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Abstract 
Recovering the depth information from a single image is a fundamental problem in computer vision field and has broad 
application prospects. To solve the problem that the accuracy of the depth recovered from a single image is not high 
enough, especially when there are several edges very close or intersecting, or when the edge is weak, a novel method to 
depth measurement is proposed in this article. Four steps are included in our method. Firstly, we obtain depth value of 
object edge point indirectly by measuring the defocusing degree of the object edge point. The gradient information of 
the 8 directions of edge point are employed during the process of measuring. Secondly, wavelet analysis is used to judge 
whether the measured depth value needs to be corrected or not. If necessary, it is corrected according to our formula. A 
sparse depth map is got when the depth values of all of edge points are measured and are corrected if necessary. Thirdly, 
the joint bilateral filter is employed to refine the sparse depth map. Lastly, the sparse depth map is extended to a dense 
depth map by the method of Matting Laplacian. The results of experiments show our method is effective. 
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1 INTRODUCTION 

When we take a scene with a camera, we only get a 
two-dimension image, and the depth information of the 
scene is lost. It causes machines could not perceive the 
information of distance and size of the object, and the 
speed of the moving objects in the scene, and so on. 
Therefore, recovering depth information from two-
dimensional images is a fundamental problem in the field 
of computer vision. And it has become one of the 
research hotspots. [1] [3] [4] [15] 

At present, many scholars use deep learning methods 
to estimate image depth information. There are two main 
categories: supervised learning and unsupervised 
learning. Supervised learning methods [1] [4] [15] 
require a lot of ground truth for deep data during training, 
and these ground truths are often difficult to obtain and 
costly. Unsupervised learning methods [2] [6] do not 
require ground truth for depth data, but they need to take 
at least one pair of images using two cameras which are 
placed on the same horizontal plane. And disparity d is 
found from the image pairs. Then d is combined with 
deep learning method to find the depth information from 

the monocular input image. But the requirements of the 
two cameras limit its application in many cases. 

Motion parallax, linear perspective, occlusion, 
texture, shadow, and defocus, etc. clues can be used to 
obtain depth information [8] [10]. One or more of the first 
five clues only exist in the images of special scenes: there 
are relative motion that produces motion parallax, and 
there are vanishing line or vanishing point can be 
detected, and there are occlusive relation, rich texture and 
light and dark change in image, etc. However, defocus 
clues are ubiquitous in every image. Therefore, 
recovering depth based on defocus clue has a wider 
application field. 

Pentland et al. [11] proposed a method for recovering 
depth information from planar images using defocus cues. 
Some researchers [5] [13] [14] subsequently improved 
the results, but all of those methods need to get two or 
more images of the same scene with different camera 
internal parameters. Zhuo et al. [17] proposed a method 
for obtaining relative depth information from a single 
defocus image. This method has a broader application 
prospect. Because all of the input data of this method is 
just an image.  
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Therefore, the Zhuo’s algorithm [17] has attracted 
many researchers to join the ranks of recovering depth 
information from a single image. For example, the 
literatures [9] [16] propose different methods to improve 
the accuracy of depth information, and the better results 
have been got. But there is still room for further 
improvement, especially the measurement accuracy at 
the weak edge points of the objects in image needs to be 
further improved. In view of this, we propose a novel 
method to improve measuring accuracy.  

The rest of this article is organized as following: 
Section Ⅱ introduces the basic principle on the 
measurement of the defocusing radius (or depth). Section 
Ⅲ A, we describe the overview of our method. Section 
Ⅲ B, the algorithms of the measurement of defocus 
radius R of edge points is presented. In the algorithm, the 
gradient information of the 8 directions of the object edge 
point are employed during the process of measuring in 
order to minimize the measurement error caused by 
image noise, etc. Section Ⅲ C, we focus on how to judge 
the measurement value of the R need to be corrected, and 
how to correct it. Section Ⅲ D, how to acquire a dense 
depth map is described; Section Ⅳ and Ⅴ is Experiments 
and conclusion, respectively. 

2 BASIC PRINCIPLE 

The basic principle of the convex lens imaging shows 
that a clear image is formed when the point light source 
has a focal point that falls on the imaging plane after a 
convex lens, otherwise the point light source in the 
imaging plane is a defocus circle with a radius of R. As 
shown in Fig.1. The relationship between the u (object 
distance, namely depth) and the R can be expressed as 
follows: 
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where f is the focal length, and v0 is the distance between 
the lens center and the imaging plane, and r is the aperture 
radius. The formula (1) can be derived according to the 
Fig.1., basic principles of optical imaging and knowledge 
of triangular geometry. 

For clarity, the camera parameters f, r and v0 are given, 
and we plot the relationship between R and u, as shown 
in Fig.2. Obviously, the R is a non-linear monotonically 
increasing function of u. Therefore, it is reasonable that 
we substitute defocus radius R for depth u. 

Obviously, if the camera parameters are given, then 
we can get the value of depth (namely absolute depth) by 
using the R. If they are not given, we can distinguish 
between near and far (namely relative depth) by using the 
R. 

The defocus edge point d(x) in the image can be 
regarded as the convolution of the focused edge point f(x) 
and the Gauss point spread function g(x, σ), that is: 

),x(g)x(f)x(d =                      (2) 

 
Figure 1: A diagrammatic sketch of convex lens 

imaging. 

 
Figure 2: The relation between depth u and defocus 

radius R. 

The relationship between σ and R is as follows: σ = 
kR, k is a real number [5] [8]. The Fig.3. (a) shows four 
Gaussian distribution function curves with different 
variances σ.  Fig.3.(b) is a computer simulation images of 
the defocusing image of point light sources 
corresponding to different σ.  

It can be seen from (b) that the larger σ is, the larger 
the defocus radius R is. That is to say, the grayscale of 
the image changes more slowly from the center of the 
point light source to each direction, and the 
corresponding gradient value also is smaller. Therefore, 
the defocusing degree can be measured by the gradient 
information at the edge point of the object in the image. 
However, if there are several edges crossing or very close 
to each other, or when the edges are weak, the defocusing 
radius value measured by this method is smaller than that 
of the actual value, so the measured value R should be 
corrected. 
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(a) 

 
(b) 

Figure 3: (a) Four Gaussian distribution function curves 
with different σ; (b) is a computer simulation of the 
defocusing image of point light sources corresponding to 
different σ. 

3 OUR METHOD 

3.1 Overview of Our Method 

The According to the above basic principles, the idea 
of this article is as follows: 

First, the original image is transformed into a gray 
image, then the edges of the objects are detected from the 
gray image by using the Canny method, and the gradient 
image of the gray image is obtained, and wavelet 
transformation is performed on the gray image. 

Secondly, the defocus radius of the edge points R is 
calculated by using its gradient information. 

Thirdly, wavelet analysis is used to determine 
whether the R needs to be corrected or not. If necessary, 
it is corrected by our formula. A sparse depth map is got 
when the R of all of the edge points are measured. 

Fourthly, the sparse defocus image is refined by the 
JBF (Joint Bilateral Filtering) [7] [17]. 

Finally, the refined sparse depth map is extended to 
the dense depth map by using the Matting Laplacian 
method [12] [17]. 

The overview of our method is shown in Fig.4. 

 
Figure 4: The overview of our method. 

3.2 Measuring Defocus Radius 

We assume that (xi, yi) is the i-th edge point p. In 
theory, its defocus radius Ri can be measured along any 
direction of the edge point. In order to minimize the 
measurement error caused by image noise, etc. In this 
article, firstly, we measure the defocus radii along the 
eight directions dj (j = 1, 2, …,8), respectively, as shown 
in Fig.5. And we get the 8 values of defocus radius: Ri,1, 
Ri,2, Ri,3, ……, Ri,8,. Then the median value of Ri,j (j = 
1,2,…,8) is taken as the measurement value of defocus 
radius of the i-th edge point p. 
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Figure 5: The 8 directions for measuring the defocus 

radius. 

Assume that TL is the lower threshold coefficient, TH 
is the upper threshold coefficient, and Gp is the gradient 
value at the i-th edge point p, and the p’ is the nearest 
point of p along the direction dj (j = 1, 2, …,8). Algorithm 
1 shows how to get the Ri of the i-th edge point p. In 
general, the value of Ri can be accurately measured using 
Algorithm 1. 

Algorithm 1: Algorithm for measuring defocus 
radius  

Input:  an edge point p(xi   , yi), and a gradient image, 
(i = 1, 2,…, N). 

Output: the defocus radius  Ri  of the i-th edge point 
p(xi   , yi) 

% Defocus radii are measured along the 8 directions in turn. 
for  j = 1 : 8  

p0 = p;   % Save the p point coordinates. 
Find the nearest point p’ along the direction dj.; 
while(p' is in the image range) && ( p ' is not the 

one of  edge points) && (TLGp≤Gp’ ≤THGp) 
 Ri,j = Ri,j + 1; 
p = p’; 

Find the nearest point p’ of p along the dj.; 
end 

% Regain p coordinates to measure R i, j+1  along the dj+1 
p = p0;  

end 
% Assign intermediate values to Ri. 
Ri = median(R i,1 , R i,2 ,…, R i,8);   
 

The Algorithm 1 shows that it may be lead to the 
measured value Ri,j is less than its actual value when one 
of  the three following cases occurred. 

Case 1: The p is very close to one of the image four 
boundaries. This case may be lead to the coordinates of 
p’ exceed the image range. It means that the value of (p' 
is in the image range) is false.  

Case 2: There are several edges very close or 
intersecting. In this case, the p’ may be an edge point. It 
means that the value of (p ' is not the one of edge points) 
is false. 

Case 3: The edge is a weak edge. In this case, the 
difference between the object and its background color is 
small. It may be lead to the  Gp’ is smaller than TLGp. It 
means that the value of  (TLGp≤Gp’ ≤THGp) is false. 

When any of the above three cases occur, the 
specified case of the while statement is false. Namely, (p' 
is in the image range) && (p ' is not the one of edge points) 
&& (TLGp≤Gp’ ≤THGp) is false. Then the programing will 
be jump out of the while loop, and the defocus radius 
along the next direction dj+1 is measured immediately. It 
means that the Ri,j defocus radius along dj  is  truncated. 
Therefore, the Ri is less than its actual value.  

The method that median value of Ri,j (j = 1,2,…,8) is 
taken as the measurement value make Algorithm 1 still 
work well if the case 1 and 2 does not occur more than 
three times. But the method does not work to the case 3. 

From the above analysis, we can see: Although the 
measurement error can be avoided to some extent by the 
method that the intermediate value of defocus radii along 
8 directions is taken as the Ri, the method doesn’t work 
when the above case 1 and 2 are occurred in many 
directions at the same time or the case 3 occurred.  It will 
seriously affect the measurement accuracy, and the so it 
must be corrected. 

3.3 Correction 

When the above adverse cases occurred, the Ri is less 
than or even far less than its actual value. We have found 
that the measured value Ri is very small (Ri≤3) when the 
adverse cases occurred by many times experiments. 
Therefore, when the Ri is very small, we must judge 
whether it should be corrected or not. 

If the Ri is very small and it is much smaller than its 
actual value, the image around the point p will be blurred, 
correspondingly, the high frequency signal at point p is 
less. On the contrary, if Ri is very small, but it is the 
reflection of the actual situation, the image around the 
point p will be clear, correspondingly, the high frequency 
signal at p is more. Therefore, we can transform the 
problem of the spatial domain into the frequency domain 
to analyze and solve. 

Wavelet transform is a very useful tool for signal 
process in frequency domain. So we can use it to solve 
our problem. The wavelet transform coefficients can be 
used to judge whether the Ri needs to be corrected or not. 

In this article, only one-scale wavelet transform is 
need, because the high frequency signal is mainly 
concentrated in the coefficients of the one-scale wavelet 
transform. The horizontal, vertical and diagonal wavelet 
transform coefficients those are obtained by one-scale 
wavelet decomposition are represented by WH(xi   , yi), 
WV(xi   , yi), WD(xi  , yi), respectively. Then, W(xi  , yi) which 
is called high frequency synthesis wavelet coefficients is 
defined as:  
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Rt is the threshold. If formula (4) is satisfied, Ri should 
be corrected according to the degree of blur at the point 
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p. In other words, we correct it according to the high 
frequency synthesis wavelet coefficients W(xi  , yi). The 
higher the degree of blur, the bigger the correction 
coefficient KW. Wtmax is an upper threshold. When W(xi  , 
yi) ≥Wtmax, we think that the Ri need not to be corrected 
because the point  (xi  , yi) is clear enough. Wtmin is an 
lower threshold. When W(xi  , yi) ≤Wtmin, The Ri need to 
be corrected by the maximum correction coefficient Kw. 

We can suppose that Kw is inversely proportional to 
W(xi  , yi) when Wtmin≤W(xi  , yi) ≤Wtmax.  Therefore, Kw can 
be calculated by Formula (5). Then, the precise 
measurement value ri can be obtained by formula (6). 
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where, both Wtmax and Wtmin are threshold, and kC is the 
coefficient for adjustment, and kC is a real number, and  kC﹥0.  

A more accurate sparse depth map can be obtained by 
calculating the defocus radius of each edge point one by 
one and judging and correcting the measured value 
according to formula (4), (5) and (6). The specific process 
is shown in Algorithm 2. 

Algorithm 2:  Algorithm for acquiring sparse 
defocus/depth image 

Input:    an original image Io. 

Output: a sparse defocus/depth image Is. 
Step1  The original image Io  is transferred into a gray 

image IG. 

Step2   N edge points are detected from IG, besides, 
the gradient image and the first layer wavelet 
transform coefficients are got, respectively.  

Step3   Assume i = 1. 

Step4  The Ri is obtained using the Algorithm 1. 

Step5  if Ri ≤ Rt  

  if  W(xi，yi) ≥ Wtmax  

    kW = 0; 

elseif  W(xi，yi) ≤ Wtmin 

kW = 1; 

else 

kW=(W(xi，yi)–Wtmax)/( Wtmin –Wtmax); 

                     end 

             end 

Step6   ri = ( 1 +kC kW)Ri , go to Step8. 

Step7   ri = Ri 

Step8   i = i + 1；if i <= N, then go to Step4, else go 
to Step9. 

Step9  A sparse defocus/depth  image Is is obtained , 
and over. 

3.4 Dense Depth Map 

Noise may lead to inaccurate measurement of defocus 
radius, so the JBF [7] [17] is employed to refine the 
sparse defocus/depth image. Finally, the sparse defocus 
image is extended to a dense depth map by the method of 
Matting Laplacian [12] [17]. This method converts the 
problem of expanding sparse defocus image to dense 
depth map into a problem of minimum cost function. It 
can be defined as 

)̂()̂()( SSDSSLSSSE TT −−+=               (7) 
where D is a diagonal matrix.  Dii is its elements. If the 
pixel i is an edge point, Dii = 1, else Dii = 0. And λ is the 
smooth coefficient. And L is the Matting Laplacian 
matrix. It can be defined as 
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where ωk is the slip window whose center point is the 
pixel k. |ωk| is the size of the window ωk, namely, the 
number of pixels in the window. δij is the Kronecker delta. 
I is the input image, and the Ii is the colors at the pixel i. 
And ε is a regularization parameter. μk is the mean matrix 
of the colors in ωk, and σk is the covariance matrix of the 
colors in ωk. U is 3×3 identity matrix. 

4 EXPERIMENTS 

To verify the effectiveness of our method we carry 
out experiments and comparison. Fig.6. shows the result 
of the final experiment and the intermediate results of 
each step of our method. Fig.6.(a) is an original image 
which is captured by a common camera. The original 
image is transformed into a gray image that is shown in 
(b). (c) is an edge image which is obtained by processing 
the gray image with Canny algorithm. (d) is the gradient 
magnitude image of (b), and (e) is the results of one-scale 
wavelet transform of (b).  (f) is the high frequency 
synthesis wavelet coefficients image that is defined by 
the formula (3). In order to clearer, (f) is shown by a color 
map instead of grayscale. 

The red points in Fig.6.(g) indicate that theirs defocus 
measurement value need to be corrected by the Algorithm 
2. For the convenience of observation, we select two 
representative regions from (g) to enlarge and show in (h) 
and (j), respectively. And the (i) and (k) is the 
corresponding regions from the original image (a).  
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From Fig.6. (h) and (i), we can see that: the head of 
bird has a clear image, and the edge points on it are dense, 
close to each other or intersect, and the foreground and 
background color of the edge are very similar, but the 
defocus measurement values of most edge points 
measured by Algorithm 1 do not need to be corrected. 
Because the area has a clear imaging, high signal 
frequency and large synthetic wavelet coefficients, which 
are larger than or far larger than Wtmax, and the correction 
coefficient kW is 0 according to formula (5). In other 
words, no correction is needed. Certainly, it cannot 
excluded that very few edge points are labeled red due to 
noise and other factors, but these isolated points do not 
affect the measurement accuracy, because the adverse 
effects of these noise points will be eliminated by the 
subsequent joint bilateral filter in the filtering process. 

Fig.6. (j) and (k) are the magnified image of the blue 
box in (g) and its corresponding magnified image in the 
region of the original image (a), respectively.  From the 
(j) and (k), it can be seen that the image is blurred. When 
the foreground color is similar to the background color, 
the probability that defocus measurement values need to 
be corrected increase significantly. The yellow and pink 
boxes in (j) and (k) are the cases. However, if the color 
difference between the foreground and background is 
obvious, there is few defocus measurement values need 
to be corrected, and the region with green box in (j) and 
(k) is the case. In order to see clearly whether the defocus 
measurement value of each edge point need to be 
corrected, the region images of the yellow, pink and 
green boxes are enlarged and displayed in (l), (m) and (n), 
respectively. 

The following three points can be seen from the 
experiment. The first, when the image is blurred, the 
closer the object color is to its background color, the 
higher the probability that the defocus measurement 
value of the edge point needs to be corrected. The second, 
some of defocus measurement value of edge points need 
to be corrected when they are at the intersection of 
multiple edges or at the four bounds of the whole image. 
The third, when the image of the adjacent area of the edge 
point is very clear, few defocus measurement value of the 
edge point need to be corrected. All these are consistent 
with the previous theoretical analysis.  

   
(a)                                               (b) 

   
(c)                                              (d) 

   
(e)                                              (f) 

   
(g)                                              (h) 

   
(i)                                              (j) 

   
(k)                                              (l) 

   
(m)                                              (n) 

   
(o)                                              (p) 
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(q)                                              (r) 

Figure 6: The result of the final experiment and the 
intermediate results of each step of our method. (a) An 
original image; (b) The gray image; (c) Result of edge 
detect; (d) The gradient image; (e) An one-scale wavelet 
transform; (f) The high frequency synthesis wavelet 
coefficients image; (g) Edge points marked red indicate 
that their measurement values need to be corrected; (h) 
The enlarged display of the image in the green box in (g); 
(i) The corresponding region image of (h) in (a); (j) The 
enlarged display of the image in the blue box in (g); (k) 
The corresponding region image of (j) in (a); (l) The 
enlarged display of the image in the green box in (j); (m) 
The enlarged display of the image in the yellow box in 
(g); (n) The enlarged display of the image in the pink box 
in (g); (o) The sparse depth/defocus image is obtained by 
the Algorithm 2; (p) The refined sparse depth/defocus 
image by JBF; (q) Difference image of (o) and (p); (r) 
The dense depth map is obtained by our method. The 
lower gray bar indicates the relative depth, and the 
smaller the gray value, the smaller the depth value.  

The sparse depth/defocus image is obtained by the 
Algorithm 2, and it is shown as Fig.6.(o). Because of the 
influence of noise and other unfavorable factors, there are 
some measurement errors. In order to reduce these errors, 
the JBF is employed to filter the image (o), and the (p) is 
obtained. It can be seen that some noise has been filtered 
out in (p), which is much smoother than before filtering. 
The difference image is obtained by subtracting (o) and 
(p), as shown in (q). In order to clearer, we use the color 
maps instead of grayscale. 

Fig.6. (r) is a dense depth map obtained by extending 
the sparse depth map (p) by Matting Laplacian method. 
The gray level of the image is used to represent the 
relative distance between the object in the image and the 
lens center of the camera. The smaller the gray value, the 
closer the pixel point is to the lens center of the camera. 
On the contrary, the larger the gray value, the farther is. 
It can be seen that the (r) accurately reflects the distance 
between the object in the image and the lens center of the 
camera. 

In order to further verify the effectiveness of our 
method, several images with different real scenes are 
selected for our experiments. And all parameter are fixed 
in all of experiment: Wtmax = 2.0, Wtmin = 0.5, Rt = 3, kC 
= 2, TL = 0.28, TH = 1.2. The results of our algorithm are 
compared with those of Zhuo’s algorithms [17], as shown 
in Fig.7. Due to space limitations, only two scenes are 

shown. There are 2 columns in Fig.7. The (a) are the input 
images. (b) and (c) are the dense depth map obtained by 
Zhuo's algorithm and by our method, respectively. From 
Fig.7., we can see that the results of our algorithm are 
better than those of Zhuo's. Detailed description is as 
follows: 

In the first column, the depth of the bird's head region 
and chest region are basically same, respectively. The 
result of our method well reflects the actual depth. But in 
the result of Zhuo's method, the depth of the bird's eyes 
are quite different from the surrounding parts. It is not 
consistent with the actual situation. The same problem 
occurs at the chest of birds in the result of Zhuo's method. 
In addition, there are serious measurement errors in the 
red box area in the result of Zhuo's method. 

In the second column, the results of the two methods 
all reflect the actual depth well on the whole, but our 
method has better performance in dealing with some 
details. For example, our method better reflects the three 
different depths in the red-box labeled area, that is, the 
upper green leaves are the closest, and the lower green 
leave is a little farther, and the ground is the farthest. But 
the results of Zhuo's method is less precise than ours. 
Similarly, our method has higher measurement accuracy 
than Zhuo's method in the pink box and yellow box area. 

By the comparison experiments and analysis, it can 
be seen that the method proposed in this article has higher 
depth measurement accuracy and higher practical value. 

5 CONCLUSIONS 

In conclusion, a novel depth measurement method is 
proposed in this article. Firstly, the defocus radius at the 
edge point of an object in a single defocusing image is 
measured by gradient information. We use the 8 
directions gradient information and median value method 
in order to minimize the measurement error caused by 
image noise, image four boundary and several edges 
intersecting or very closing, etc. Then, wavelet analysis 
is used to judge whether the measured depth value needs 
to be corrected or not. If necessary, it is corrected 
according to our formula. Next, the JBF is used to obtain 
a higher accuracy sparse depth map. Finally, the sparse 
depth map is extended to dense depth map by 
interpolation with Matting Laplacian method. Our main 
contribution is that we proposed a novel effective method 
which use the gradient information and wavelet analysis 
to get a better sparse defocus depth map. The experiments 
show that the method proposed in this article has high 
measurement accuracy and practical value. 
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(a) Input images 

  
(b) The results of Zhuo’s method 

  

(c) The results of our method 

Figure 7: Comparison with Zhuo’s method. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International
License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made. 
     The images or other third party material in this chapter are included in the chapter s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter s Creative Commons license and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. 

’
’

Depth Estimation from a Single Image Based ... 857




