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Abstract 
In this paper, we use intelligent scheduling technique to propose an electric vehicle routing problem with simultaneous 
pickup and delivery (EVRPSPD) model which considers the load-dependent discharging (LD). The model aims to 
minimize the working time including travel time, charging time, service time, and waiting time. In small-scale problems, 
rational routing decisions can be obtained directly using the commercial software CPLEX. In addition, we propose an 
adaptive large neighbourhood search algorithm (ALNS) for this problem, which can solve large-scale problems and 
obtain feasible solutions in an acceptable amount of time. Our computational investigation indicates that load-dependent 
discharging is non-negligible for the problem.  

Keywords: intelligent scheduling, electric vehicle routing problem, simultaneous pickup and delivery, load-
dependent discharging, adaptive large neighbourhood search, commercial software CPLEX 

1 INTRODUCTION 

Nowadays, the carbon emissions of traditional fossil 
fuel vehicles account for 27% of the world's total carbon 
emissions [2]. Under the background that countries are 
committed to reducing carbon emissions to alleviate the 
greenhouse effect, electric vehicles, known for their zero 
emissions, will surely become the leader in the 
transportation industry [9]. Due to the battery technology 
that is difficult to break through in a short period of time, 
electric vehicles have disadvantages in terms of battery 
life and charging time. Faced with the above 
shortcomings, the electric vehicle routing model can 
provide a reasonable and effective solution. The electric 
vehicle routing problem (EVRP) is derived from the 
classic vehicle routing problem (VRP) and has been 
extensively studied by scholars from various countries 
recently. 

Scholars from various countries mainly study 
unidirectional logistics [5] [11], but less research on 
bidirectional (reverse) logistics. Unidirectional logistics 
refers to considering only cargo distribution or only cargo 
collection, while bidirectional logistics considers both 
cargo distribution and cargo collection. Unidirectional 
logistics is widely used, but bidirectional logistics cannot 

be ignored. In the express service industry, main-
distribution center delivers express or goods to sub-
distribution center or customers, and sub-distribution 
centers or customers may submit some requests for 
sending express or goods to main-distribution center. In 
the sales industry, manufacturers deliver products to 
retailers, and retailers can negotiate the return of excess 
products back to the manufacturers, which is beneficial 
for both sides. In the manufacturing industry, the 
producers are responsible for the entire life-cycle of their 
products like industrial equipment, hardware devices, 
etc., which are also sent back to the manufacturing 
facilities to be disassembled into valuable components 
[10].  

Goeke considers pickup and delivery into ERVPTW 
with a paired one-to-one service model where the 
requests are only for interaction between customers, not 
involving the depots [3]. Soysal also made efforts on the 
one-to-one service model. They pay attention to 
stochastic battery depletion and present an approximated 
linear formulation [8]. 

Although the above papers have considered both 
cargo and bulk cargo factors, the current electric vehicle 
routing problem has turned to the direction of battery 
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power consumption [4] [7], where load-dependent 
discharging is a direction. In bidirectional logistics, 
electric vehicles carry goods from the depot and return to 
the depot with goods which means that electric vehicles 
are in a high cargo state for a long time. Therefore, 
compared with unidirectional logistics, bidirectional 
logistics cannot ignore the impact of cargo capacity. 

Therefore, starting from the electrical vehicle routing 
problem with simultaneous pickup and delivery, this 
paper constructs the electric vehicle routing model 
considering the load-dependent discharging and aiming 
at minimizing the travel time, service time, charging time, 
and waiting time. The commercial solver software 
CPLEX is used to solve small-scale problems. When 
solving large-scale problems, an improved adaptive large 
neighbourhood search algorithm (ALNS) is proposed. 

2 PROBLEM DESCRIPTION AND 
MATHEMATICS FORMULATION 

2.1 Problem Description 

A distribution center (depot) and several customers 
are distributed in an area, in which each customer may 
have both pickup and delivery requests. All customer 
pickup and delivery needs interact only with the 
distribution center. A pickup request is to pick up goods 
from a customer to the distribution center, and a delivery 
request is the reverse. Two requests from each customer 
may have their different time windows. In a continuous 
period of time, a certain number of electric vehicles need 
to be dispatched from the depot to visit all customer 
nodes to meet the corresponding pickup and delivery 
requests and a certain amount of service time is also 
considered at each customer.  

During the journey, electric vehicles consume power 
according to the current load of cargo. When the electric 
vehicle has low power, it needs to visit the charging 
station to get charged. We define this problem as an 
electric vehicle routing problem with simultaneous 
pickup and delivery based on load-dependent discharging 
(EVRSPD-LD). Figure 1 presents an example solution to 
the problem.  

We assume that the electric vehicle starts from the 
depot and eventually returns to the depot. If the period 
arrives earlier than the earliest time of the time window, 
it can take a certain waiting time to meet the time window 
constraints, but it cannot be later than the latest time of 
the time window. 

 
Figure 1 Example of EVRPSPD-LD 

2.2 Load-dependent Discharging Mode 

The Comprehensive Modal Emission Model (CMEM) 
was proposed by Barth and Boriboonsomsin [1] and is 
widely used in the calculation of the output power of 
various electric vehicle batteries. The calculation formula 
of the output power 𝑃 is shown in Equation 1. 

𝑃 =
(𝑀𝑎+𝑀𝑔𝑠𝑖𝑛𝜃+𝑀𝑔𝐶𝑟𝑐𝑜𝑠𝜃+0.5𝐶𝑑𝜌𝐴𝑣2)𝑣

1000𝜖
  (1) 

The parameters are shown in Table 1. 

Table 1 Parameters in CMEM 

PARM Description PARM Description 

𝑣 speed (m/s) 𝜌 air density 

(kg/m3) 

𝑎 acceleration 

(m/s2) 

𝐴 frontal surface 

area (m2) 

𝑀 gross vehicle 

weight (kg) 

𝐶𝑑 coefficient of 

aerodynamic 

drag 

𝑔 gravitational 

constant (m/s2) 

𝐶𝑟 coefficient of 

rolling 

resistance 

𝜃 road grade 

angle in 

degrees 

𝜖 vehicle drive 

train efficiency 

 

Ignoring the effects of road gradient and start-stop 
acceleration, Equation 2 can be obtained. 
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𝑃 =
(𝑀𝑔𝐶𝑟 + 0.5𝐶𝑑𝜌𝐴𝑣2)𝑣

1000𝜖
 (2) 

Converting Equation 2 into a first-order linear form 
yields Equation 3. 

𝑃 = 𝛷1 + 𝛷2𝑀 (3) 

where Φ1 =
0.5𝐶𝑑𝜌𝐴𝑣3

1000𝜖
 is a constant and Φ2 =

𝑔𝐶𝑟𝑣

1000𝜖
 is the 

coefficient of weight, 𝑀. 

The values of Φ1  and Φ2  can be obtained by using 
the data mentioned above, and the only unknown gross 
vehicle weight ( 𝑀 ) is a variable in the problem 
formulation. Where 𝑀 consists of the weight of EV (𝑚) 
and the weight of vehicle loaded (𝑢). 

2.3 Mathematics Formulation 

Unlike the unidirectional model where each customer 
has only one request, in this problem the customer has 
both a pickup and a delivery request. 

The parameters in the model are shown in Table 2. 
The variables in the model are shown in Table 3. 

Table 2 Parameters in EVRSPD-LD 

𝑛 Number of customers; 

𝑉 Set of customer requests, 𝑉 =

{1,2, ⋯ , 𝑛, 𝑛 + 1, ⋯ ,2𝑛}; 

𝑃 Set of pickup requests, 𝑃 = {1,2, ⋯ , 𝑛}; 

𝐷 Set of delivery requests, 𝐷 = {𝑛 +

1, ⋯ ,2𝑛}; 

𝐹 Set of charging stations, 𝐹 = {𝑓1, 𝑓2, ⋯ }; 

𝐹′ Set of charging stations and their 

duplicates, 𝐹′ = {𝑓1 , 𝑓2, ⋯ , 𝑓1
′, 𝑓2

′, ⋯ }; 

0, 
𝑁 + 1 

depot; 

𝑉0
′ = 𝑉 ∪ 𝐹′ ∪ {0}; 

𝑉𝑁+1
′  = 𝑉 ∪ 𝐹′ ∪ {𝑁 + 1}; 

𝑉0,𝑁+1
′  = 𝑉 ∪ 𝐹′ ∪ {0} ∪ {𝑁 + 1}; 

𝐴 Set of arc(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑉0,𝑁+1
′ , 𝑖 ≠ 𝑗; 

𝑑𝑖𝑗 Distance between node 𝑖 and node 𝑗 

(km), 𝑖, 𝑗 ∈ 𝑉0,𝑁+1
′ , 𝑖 ≠ 𝑗; 

𝑡𝑖𝑗 Travel time between node 𝑖 and node 𝑗 

(h), 𝑖, 𝑗 ∈ 𝑉0,𝑁+1
′ , 𝑖 ≠ 𝑗; 

𝑝𝑖 Request for pickup of customer 𝑖, 𝑖 ∈ 𝑃; 

𝑑𝑖 
Request for delivery of customer 𝑖 −

𝑛 (kg), 𝑖 ∈ 𝐷; 

𝐶 
Maximum capacity of electric vehicle 

(kg); 

𝑄 Electric vehicle battery level (kWh); 

𝑔 Charging rate (kWh/h); 

[𝑒𝑖 , 𝑙𝑖] Time window of node 𝑖 (h), 𝑖 ∈ 𝑉0,𝑁+1
′ ; 

𝑠𝑖 Service time of node 𝑖 (h); 

𝐾 Set of electric vehicles, 𝐾 = {𝑘1, 𝑘2, ⋯ }; 

𝛷1 
Discharging rate when electric vehicle is 

empty; 

𝛷2 For every 1kg increase in the cargo, the 

battery discharging rate of the electric 

vehicle increases by 𝛷2; 

𝑚 Empty weight of electric vehicle (kg); 

𝑀𝑐 Vehicle cost factor. 

Table 3 Variables in EVRSPD-LD 

𝑥𝑖𝑗
𝑘  It is equal to 1 if the electric vehicle 𝑘 travels 

between node i and node 𝑗, otherwise it is equal to 
0, 𝑖, 𝑗 ∈ 𝑉0,𝑁+1

′ , 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾; 

𝑢𝑖
𝑘 The load of electric vehicle 𝑘 before it reaches 

node 𝑖 (kg), 𝑖 ∈ 𝑉0,𝑁+1
′ , 𝑘 ∈ 𝐾; 

𝑇𝑤𝑖
𝑘 Waiting time before electric vehicle 𝑘 arrives at 

node 𝑖 (h), 𝑖 ∈ 𝑉0,𝑁+1
′ , 𝑘 ∈ 𝐾; 

𝜏𝑖
𝑘 The time for the electric vehicle 𝑘 to arrive at 

node 𝑖 (h), 𝑖 ∈ 𝑉0,𝑁+1
′ , 𝑘 ∈ 𝐾; 

𝑣𝑖 Remaining power to reach node 𝑖 (kWh),𝑖 ∈
𝑉0,𝑁+1, 𝑘 ∈ 𝐾; 

𝑌𝑖 The remaining power of the electric vehicle 
leaving the charging station 𝑖 (kWh), 𝑖 ∈ 𝐹′; 

𝜃𝑖  Charging time at charging station 𝑖 (h),𝑖 ∈ 𝐹′; 

 

EVRSPD-LD model 

Minimize: 

∑ ∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑁+1
′𝑖∈𝑉0

′𝑘∈𝐾

+ ∑ 𝑇𝑤𝑖
𝑘

𝑖∈𝑉𝑁+1
′

+ ∑ 𝜃𝑖

𝑖∈𝐹′

+ ∑ 𝑠𝑖

𝑖∈𝑉

+ ∑ ∑ 𝑀𝑐𝑥0𝑗
𝑘

𝑗∈𝑉′𝑘∈𝐾

 
(4) 

Subject to: 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑁+1
′ ,𝑖≠𝑗𝑘∈𝐾

= 1         ∀𝑖 ∈ 𝑉 (5) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑁+1
′ ,𝑖≠𝑗𝑘∈𝐾

≤ 1         ∀𝑖 ∈ 𝐹′ (6) 

∑ 𝑥0𝑗
𝑘

𝑗∈𝑉𝑁+1
′

= 1         ∀𝑘 ∈ 𝐾 (7) 
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∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑁+1
′ ,𝑖≠𝑗

− ∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑉0
′,𝑖≠𝑗

= 0 

∀𝑖 ∈ 𝑉′, ∀𝑘 ∈ 𝐾 (8) 

𝑣0 = 𝑄 (9) 

𝑣𝑖 − 𝑣𝑗 − [𝛷1(𝑢𝑗
𝑘 + 𝑚) + 𝛷2]𝑡𝑖𝑗 ≥ 

(−𝑄 − [𝛷1(𝐶 + 𝑚) + 𝛷2]𝑡𝑖𝑗)(1 − 𝑥𝑖𝑗
𝑘 ) 

∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑁+1
′ , ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (10) 

𝑌𝑖 − 𝑣𝑗 − [𝛷1(𝑢𝑗
𝑘 + 𝑚) + 𝛷2]𝑡𝑖𝑗 ≥ 

(−𝑄 − [𝛷1(𝐶 + 𝑚) + 𝛷2]𝑡𝑖𝑗)(1 − 𝑥𝑖𝑗
𝑘 ) 

∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑉𝑁+1, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (11) 

𝜃𝑖 = (𝑌𝑖 − 𝑣𝑖)/𝑔          ∀𝑖 ∈ 𝐹′ (12) 

𝜏0
𝑘=0            ∀𝑘 ∈ 𝐾 (13) 

𝑒𝑗 ≤ 𝜏𝑗
𝑘 ≤ 𝑙𝑗       ∀𝑗 ∈ 𝑉0,𝑁+1

′ , ∀𝑘 ∈ 𝐾 (14) 

𝜏𝑗
𝑘 − 𝜏𝑖

𝑘 ≥ −𝑙0(1 − 𝑥𝑖𝑗
𝑘 ) + (𝑡𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗

𝑘   

∀𝑖 ∈ 𝑉0, ∀𝑗 ∈ 𝑉𝑁+1
′ , ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (15) 

𝜏𝑗
𝑘 − 𝜏𝑖

𝑘 ≥ 

−(𝑙0 + 𝑐�̄�)(1 − 𝑥𝑖𝑗
𝑘 ) + 𝑡𝑖𝑗𝑥𝑖𝑗

𝑘 + 𝜃𝑖 

∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑉𝑁+1
′ , ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (16) 

𝑢𝑗
𝑘 − 𝑢𝑖

𝑘 ≥ −𝐶(1 − 𝑥𝑖𝑗
𝑘 ) + 𝑝𝑖𝑥𝑖𝑗

𝑘  

∀𝑖 ∈ 𝑃, ∀𝑗 ∈ 𝑉𝑁+1
′ , ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (17) 

𝐶(1 − 𝑥𝑖𝑗
𝑘 ) + 𝑑𝑖𝑥𝑖𝑗

𝑘 ≥ 𝑢𝑖
𝑘 − 𝑢𝑗

𝑘 ≥ 

−𝐶(1 − 𝑥𝑖𝑗
𝑘 ) + 𝑑𝑖𝑥𝑖𝑗

𝑘  

∀𝑖 ∈ 𝐷, ∀𝑗 ∈ 𝑉𝑁+1
′ , ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (18) 

𝑢𝑗
𝑘 ≥ 𝑢𝑖

𝑘 − 𝐶(1 − 𝑥𝑖𝑗
𝑘 ) 

∀𝑖 ∈ 𝐹0
′, ∀𝑗 ∈ 𝑉𝑁+1

′ , ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (19) 

𝑢0
𝑘 = ∑ ∑ 𝑝𝑖𝑥𝑖𝑗

𝑘

𝑗∈𝑉𝑁+1
′ ,𝑖≠𝑗𝑖∈𝑃

        ∀𝑘 ∈ 𝐾 (20) 

𝑢𝑁
𝑘 = ∑ ∑ 𝑑𝑖𝑥𝑖𝑗

𝑘

𝑗∈𝑉𝑁+1
′ ,𝑖≠𝑗𝑖∈𝐷

        ∀𝑘 ∈ 𝐾 (21) 

variable domain: 

𝑥𝑖𝑗
𝑘 ∈ {0,1}        ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 

(22) 
𝑧𝑖𝑏 ∈ {0,1}, 𝑤𝑖𝑏 ∈ {0,1}       ∀𝑖 ∈ 𝐹′, 𝑏 ∈ 𝐵 

0 ≤ 𝑢𝑖
𝑘 ≤ 𝐶, 0 ≤ 𝜏𝑖

𝑘    ∀𝑖 ∈ 𝑉0,𝑁+1
′ , ∀𝑘 ∈ 𝐾 

0 ≤ 𝑦𝑖 ≤ 𝑌𝑖 ≤ 𝑄,              ∀𝑖 ∈ 𝐹′ 

0 ≤ 𝑣𝑖 ≤ 𝑄          ∀𝑖 ∈ 𝑉0,𝑁+1
′  

0 ≤ 𝜃𝑖 ≤ 𝐶/𝑔   ∀𝑖 ∈ 𝐹′ 

Constraint (4) states that the goal of the problem is to 
(i) firstly minimize the number of vehicles used; (ii) 
secondly minimize the total work time, including travel 
time, service time, charging time, and waiting time. 
Where 𝑀𝑐  is a sufficiently large coefficient, 𝑀𝑐 =
∑ 𝑙𝑖𝑖∈𝑉  can be taken in the actual solution process, where 
𝑙𝑖  is the latest arrival time in the time window. 
Constraints (5) guarantee that each request node can only 
be visited once. Constraints (6) state that each charging 
station and its duplicates are visited at most once. 
Constraints (7) ensure that each electric vehicle can only 
be used once. Constraints (8) construct a flow balance 
constraint, that is, the electric vehicle must leave the node 
when it visits the node. Constraint (9) indicates that the 
electric vehicle is fully charged when it leaves the depot. 
Constraints (10) construct the battery power consumption 
relationship when the electric vehicle departs from each 
request node including the depot. Constraints (11) 
construct the battery power consumption relationship 
when the electric vehicle departs from each charging 
station. Constraints (12) describe the charging time of the 
electric vehicle at the charging station. Constraints (13) 
conform to the general situation that the departure time is 
0. Constraints (14) ensure that the moment when the 
electric vehicle arrives at any node complies with the 
time window constraint. Constraints (15) construct the 
arrival time relationship from all request nodes including 
the depot to any arrival node. Constraints (16) construct 
the arrival time relationship from all charging stations to 
any arriving node. Constraints (17) construct the cargo 
relationship of electric vehicles from all pickup request 
nodes to any arrival point. Constraints (18) construct the 
cargo relationship of electric vehicles from all delivery 
request nodes to any arrival node. Constraints (19) 
construct the relationship between the cargo of electric 
vehicles starting from all charging stations, including the 
depot, to any arrival node. Constraints (20) ensure that 
the electric vehicle can carry enough goods to be 
distributed when it departs from the depot. Constraints 
(21) ensure that the electric vehicle returns to the depot 
with enough cargo to be collected. Constraints (22) list 
the domain of the variables. 

3 SOLUTION METHOD 

3.1 ALNS 

The adaptive large neighbourhood search algorithm 
(ALNS) was proposed by Ropke and Pisinger [6]. ALNS 
can achieve large perturbation of the solution through a 
variety of transformation operators so that it is not easy 
to fall into local optimum. In each iteration, the algorithm 
selects removal and insertion operators to remove and 
insert the current solution and form a new solution. The 
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probability of selecting an operator is updated according 
to the quality of the new solution formed each time the 
operator is selected. The generated new and old solutions 
are discriminated according to the simulated annealing 
method (SA). The algorithm pseudocode used in this 
paper is Pseudocode 1. Among them, 𝑁𝑆𝑅 represents the 
charging station removal period, 𝑁𝑅𝑅 represents the path 
removal period, 𝑁𝑅  and 𝑁𝑠  respectively represent the 
period of updating the corresponding operator probability, 
and the remaining parameters will be introduced in 3.2. 

3.2 Operator  

The operators in ALNS are divided into removal 
operators and insertion operators. The removal operators 
include request removal (RR), charging station removal 
(SR), and route removal (RR'). Insertion operators include 
request insertion (RI) and charging station insertion (SI). 

Request removal includes random removal, worst-
distance removal, worst-time removal, and shaw removal. 
Worst-distance removal and worst-time removal remove 
the request that increases the total distance and total time 
respectively. Shaw removal removes requests with high 
correlation. The correlation 𝑅𝑖𝑗 is calculated as shown in 
Equation (23). 

𝑅𝑖𝑗 = 𝜙1𝑑𝑖𝑗 + 𝜙2|𝑒𝑖 − 𝑒𝑗| + 𝜙3𝑙𝑖𝑗 +

            𝜙4|𝑞𝑖 − 𝑞𝑗|  (23) 

If the request 𝑖 ∈ 𝑃 , 𝑞𝑖 > 0 ; otherwise, 𝑞𝑖 < 0 . 
Where 𝜙1 , 𝜙2 , 𝜙3 , and 𝜙4  are the weights, 𝑙𝑖𝑗  = -1, if 
request 𝑖 and 𝑗 are in the same route, and 1 otherwise. 

Charging station removal includes random removal, 
worst-distance removal, worst-charge usage removal, 
and full charge removal. Worst-charge usage removal 
removes the charging station with the most power before 
the electric vehicle visits. Full charge removal removes a 
fully charged charging station. 

Route removal includes random route removal (RRR) 
and greedy route removal (GRR), where GRR removes 
the route with the most visited nodes.  

Request insertion includes greedy insertion and 
regret-k insertion where greedy insertion selects the best 
insertion position with the minimum total time and 
regret-k calculates the difference between the total time 
of the first and kth best insertions of the requests and 
inserts the one with the highest difference to its best 
position. 

Charging station insertion includes greedy station 
insertion (GSI). The operator will insert the charging 
station between the given starting position and negative 
charge position, and choose the position which occurs the 
least time.  

 
 

Pseudocode 1: ALNS heuristic method 

For i in iteration do 

If i % 𝑁𝑆𝑅== 0 then 

Select SR algorithm and remove stations 

Perform GSI to repair solution 

If i % 𝑁𝑅𝑅 == 0 then 

Select RRR or GRR and remove requests 

Select RI algorithm and perform GSI to repair solution if 
infeasible 

Else 

Select RR algorithm and remove requests 

Select RI algorithm and perform GSI to repair solution if 
infeasible 

Using SA criterion to accept/reject solution 

If i % 𝑁𝑅 == 0 then 

Update the selection probability of the operators in RR 
and RI  

Else if i % 𝑁𝑠 == 0 then 

Update the selection probability of the operators in SR 

4 NUMERICAL EXPERIMENT 

We design a total of 16 experimental examples with 
request scales of 10, 20, 40, and 80, and the number of 
charging stations is 2-8. 

In Equation 3, we adopt the 𝜌 = 1.2041, 𝐶𝑑 = 0.48, 
𝐴 = 2.3301, 𝑣 = 40, 𝜖 = 0.89,𝑔 = 9.81. These values 
were selected such that they are close to real-world data 
and at the same time energy consumption for a vehicle 
with half-load matches the consumption rate of 125 
kWh/km [4]. The battery capacity 𝑄  of the electric 
vehicle is 16kWh, the charging rate 𝑔 is 16kWh/h, and 
the upper limit of the cargo capacity 𝐶 is 600kg. 

All numerical tests were executed on a computer with 
Intel Core i7-7700 @ 3.60 GHz CPU and 16 GB of RAM. 
The CPLEX software was IBM ILOG CPLEX 
Optimization Studio V12.10.0. ALNS was compiled with 
Python 3.7.6. 

CPLEX and ALNS were used to solve the same 
problems. The upper limit of the solution time of CPLEX 
in the 10-requests case is 1200s, and the rest is 3600s. 
Since the ALNS solution has certain randomness, each 
calculation example is solved 10 times. We also set the 
case of considering load-dependent discharging and the 
case of linear discharging. 

Table 4 shows the solution results of CPLEX and 
ALNS under the 10-requests example, where k represents 
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the number of vehicles, fbest represents the optimal value, 
and time and timeavg represent the CPU times of CPLEX 
and ALNS, respectively. The results of ALNS and 
CPLEX are the same, which indicate that ALNS 
proposed in this paper can handle this problem. In 
addition, it was found that the CPU time of ALNS has a 
great advantage over the running time of CPLEX.  

Table 4 results of CPLEX or ALNS in 10-requests 

ID 
CPLEX ALNS 

k fbest (h) time (s) k fbest (h) timeavg (s) 

1 3 39.19  1200 3 39.19  5.45  

2 3 38.35  1200 3 38.35  4.23  

3 4 36.04  1200 4 36.04  5.07  

4 4 52.48  1200 4 52.48  4.62  

Table 5 shows the solution results with and without 
load-dependent discharging, where fworst represents the 
worst solution result in 10 times, kavg represents the 
average number of vehicles in the 10 times, and STD 
represents the standard deviation. From the results, the 
problem with simultaneous pickup and delivery, power 
consumption based on load-dependent discharging is an 
important factor that cannot be ignored. 

For the standard deviation of 10 solutions in ALNS, 
the stability without considering any situation is 
generally better than considering the load-dependent 
discharging situation. This is mainly because the use of 
load-dependent dynamic battery consumption rate can 
lead to uneven power, resulting in large deviations in 
charging time and working time between solutions, while 
the average consumption rate does not produce such 
results. 

 

Table 5 The results of considering load-dependent or linear discharging 

# 
load-dependent discharging linear discharging 

fbest (h) fworst (h) favg (h) STD kavg timeavg (s) fbest (h) fworst (h) favg (h) STD kavg timeavg (s) 

40  

92.21 99.91 95.44 2.14 7.9 64.08 87.85 106.58 95.10 5.46 7.9 62.05 

108.26 120.61 112.10 3.13 9.8 42.39 102.81 121.00 111.45 6.02 9.6 38.75 

77.94 98.71 83.27 3.10 7 87.84 77.78 87.95 83.06 3.15 6.9 98.55 

91.78 104.53 99.65 3.12 7.9 86.31 94.38 106.93 99.04 3.34 8.1 76.89 

80  

184.59 197.29 189.85 4.06 16.8 577.59 175.66 188.89 183.13 4.24 15.8 396.85 

193.33 208.16 201.55 5.34 17.3 600.41 185.33 203.30 195.85 4.80 16.1 517.49 

158.57 186.15 174.70 7.65 15.2 537.63 161.06 177.50 170.49 4.76 14.7 556.21 

176.25 196.20 185.08 5.66 15.1 563.95 178.71 195.49 185.56 4.66 14.9 526.34 

 

5 CONCLUSIONS 

In this paper, an electric vehicle routing problem with 
simultaneous pickup and delivery is constructed. The 
model takes load-dependent discharging as an additional 
constraint and aims to minimize travel time, charging 
time, service time, and waiting time. For large-scale 
problems that are difficult to solve, we propose an 
adaptive large neighbourhood search algorithm suitable 
for this problem. 

The experimental results of  examples of different 
scales show that: (i) the model constructed in this paper 
can describe the research problem; (ii) the ALNS 
proposed in this paper can better deal with the proposed 
problem; (iii) the load-dependent discharging has a 
significant impact on the route planning scheme of the 
simultaneous pickup and delivery problem. 

Future research directions can consider the influence 
of driving speed, road weather conditions, etc. on the 
consumption rate of electric vehicles. 

REFERENCES 

[1] Barth, M. and Boriboonsomsin, K. (2009). Energy 
and emissions impacts of a freeway-based dynamic 
eco-driving system. Transportation Research Part 
D: Transport and Environment. 14(6): 400-410. 

[2] Fan, Y. V., Perry, S., Klemeš, J. J., et al. (2018). A 
review on air emissions assessment: Transportation. 
Journal of Cleaner Production. 194: 673-684. 

[3] Goeke, D. (2019). Granular tabu search for the 
pickup and delivery problem with time windows 
and electric vehicles. European Journal of 
Operational Research. 278(3): 821-836.  

[4] Kancharla, S. R. and Ramadurai, G. (2020). Electric 
vehicle routing problem with non-linear charging 
and load-dependent discharging. Expert Systems 
with Applications. 160: 113714. 

[5] Nolz, P. C., Absi, N., Feillet, D., et al. (2022). The 
consistent electric-Vehicle routing problem with 

Intelligent Scheduling on Electric Vehicle Routing ... 1173



  

 

backhauls and charging management. European 
Journal of Operational Research. 302(2): 700-716. 

[6] Ropke, S. and Pisinger, D. (2006). An adaptive 
large neighborhood search heuristic for the pickup 
and delivery problem with time windows. 
Transportation Science. 40(4): 455-472. 

[7] Shao, S., Guan, W. and Bi, J. (2018). Electric 
vehicle-routing problem with charging demands 
and energy consumption. IET Intelligent Transport 
Systems. 12(3): 202-212. 

[8] Soysal, M., Çimen, M. and Belbağ, S. (2020). 
Pickup and delivery with electric vehicles under 
stochastic battery depletion. Computers & 
Industrial Engineering. 146: 106512. 

[9] Wang, Z., Ching, T. W., Huang, S., Wang, H. and 
Xu, T. (2021). Challenges Faced by Electric 
Vehicle Motors and Their Solutions. IEEE Access. 
9: 5228-5249. 

[10] Zachariadis, E. E. and Kiranoudis, C. T. (2011). A 
local search metaheuristic algorithm for the vehicle 
routing problem with simultaneous pick-ups and 
deliveries. Expert Systems with Applications. 38(3): 
2717-2726. 

[11] Zang, Y., Wang, M., Qi, M. (2022). A column 
generation tailored to electric vehicle routing 
problem with nonlinear battery depreciation. 
Computers & Operations Research. 137: 105527. 

 

 

 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International
License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made. 
     The images or other third party material in this chapter are included in the chapter s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter s Creative Commons license and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. 

’
’

1174 Wei Xu and Ming Cheng




