number of label N(L), the average number of labels 
or per instances Avg(L). 

Furthermore, two well-established multi-label methods 
ML-KNN [10], RankSVM [2] are used as the comparing 
algorithms. Besides, three well-established partial multi-
label learning methods are also employed as the 
comparing approaches that consider the disambiguation 
for candidate labels, such as PARTICE-VLS, 
PARTICE-MAP [9] and DRAMA [7]. The 
corresponding parameters are presented in the respective 
literature. In this paper, k=10, g=6, 𝜃1= 0.5, 𝜃2= 0.9 and 
𝛾 = 1 are empirically set. 

 

   

 

Figure 3: The performance of GLOMAN in terms of Hamming Loss with k (nearest neighbour), g (the number of 
clusters), 𝜃1 (the threshold for disambiguation), 𝜃2(the threshold for prediction), 𝛾 (the regularization coefficient), and 

𝛼 (the trade-off parameter) 
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We use five popular evaluation metrics for multi-
label classification, including Hamming Loss, Ranking 
Loss, One Error, Coverage and Average Precision, 
whose specific meaning can be found in [3]. 
Specifically, for the first four metrics, “↓” indicates the 
smaller the better. For the average precision, “ ↑ ” 
indicates the larger the better. Furthermore, we employ 
ten-fold cross-validation to evaluate GLOMAN and 
above approaches. The mean and standard deviation of 
five metrics are reported in Table 2, where the best 
results are shown in bold. 

3.2 Experimental Results 

3.2.1 Comparison Results 

Due to page constraints, we only report a portion of 
the experimental results on PML datasets in Table 2, 
where the most challenging parameters are configured 
with 𝑝= 7 and 𝑟 =3. From the experimental result, we 
can conclude that:  

▪ Out of 270 statistical tests (6 datasets × 6 methods 
×  5 metrics), GLOMAN separately outperforms 
the MLL and PML methods in most cases.  

▪ For small datasets, such as on synthetic datasets 
Emotions, Medical, GLOMAN significantly 
outperforms other methods on all metrics.  

▪ For large-scale datasets, such as Bibtex, GLOMAN 
performs better than other PML-based approaches 
on most evaluation metrics. Besides, GMOMAN 
achieves the relatively great results on each dataset, 
which fully proves that the method has great 
robustness.  

3.2.2 Sensitivity Analysis 

To investigate the influence of different parameters 
of GLOMAN, an illustrative example given by Figure 3 
shows how the performance of GLOMAN (in terms of 
Hamming Loss) varies as each parameter changes with 
other parameter fixed on the Emotion and Yeast 
datasets. Here, when the value of one parameter various, 
the values for the other parameters are fixed as default 
parameters. According to the experimental results, it is 
shown that in most cases:  

▪ The performance of GLOMAN is relatively stable 
under varying k, g and 𝛾. 

▪ The parameter 𝜃1 usually follow the optimal 
configuration in [0.2,0.5]. 

▪ The performance of GLOMAN gradually improves 
as 𝜃2grows from [0.1,0.5] and becomes relatively 
stable in [0.6,0.9]. 

▪ To fully test the usefulness of the joint feature 
manifold, we further investigate the influence of 𝛼. 
The performance of GLOMAN improves as 𝛼  in 

[0.4,0.7], which validates the effectiveness of joint 
feature manfiold structure learned by GLOMAN 
for solving PML problem. 

4 CONCLUSIONS 

By exploiting the global and local label correlations, 
this paper proposes a novel PML framework called 
GLOMAN. Firstly, the joint feature manifolds are fused 
by the global and local feature manifold. Then, 
GLOMAN attempts to disambiguate the candidate labels 
by utilizing the joint feature manifold structure in the 
label space. Experimental results on six datasets 
demonstrate the superiority and the effectiveness of our 
model. 
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