
Comparison of Least Square Monte Carlo Algorithm and 
Binomial Tree Model for Pricing American Options 

Yuxin Meng 

New York University, New York, 10003, the United States 

ym1933@nyu.edu 

Abstract. The financial market is a rapidly growing industry where derivatives  
are popular among investors. The rapid growth of options trading leads to the 
development of various option pricing theories and models. Through them, 
Longstaff and Schwartz improved the Monte Carlo model in 2001. The improved 
least square Monte Carlo simulation (LSM) is widely used in pricing American 
options. This paper aims to compare two estimation methods in pricing American 
options, namely the Least Square Monte Carlo Algorithm and the Binomial Tree 
Model, and detect which model better estimates the accuracy of the operation. In 
a refinement of using the Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) model to measure the volatility, an empirical comparison of the 
models using the Copper future contract is conducted. It is found that the bino-
mial tree method can more accurately predict the American options prediction 
problem, and applying it to the pricing of copper can not only improve the market 
but also provide a more reasonable and rapid pricing basis for its subsequent de-
velopment. 

Keywords: American Options, Least Square Monte Carlo, Binomial Tree, 
GARCH Model. 

1 Introduction 

In 1973, Fischer Black and Myron Scholes developed the Black-Scholes model (B-S 
model), which employs partial differential equations to estimate the price of the options. 
This method is widely used in option pricing because of its simplicity and clarity [1]. 
However, in the research of American option pricing, because of the possibility of the 
option to be exercised in advance, the pricing of an American option is more complex. 
Hence, the B-S model cannot accurately calculate American options. Therefore, in 
2001, Longstaff and Schwartz proposed the least square Monte Carlo simulation to help 
price American options. The primary method for pricing complex options is LSM be-
cause it is easy to simulate [2]. Most of  the current research directions are on how to 
use the least squares Monte Carlo method to estimate American options, but few of 
them focus on comparing the Monte Carlo simulation method to other previous Amer-
ican option pricing models. LSM has its own limitations such as the payoff function 
cannot be fully represented by the finite basis functions [3]. This paper aims to compare 
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the applied binary tree with the pricing simulated by the least squares Monte Carlo 
simulation method, thus reporting a more accurate and efficient method. In the empiri-
cal process, the author uses the GARCH model to estimate the volatility of the model. 
The volatility estimated is applied to the LSM pricing simulation to calculate the copper 
option price to make the price simulation analysis. The same data is used in the binomial 
tree model to calculate the price. Finally, by comparing the error size of the two models, 
a  more accurate model can be obtained. The paper is organized as follows: section 2 is 
devoted to the GARCH model, the LSM model, the binomial tree model, and the data 
sources. Section 3 shows the results of the predicted price and conducts a comparative 
analysis between the two models. This paper can offer some help to other scholars in 
option pricing research, provide pricing references for enterprises or individuals en-
gaged in options trading, and promote the development of the copper market in a better 
direction. 

2 Methodology 

2.1 Data 

In this paper, the data of Shanghai copper futures were chosen. China, Europe, and 
America are all major countries in copper consumption. China accounts for half of the 
copper consumption, therefore the demand for copper plays an essential role in the price 
of Shanghai copper futures. To obtain more reasonable and fu lly represented market 
price data, the CU2210 copper futures contract was selected for empirical analysis. The 
data were downloaded from the Tushare website. According to the CU2210 future con-
tract, the daily closing price was selected from October 18, 2021 to August 26, 2022, 
for a total of 211 groups of data. By using Python, Figure 1 is obtained. 

 
Fig. 1. Daily closing price chart of the copper futures contract (original). 

2.2 GARCH Model 

Volatility estimation is very important in option pricing. The accuracy of volatility es-
timation will directly affect the accuracy of subsequent pricing. Previously, the volatil-
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ity estimation is using historical volatility. However, historical volatility has a signifi-
cant lag in reflecting the rate of return. So, this paper will use the GARCH model to 
give a more accurate estimation of volatility. The GARCH model ensures that the return 
series is normally and conditionally distributed, and the error distribution is unsymmet-
ric [4]. In the GARCH Model, the author assumes that the asset price is a discrete-time 
stochastic process. Duan [5] proposed that the returns of the asset follow a conditional 
lognormal distribution under the physical measure P as 

 𝑙𝑛
𝑋𝑡

𝑋𝑡 −1
= 𝑟 −

1

2
ℎ𝑡 + 𝜆1√ℎ𝑡 + 𝜀𝑡   (1) 

where the asset price at time t is denoted as Xt , r is the risk-free interest rate, λ1 is the 
asset premium, and εt follows a GARCH(p,q) process following a normal distribution 
with mean zero and conditional variance ℎt . And  

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖
𝑞
𝑖=1 𝜀𝑡 −𝑖

2 + ∑ 𝛽𝑗ℎ𝑡 −𝑗
𝑝
𝑗=1                       (2) 

where α0 ≥ 0, αi ≥ 0 for i = 1,2, … , q and βj ≥ 0 for j = 1,2, … , q. 
In this paper, the author only focuses on the GARCH(1,1) case, so Equation(2) is 

simplified to 

 ℎ𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝛽1ℎ𝑡 −1 (3) 

Here, α1 + β1 < 1 suffices for wide-sense stationarity. 

2.3 Binomial Tree Models 

An n-period binomial tree is a stochastic model estimating the dynamics of a stock price 
changing through time [6]. First, the whole option time is divided to get a very small 
period ∆t. Then according to the no-arbitrage theory, each point price will rise and fall, 
and over time, the path of the price will grow exponentially, which forms a binary tree 
map of the stock price movement until the option deadline. The option price of the 
previous node is then calculated forward from the price of the last time node (the price 
of time T), all the way until the present moment, so as to get the option prices[7]. More 
specifically, the steps are the following: 

Step 1: Creating the Binomial Price Tree. The underlying price only has two trends: 
going up and down. It is a  discrete-time stochastic process that 

𝑆
(𝑛) (𝑖 + 1) = {

𝑢𝑆
(𝑛) (𝑖),            𝑖𝑓 𝑝𝑟𝑖𝑐𝑒𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒  𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑖 + 1

𝑑 𝑆
(𝑛) (𝑖) ,          𝑖𝑓 𝑝𝑟𝑖𝑐𝑒𝑠  𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑓𝑟𝑜𝑚  𝑖 𝑡𝑜 𝑖 + 1

 (4) 

where it is required that u > d and S(n) (0) = s. And by the Cox, Ross, and Rubinstein 
(CRR tree) model, the up and down factors are calculated using volatility, and the time 
duration of a step is measured in years [1]. Upward or downward tendencies in the log 
prices are incorporated in the model, which is determined by the parameter specifica-
tions: 
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𝑢 = 𝑒𝜎 √∆𝑡                   (5) 

 𝑑 = 𝑒−𝜎√∆𝑡 =
1

𝑢
 (6) 

Step 2: Finding the Option Value at the Final Node. After learning u and d, the 
price of the asset at each node can be calculated. Then, there is a need to decide the 
option value at the final node (the expiration date of the option – time T). The option 
value is: 

 𝑀𝐴𝑋 [(𝑆𝑛 − 𝐾), 0]  𝑓𝑜𝑟 𝑐𝑎𝑙𝑙  𝑜𝑝𝑡𝑖𝑜𝑛𝑠   

 𝑀𝐴𝑋 [(𝐾 − 𝑆𝑛
),0]  𝑓𝑜𝑟 𝑝𝑢𝑡  𝑜𝑝𝑡𝑖𝑜𝑛𝑠   

where K is the Strike price, and Sn  is the price of the underlying asset at the nth period 
(expiration date). 

Step 3: Calculating Option Value at Previous Nodes. Now there is a need to discount 
the value at time T to the previous node T-1. According to the Risk-Neutral Valuation 
and Replication, the expected value is calculated using the option values from the later 
two nodes weighted by their respective probabilities, that is:  

𝑉1 = [𝑝𝑆𝑢 + (1 − 𝑝)𝑆𝑑
]𝑒−𝑟∆𝑡                          (7) 

where r is the risk-free interest rate and p is the probability of an up move in the un-
derlying, (1 − p) is the probability of a down move. And p is chosen so that the re-
lated binomial distribution can simulate the geometric Brownian motion of the stock: 

 𝑝 =
𝑒𝑟∆𝑡−𝑑

𝑢 −𝑑
 (8) 

Then the formula in step 2 is used to calculate the value at the T-1 node, named V2. 
Comparing V1 and V2, the option is exercised if V1 is higher, and otherwise, it is not. 
Keep repeating the process, and the value at all previous nodes can be calculated, so as 
to decide whether there is a need to exercise or not. 

2.4 Least Square Monte Carlo Simulation (LSM) 

It is computationally infeasible to handle more than a couple of stochastic factors in the 
binomial tree model because the number of nodes will grow exponentially in the num-
ber of factors as mentioned in 2.3 [8]. Another method is to use simulations. In 2001, 
Longstaff and Schwartz proposed the Least Square Monte Carlo approach, which is to 
estimate the conditional expectation from the cross-sectional information in the simu-
lation by using the least squares [1]. In general, LSM is just the combination of the 
Monte Carlo method and the nonlinear regression. Least-squares method is a way to 
resolve the regression analysis. For the basic idea, the least-squares method is applied 

2022             Y. Meng



to estimate α parameters at model Y = αX + ε [9], which give minimum the sum of 
squared errors as. 

 𝑆(𝛼𝛼) = (𝑌 − 𝑋𝛼)′(𝑌 − 𝑋𝛼)  (9) 

LSM will find the optimal stock price for the American option to execute the options , 
which is to consider the intersection between the line function and the payoff function 
[9]. The idea is as follows: 

There is an underlying complete probability space (Ω, Ϝ, P) and a finite time horizon 
[0, T] where the state of Ω is the set of all possible realizations of the stochastic econ-
omy between time 0 and T, Ϝ represents the sigma filed of all possible events at time 
T, and P  is the probability measure defined on the elements of Ϝ [1] . And Ϝ =
{ℱ𝑡 ; 𝑡 ∈ [0, 𝑇]}. Assume ℱt = F in this case, and the existence of an equivalent mar-
tingale measure Q for this economy. 

F can decide the best exercise node at each simulation path, where the value of an 
American option equals the maximized value of the discounted cash flow. Then, the 
notation C(ω, s; t, T) denotes the possible cash flows of the simulated paths generated 
by exercising the options [10]. Assume the best exercising time is s, then the option 
holder will own the option from time t to s, and t ≤ s ≤ T. 

This paper only focuses on the case where the American can only be exercised at 
discrete times. Assume there are K time points, which is 0 < t1 < t2 < ⋯ < tk = T. 
In order to approximate the price of these options, K is taken sufficiently large. And at 
time tk, the option holder can compare the immediate exercise value to the value of 
continuation. The immediate exercise price equals the cash flow at the time tk and the 
value of continuation is taken by taking the expectation of the remaining discounted 
cash flows C(ω, s; tk ,T) concerning the risk-neutral pricing measure Q. That is 

 𝐹 (𝜔; 𝑡𝑘
) = 𝐸𝑄 [∑ 𝑒𝑥𝑝 (− ∫ 𝑟(𝜔 , 𝑠)𝑑𝑠

𝑡𝑗

𝑡𝑘
)𝐾

𝑗=𝑘+1 𝐶(𝜔, 𝑡𝑗; 𝑡𝑘 , 𝑇)| ℱ𝑡𝑘
] (10) 

where ω is the number of simulated paths, and r(ω, s) is the riskless discount rate. 
Then LSM uses least squares to approximate the conditional expectation function at 
tk−1, tk−2,… , t1. And to make variables unrelated to each other, this model employs the 
Laguerre formula to establish an orthonormal basis. Assume that X is the value of the 
asset underlying the option and that X follows a Markov process. With these specifica-
tions, F (ω; tk−1

) can be represented as 

 𝐹 (𝜔; 𝑡𝑘
) = ∑ 𝑎𝑗𝐿𝑗

(𝑋)∞
𝑗=0  (11) 

where aj  coefficients are constants. 
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3 Results and Analysis 

3.1 Estimation Volatility Using the GARCH Model 

Through the introduction of the data and the model presented above, the GARCH (1,1) 
model is used first to estimate the daily volatility of the copper future. Equation (3) can 
be remade as 

 𝜎𝑡
2 = 𝛾𝑉𝐿 + 𝛼𝜇𝑡−1

2 + 𝛽𝜎𝑡 −1
2  (12) 

where VL is the long-term variance, γ, α, β represent the weight, and γ + α + β = 1. 
Then, the sequences of volatility can be built by using the GARCH (1,1) in python: by 
checking the official website of China Metal Market, it is known that copper futures 
options CU2210 still have 21 trading days before the final exercise date. 

 
Fig. 2. Sequences of Volatility (original). 

Therefore, in order to better use the LSM and binomial tree model to estimate the 
pricing of the copper options, the author first predicts the volatility of the copper futures 
returns for the next 21 days. According to the estimation obtained by Python, the fol-
lowing results are obtained: 

 

Fig. 3. The predicted volatility using the GARCH (1,1) model (original). 
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From Figure 3, it can be seen that the volatility keeps increasing but does not change 
much in the 21 days. And the data will be used later in the two models. 

3.2 Comparing Option Pricing Using the Two Models 

For the selection of the discount rate, this paper uses the one-year SHIBOR interest 
rate, which is 1.96%. First, in the LSM simulation to price copper options, the algorithm 
uses the GARCH (1,1) model and parameters S0 = 62780, r=0.0196, Number of 
path=1000, day=22; then, through Python, the data is shown in Table 1: 

Table 1. LSM price at each node (original). 

 PATH 1 PATH 2 PATH 3 … PATH998 PATH 999 PATH1000 
1 62780.00 62780.00 62780.00 … 62780.00 62780.00 62780.00 
2 62762.89128 61692.92 63339.89 … 62840.2146 61970.8 62689.79 
3 62747.257 62549.979 63503.593 … 63036.427 61119.502 63287.991 
4 62834.493 63649.005 64792.656 … 61893.69726 58866.38 63073.369 
… … … … … … … … 
21 63510.917 60771.617 69226.928 … 65675.616 563889.255 64311.933 
22 65339.119 61518.93 67915.166 … 65790.08 56765.93 64894.82 
23 65714.44 63129.836 67142.5 … 65954.834 56040.07 65586.735 

It can be seen that due to the small path and the large time interval, the error of 
estimating the prices using the LSM simulation method is large. Hence, in order to 
make the price simulation more accurate, the author selects a large enough number of 
paths. By comparing the simulated exercise value of the simulated futures price of each 
node with the size of the continuation value, a  judgment can be made on whether to 
continue to hold or directly exercise the option and take the larger price as the expected 
profits at the current node. Finally, the maximum return of each path can be obtained 
and discounted according to the risk-free return. Taking the average value, the call op-
tion simulation price at the current moment is 1563.59 RMB, and the put option price 
is 1659.49 RMB. Similarly, using the same option data to estimate the ending price in 
the binomial tree model, the call option price is 1426.97 RMB, and the put option price 
is 1543.21 RMB. Then the two models will be used to simulate active options on 
CU2210 futures contracts based on the market, and the comparison  is shown in Table 
2. 

Table 2. Comparison of the ending prices of the two models (original). 

 Close 
Price ContractAbbr TradingCode StrikePirce CRR_price MC_price 

1 1572 Oct. Copper put 
options 63000 CU2210P63000 63000 1543.213375 1638.049196 

2 2120 Oct. Copper put 
options 64000 CU2210P64000 64000 2122.525112 2272.99869 

3 2862 Oct. Copper put 
options 65000 CU2210P65000 65000 2802.708611 2959.883435 

... ... ... ... ... ... ... 

43 8718 Oct. Copper call 
options 54000 CU2210C54000 54000 8880.693862 8869.710574 
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44 7760 Oct. Copper call 
options 55000 CU2210C55000 55000 7890.987591 7905.908602 

45 1378
8 

Oct. Copper call 
options 49000 CU2210C49000 49000 13866.52522 13862.50299 

Here the “ClosePrice” is the settlement of the options, “CRR_price” is the estimated 
price using the binomial tree model, and “MC_price” is the estimated price using LSM. 
There is a total of 45 options, and the picture shows 22 of them. From Table 2, it can 
be observed that, as the final exercise date of CU2210 copper futures options ap-
proaches, the simulated option price using LSM and binomial tree model gets closer to 
the real price, and their difference is not that huge. So, to estimate their accuracy , there 
is a  need to compare their estimation errors using RMSRE (root mean square error) and 
AARE (average absolute relative error). Their formulas are:  

 𝐴𝐴𝑅𝐸 =
1

𝑁
∑

|𝑃𝑖
𝐹−𝑃𝑖

𝑅|

𝑃𝑖
𝑅

𝑁
𝑖=1  (13) 

 𝑅𝑀𝑆𝑅𝐸 = √
1

𝑁
∑

(𝑃𝑖
𝐹−𝑃𝑖

𝑅)2

(𝑃𝑖
𝑅)2

𝑁
𝑖=1  (14) 

where Pi
R  is the real price, and Pi

F  is the forecast price. Calculated by Python, the re-
sults are shown in Table 3: 

Table 3. Estimation Error Comparison (original). 

 AARE RMSRE 
CRR 0.330448255474434 0.330448255474434 
MC 0.42981765253214 0.42981765253214 

From Table 3, the estimation error for the binomial tree model is a little bit less than 
the least square Monte Carlo simulation. Therefore, by comparing the two models and 
estimating the same-day option price, a  conclusion can be drawn that the binomial tree 
model is more accurate. However, in general the two models both show a relatively 
high error, so models can still be improved to better compare the errors. 

4 Conclusion 

With the rapid development of option derivatives, their role in the financial market is 
improving. The requirements on the option pricing model become higher. Therefore, 
choosing the right model to offer reasonable pricing is quite challenging. The first chal-
lenge is to select an appropriate volatility estimation model to estimate the volatility of 
the options of the assets. This paper uses the GARCH model to estimate volatility, with 
the advantage of calculating the volatility from discrete asset price data. Moreover, only 
a few parameters are needed to be estimated through the GARCH model. In order to 
achieve more precise pricing of options, this paper compares the LSM to the binomial 
tree model to simulate the pricing of copper futures and options. The results show that 
after using RMSRE and AARE to estimate the error, the binomial tree model is more 
accurate. 
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This paper has made innovations in research ideas and volatility selection. Moreo-
ver, through empirical analysis and comparison, the application of LSM and binomial 
tree model to Copper option pricing has made some contributions to the future pricing 
research of commodity options. However, there are still some aspects that can be further 
discussed and improved. First, this paper directly employs the one-year SHIBOR inter-
est rate, which may not be able to accurately simulate the futures p ricing. LSM can be 
more accurate when using the daily overnight interest rate. However, because the over-
night interest rate changes every day, using the same interest rate may affect the pricing 
results. Future research can switch to linear interpolation of interest rates. Second, the 
GARCH model is used in the volatility estimates in this research, but because the 
GARCH model itself has some drawbacks, the model cannot reflect the asymmetrical 
characteristics of volatility. The positive and negative news will have different effects 
on the time-series volatility. Therefore, the GARCH model may not be the best model 
for the copper options . Future research can apply different estimation models for vol-
atility and compare them to greatly reduce the error of the LSM method. Finally, this 
paper only incorporates the example of copper options, exceptions exist for the single 
comparisons. By including more examples of comparing models, the result can be more 
convincing. 
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