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ABSTRACT 
Spatial variability can be the main cause of uneven plant growth, but this has not received much attention in the field. 
Spatial variability in soil chemical properties (soil pH, P) can be calculated using a geostatistics approach. The main 
objective of this research was to make a predictive mapping for soil pH and phosphate based on Kriging interpolation. 
The research resulted that the maps generated by Kriging interpolation showed similar patterns of high leaching and 
erosion effects in the landscape. The range of spatial variability of soils was found between 250-350 m with an 
average value of 300 m. Therefore, an effective survey can be carried out with a density every 120 m (rounded up to 
100 m). The elevation range with an average value of 700 m can be said to be a maximum of 50% causing the 
increase in spatial variability of soils. This was evidenced by the high difference between the soil characters range 
(250-350 m) and the elevation range (700 m). The spatial variability of soil characters did not only depend on the 
relief form, but also on the dynamics of the groundwater interflow. A combination of soil pH, available P provided 
good indices for high leaching in the landscape. The high spatial variability for soil pH and available P indicated the 
result of the weathering process of the parent material, which was influenced by slopes, land use, intensive vertical 
and lateral groundwater flows. Cation leaching was the main process causing systematic spatial variability of soils in 
the landscape. Therefore, this leaching process has to be managed. 
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1. INTRODUCTION 

The Ultisols landscape is classified as marginal 
soils, acidic, poor in nutrients and dominates about 
68% of the terrestrial area of Sumatra, Indonesia [1, 2]. 
In reality very little attention has been researched to the 
spatial variability of soils for agricultural activities in a 
broad sense [3, 4, 5]. Soil heterogeneity was usually 
not considered to determine the level of soil fertility or 
soil quality, but the reality in the fields showed that 
crop production was uneven due to the spatial 
variability of soils [6, 7]. Spatial variability of soils in 
the fields directly affected agriculture performance, and 
will become a major problem in production if spatial 
variability of soils was ignored or not considered [8, 9, 
10]. About 15-25% of the difference in agricultural 
production in the field was directly triggered by the 
spatial variability of soils [11, 12, 13]. 

Comprehensive research on spatial variability of 
soils has presented various important data and 
information about the main factors causing the spatial 
variability of soil characters [14, 15, 16] . The general 
view of now society was that any spatial variability of 
soils found in a given space and time was the result of 
soil physical, chemical, or biological processes that 
occurred in the soil. This view was acceptable and had 
only limited use at microscopic scales (e.g. studies of 
soil biological activity), whereas other processes, such 
as weathering of parent materials, erosion or solute 
transport can occur over large and longer distances [17, 
18]. 

Site-specific soil and plant management practices 
require the need to display the spatial variability of soil 
characters. Land clearing, forest and land fires, 
accumulation of organic matter, ash deposits, free 
standing trees, tree stumps, erosion, planting alleys, 
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mounds of ants and termites are the dominant factors 
causing the increase in spatial variability of soils in the 
fields [19, 20]. 

The spatial variability of soil characters can be 
analyzed using geostatistical techniques to research 
more deeply about the spatial variability of soil 
characters. Geostatistical techniques are able to 
combine various sources of spatial variability of soils 
to obtain a variogram of soil characters with certain 
structures. Each structure shows the influence of spatial 
factors that correspond to the spatial variability of soils. 
These factors affect soil characters in different ways in 
different space and time [21, 22]. 

Kriging interpolation can be mentioned as a 
multivariate method displaying spatial variability data 
of soils in unvisited areas. Correlation between real 
data and estimate data can be tested for each spatial 
scale, and spatial variability of soils can also be 
mapped [2]. Kriging interpolation can be applied to 
distinguish local and regional sources of spatial 
variability of soils [1]. The main objective of this 
research is to make a predictive mapping for soil pH 
and phosphate based on Kriging interpolation. The 
resulting map is useful for making a layout design 
(spatial) that is aligned for long-term field agricultural 
activities, so that agricultural management can be 
effective, efficient and sustainable. 

2. MATERIALS AND METHODS 

This research was conducted on the Ultisols 
landscape of 405 ha in Lampung Province, Indonesia 
(Figure 1). The research area has an elevation ranging 
from 6-40 m above sea level. The slopes was classified 
as gentle (3-28%, average 8%) with the main slopes 
direction from West-East to East-West. The research 

site had soil parent material (volcanic tuff) and was 
cultivated with sugarcane monoculture for 45 years 
with intensive management, including high levels of P 
fertilization (100 kg P/ha*a). Therefore, a high level of 
productivity even on unfavorable land. 

The soil sampling scheme used a 1:5,000 scale map 
and a very detailed survey method. The intensity of soil 
sampling was carried out in two ways (overall and 
transect). The overall survey was carried out for whole 
survey area. Soil samples were taken using an auger 
bore at the five levels of depths with amount of 
samples of around 1,800 soil samples. Three transects 
consisted of two transects under sugar cane and one 
transect under forest, and totally described. After 
describing the soil profile, composite soil samples were 
taken for analysis in the laboratory. A fragment > 2 
mm (gravels) was separated by sieving. The soil pH 
data were measured in distilled water and 0.01 N KCl 
electrolyte solution with a glass electrode. The 
available P was extracted with Bray2 method and 
measured by spectrophotometer.  The interpolation 
process followed the stages as stated in Figure 2. The 
Kriging interpolation were mapped to obtain a map of 
soil pH and available P and its geostatistical 
parameters. 

3. RESULTS AND DISCUSSIONS 

This research performed various important 
components related to how to make predictive mapping 
for soil pH and available phosphate based on Kriging 
interpolation. The main topics discussed include, 
namely magnitudes and scope for soil pH and available 
P; variogram analyses for soil pH and available P; 
cross-validation for optimal interpolator by Kriging; 
the Kriging map for soil pH values; the Kriging map 
for available P; and landscape analyses. 

 

   
A: Research site B: Topography map C: Sampling area 

Figure 1 Research site, topography map and sampling area 
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3.1. Magnitudes and Scope for Soil pH and 
Available P 

Table 1 shows values of means; standard deviation; 
minimum and maximum values. The soil characters 
selected for analysis were soil pH (0-20 cm); soil pH is 
quite varied with a range of 4.40-5.72, the average 
value of soil pH is 4.76 for soil pH (0-20 cm) and the 
range is 3.59-4.55 (average value 4.21) for soil pH (35-

60 cm). Soil pH data (0-20 cm) was found to be 1-2 
units higher than soil pH (35-60 cm). This is because 
the surface soil was treated with liming and long-term 
fertilization, so that the soil pH increased, but it was 
still classified as acidic. The coefficient of spatial 
variability (CV) of soil pH was high, which was more 
than 36.71%).  

 

 
Figure 2 Interpolation procedure to analyze spatial variability of soils 
 
Table 1.  Statistic summary for raw data (n =405) 

Soil Characters Mean Minimum Maximum 
Soil pH (0-20 cm) 4.76 ± 0.26 4.40 5.72 
Soil pH (90-120 cm) 4.21 ± 0.24 3.59 4.55 
Available P (ppm) 95.01 ± 4.87 62.02 127.21 
Source: Results of field survey and laboratory data analyses (2022). 
 

Available P data were in the range of 62.02-127.21 
ppm with an average value of 95.01 ppm. This 
available P value was quite high because the soil was 
fertilized every year with natural phosphate which was 
able to improve P content in the soils for the long term 
and released it slowly according to the needs and 
uptake of plants. Data available P showed the highest 
CV compared, namely (63.35-112.67%). This means 
that the treatment of P fertilization in the field was less 
evenly distributed and spread due to soil management 
factors. 

Soil character data with a high CV value means that 
the data were more varied than soil character data with 
a small CV value. This means that the higher the CV, 
the greater the spread of dispersion in the variable. 
Data with high CV have to be transformed before being 
processed. The lower the CV, the smaller the value 
relative to the predicted value, so that the recorded data 
was more uniform and can be used for data 
interpolation. Classification of CV values can be 
grouped, namely CV 0-15% (the lowest); 16-35% 
(moderate) and 36-51% (high); and > 51% classified as 
very high. 

3.2. Variogram Analyses for Soil pH and 
Available P 

Quantification of the spatial variability of soil 
characters can be done by making a variogram. The 
spatial variability analysis of soil characters is 
presented in Table 2. The variogram form presented is 
a spherical model for all soil characters. In general, the 
range of soil pH and available P was in the range of 
250-350 m. The results of this range calculation were 
able to prove that the density of data collection in the 
field was considered sufficient to reveal regional 
relationships for all research areas. 

The maximum range of 350 m proved that if 
sampling in the field with a distance of more than 350 
m, then the data collected was useless (no meaning) for 
interpolation. In other word, that interpolation based on 
survey distance outside this range (over 350 m) was 
meaningless, whereas the effective survey distance 
aimed to predict 50% of the relevant variance (Figure 
3). 

Most data of soil characters had an effective range 
of about 120 m. Therefore, field-intensive survey data 
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can be taken to perform Kriging interpolation and 
created a soil character isoline map on the basis of the 
interpolated data. For simplification of calculations, 
field soil samples should be taken at a distance of 100 
m (1 boring/ha). This means that the research area of 
405 ha requires 405 borings and this is all fulfilled by 
the field survey that has been carried out. Therefore the 
data can be interpolated as shown in the result of 
Figure 3. 

The soil pH and available P data were strongly 
spatially dependent. These highly spatially dependent 
data can be controlled by intrinsic variations in other 
soil characters, such as soil fractions (clay, silt, and 
sand). Weak spatial dependence means that spatial 
variability of soils was more dominantly controlled by 
extrinsic variations, such as tillage or fertilizer 
application. The spatial variation of available P in this 
research was influenced by the application of P 
fertilizer. 

Table 2.  Spatial variability analyses for soil characters (n = 405) 
Soil 

Characters 
Mean Semi 

variance 
Nugget effect  

(%) 
Sill 
(%) 

Range 
(m) 

Effective distance 
(m) 

Soil pH (0-20 cm) 4.76 0.22 55 45 250 100 
Soil pH (90-120 cm) 4.21 0.034 53 47 300 120 
Available P (ppm) 95.01 2750 64 36 350 140 
Elevation (m) 25.15 60.03 2 88 770 - 
Source: Results of field survey and laboratory data analyses (2022). 
 

   

 
 

Source: Results of field survey and laboratory data analyses (2022). 
Figure 3.  Variogram analyses of soil pH; available P and elevation 

 
The range of semi variogram displays the 

maximum distance between the actual data 
(measurement results), correlated and become an 
effective criterion for determining the sampling design. 
The results of the estimated distance of this soil 
sampling can be mapped. However, this distance must 
be considered was 250-350 m with an average value of 
300 m, if it exceeded this distance, then sampling is not 
useful for Kriging interpolation. 

The elevation range (about 700 m) can determine a 
maximum of 50% of the spatial variability of the soil. 
Therefore, the character of the soil did not only depend 
on the shape of the relief, but also on the dynamics of 
the groundwater table. 

The variation of the nugget effect lies between 55-
64%, except for elevation. This nugget effect 
represented a measure of variance that cannot be 
avoided (constant, persists) even in very dense surveys 
(range is close to zero). The nugget effect reduces the 

value of the spatial correlation of soil characters. 
Nugget effects can be caused by various disturbances, 
such as land clearing (50 years ago), varying tillage 
depths (20-50 cm) and sampling schemes. The very 
low elevation nugget effect (2%) was due to the 
continuous descent of the slope from the top of the hill 
to the river. As a supplement to 100%, the spatial 
dependence of soil characters was low as measured by 
threshold (28-58% of semi-variance), except for 
elevation. 

3.3. Cross-Validation for Optimal Interpolator by 
Kriging 

Cross validation calculations are applied to perform 
the variogram model effectiveness (Table 3).  The 
scattering plot between the actual data and the 
estimated data of soil pH and available P was shown in 
Figure 4. The actual data were obtained from the 
results of field surveys and laboratory analysis, while 
the estimated data were generated from calculations 
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using Kriging interpolation. Since the two types of data 
are not normally distributed and there is a trend, then 
the data were normalized using the logarithm (Ln) and 
discarding the trend. 

The results of cross validation showed a very good 
performance relationship. It means that the estimated 
soil pH and estimated available P data can be made on 

the basis of the actual data for these two parameters. 
The results of the estimated soil pH and available P 
showed the similar type pattern. Figure 4 shows a close 
and reliable relationship because it has a very 
significant correlation coefficient (r = 0.90 for soil pH, 
and r = 0.93 for available P). The calculation of the 
coefficient of determination (r2) is determined by 
squaring the correlation coefficient (r). 

 

  
Soil pH Available P 

Source: Results of field survey and laboratory data analyses (2022). 
Figure 4. Cross validation for soil pH and available P 

(log transformed data, n = 248) 
 
Table 3. Cross validation for soil pH and available P 

Soil characters Correlation coefficient 
(r) 

Determinant 
coefficient (r2) 

Significance at level of 
1% 

Soil pH 0.90 0.81 Very significant 
Available P 0.93 0.86 Very significant 
Source: Results of field survey and laboratory data analyses (2022). 
 

For soil pH with r value is 0.90, thus the r2 is 0.90 x 
0.90 = 0.81, while for r2 from available P is 0.86. This 
means that the actual soil pH data is able to explain the 
estimated soil pH data around 81% and 86% for 
available P. This means that about 81% of the soil pH 
estimation data is determined by the actual soil pH 
data, while 19% (100-81%) of the soil pH estimation 
data is explained. by other factors. Likewise, the actual 
available P determines 86% of the data estimate 
available P and the rest (14%) is played by other 
factors. 

However, these interpolated data cannot be utilized 
for developing daily data (for soil pH and available P) 
if the data amount was minimized. This interpolation 
was very good to perform network systems and to 
develop Kriging analyses.  The interpolation was very 
helpful and can be used for understanding the spatial 
variability of soil pH and regional available P if data of 
soil pH and available P were not available, thus this 
interpolation may assess the dynamics of soil pH and 
available P for all area. 

3.4. The Kriging Map for soil pH Values 
There are only slight changes of soil pH observed 

in the landscape. The minimum values were 
determined in the depressions. Lowering mean values 
downslopes was connected to the leaching of most base 

cations and lateral moving of the groundwater table. 
High annual rainfall and good soil structure were very 
supportive of this leaching process. A similar 
downward trend in soil pH along slopes suggested a 
type of lateral transport which was an important soil 
formation process that caused systematic long-term 
spatial variability in the landscape. 

Soil pH value (0-20 cm) was higher than soil pH 
(35-60 cm) because of the effect of P fertilization on 
topsoils. In general, the distribution of available P can 
be related to the soil pH map. The facts reveal that the 
higher the soil pH was, the higher the available P in the 
landscape was found (Figure 5). In addition, there was 
also a relationship between soil pH, available P and 
clay fraction in the landscape. Field observations 
revealed that an increase in the soil pH was followed 
by an increase in P, and vice versa. 

3.5. The Kriging Map for Available P 
Generally the available P value decreases from 

hilltops to lower slopes or depression areas (Figure 6). 
This means that the maximum value of available P was 
found on the hilltops to the upper slopes and continues 
to decrease at the lower slopes. In addition, the 
maximum value of available P was always followed by 
the maximum clay content as well. The minimum 
available P value is followed by the minimum clay. 
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The occurrence process of the maximum P at the 
hilltops and minimum P at the lower slopes showed the 
phenomenon of high soil erosion and leaching. 
Available P at the hilltops is transported by erosion and 
leaching down the slopes. Due to the high energy of 
runoff water transportation which was able to carry all 
colluvium material into the nearest river, so that more 
than 90% of eroded material (colluvium) was lost in 
the rivers and no sedimentation occurred in the 
depression area. This condition caused most of the 
available P to be transported to the river together with 
the eroded soil fractions. 

3.6. Landscape Analyses 

All maps (generated by Kriging interpolation) 
showed the similar pattern and showed high erosion 
and leaching effects in the landscape. The amount of 
soil fraction > 2 mm (gravels) apparently increased in 
line with the decreasing slopes. The minimum amount 
of gravels was recorded in the intensively eroded area 
and the maximum amount was found in the depression 
area. Field facts revealed that the steeper and longer the 
slopes were, the higher the dynamics of the gravels 
were identified. However, the slope steepness played 
more important role than the slope length. It means that 
there was a relationship between the level and 
selectivity of the erosion process with the slopes. 

 
Source: Results of field survey and laboratory data analyses (2022). 

Figure 5. Kriging Maps for soil pH (0-20 cm, left) and soil pH (35-60 cm, right) 
 

 
Source: Results of field survey and laboratory data analyses (2022). 
Figure 6 Kriging maps for available P (0-20 cm) 
 

Generally this soil system was called as an “open 
system” because of the high erosion rate and most of the 
material was eroded out of the landscape system. The 
formation of this open system was because the 
Lampung tuff is very porous and well drained, 
especially in the hilltops. The water infiltration rate in 
the hilltops was very high, therefore ground water levels 
are found very deep in the hilltops and moved sideways 

as inter or underflow due to the many flat areas on the 
hilltops found. When it rains heavily, this water 
continues to flow until the impermeable layer (Fe 
concretion layer). Furthermore, water was inundated in 
the impermeable layer, therefore the movement of 
groundwater inter or underflow will determine the 
increase in the spatial variability of soils. 
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Soil sub-orders are distinguished based on soil 
genetic differences, for example those related to the 
influence of water, moisture regime, main parent 
material, and vegetation. The high annual rainfall and 
the predominance of vertical and lateral transport of 
ions and other solutes have resulted in a deep, acidic, 
well-structured soil profile with the appearance of an 
argillic characterizing horizon at the hilltops. Generally, 
the soils at the hilltops are classified as Kanhapludults, 
Udults, and Hapludults. At the upper and middle slopes, 
the dominance of the redox process occurred due to 
increased wetness and the soils were classified as 
Aquults. This evolutionary sequence was found on most 
of the main slopes with the surface soil color changing 
from dark reddish brown to reddish brown and 
yellowish-reddish brown. In depression or downslopes 
areas, soils were classified as Dystrudept, Dystropept 
and Humaquept. 

Soil weathering process in this landscape was 
dominated by leaching process, clay translocation, and 
lateral water movement was the dominant soil formation 
process for long and long term. As a result of all these 
processes, lateral leaching of acid cations (H, Al) 
occurred. Many soil nutrients were deeply leached in 
these areas, but groundwater come to the soil surface on 
lower and middle slopes and eroded the topsoil fractions 
sideways into nearby rivers. In addition to intensive 
erosion, excess water has formed Dystrudept, 
Dystropept and Humaquept at the lower slopes and 
depression area. The hydrological sequence occurred in 
a large landscape with a uniform and layered parent 
material such as Lampung tuff. This process causes the 
formation of an open system. 

Soil morphology and spatial variability of soils were 
able to reflect the effects of erosion. However, the 
research was unable to reconstruct the initial soil 
conditions (before erosion occurred) because only < 
10% colluvium was found in the landscape. More than 
90% of the colluvium material was lost in the landscape 
due to the high energy of runoff water transport which 
was able to carry all the colluvium material into the 
nearby river. This condition triggered a landscape 
imbalance. Unbalanced landscapes were able to 
stimulate erosion and soil degradation. This erosion 
vulnerability was increasing in line with the high 
amount of rainfall. 

4. CONCLUSIONS 

The maps generated by Kriging interpolation 
showed similar patterns of high leaching and erosion 
effects in the landscape. The range of spatial variability 
of soils was found between 250-350 m with an average 
value of 300 m. Therefore, an effective survey can be 
carried out with a density every 120 m (rounded up to 
100 m). The elevation range with an average value of 
700 m can be said to be a maximum of 50% causing the 
increase in spatial variability of soils. This was 
evidenced by the high difference between the soil 

characters range (250-350 m) and the elevation range 
(700 m). The spatial variability of soil characters did not 
only depend on the relief form, but also on the dynamics 
of the groundwater interflow. A combination of soil pH, 
available P provided good indices for high leaching in 
the landscape. The high spatial variability for soil pH 
and available P indicated the result of the weathering 
process of the parent material, which was influenced by 
slopes, land use, intensive vertical and lateral 
groundwater flows. Cation leaching was the main 
process causing systematic spatial variability of soils in 
the landscape. Therefore, this leaching process has to be 
managed. 
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