
Ontology-based natural language interface to public
security population database

Xiangwu Ding, Hao Liu*

College of Computer Science and Technology, Donghua University, Shanghai 201620, China

870350571@qq.com

Abstract. Natural Language Interface to Database (NLIDB) could convert natu-
ral language queries into SQL automatically, which has been extensively studied.
However, how to apply NLIDB to the public security population database (PSP-
DB) remains an open problem due to the challenges to utilize domain knowledge
and generate complex queries involving multiple tables. To tackle these prob-
lems, this paper proposes an ontology-based NLIDB approach combining with
public security population ontology (PSP-Ontology) and syntactic analysis. Its
key idea includes: (1) constructing an ontology from the schema of PSP-DB and
extending it with synonym expansion; and (2) proposing an association path pro-
cessing algorithm to handle multi-table connection path in SQL generation. We
have evaluated the approach on the population database from Shanghai Public
Security Bureau. The results show that the PSP-Ontology and association path
processing algorithms could alleviate these two challenges and improve the ac-
curacy of SQL translation effectively.

Keywords: ontology; natural language interface to database; public security
population database;

1 Introduction

With the development of information technology, database is widely used in govern-
ment departments, commerce, academia and other fields. Currently, the population da-
tabase of Shanghai Public Security Bureau has accumulated a large amount of data.
There are up to 1143 tables, the relationship between which is very complex. In addi-
tion, users in public security department need to query the database flexibly in dealing
with daily business. The traditional way to query the database is to write specific SQL
statements. This method requires users to be highly familiar with the database schema
and the usage of SQL statements, which is not practical and efficient for end users.
Therefore, natural language interface to database (NLIDB), a method that could convert
natural language queries into SQL automatically, is promising to bring great conven-
ience for users in public security department.

The research on NLIDB is mainly divided into deep learning based approaches
[1][2] and pipeline based approaches [3]. Approaches based on deep learning usually
take the query statement and related database tables as the model input, and generate

© The Author(s) 2023

https://doi.org/10.2991/978-94-6463-102-9_38
V. Escudero et al. (Eds.): BADS 2022, AHCS 11, pp. 348–365, 2023.

mailto:870350571@qq.com
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-102-9_38&domain=pdf

SQL statements through neural network models like Sequence-to-Sequence [1]. How-
ever, they require tremendous labelled data for training and lack of capabilities to gen-
erate multi-table complex SQL statements. The pipeline based approaches are similar
to a working assembly line in production workshops, which consist of a series of mod-
ular processing stages to complete the transformation. The advantage of pipeline based
approaches is that they do not need labelled training data, and more flexible to deal with
multi-table complex queries. Considering the lack of labelled training data in the field
of public security population and the need for multi-table complex query, this paper
designs and implements natural language query to the public security population data-
base based on pipeline.

Unfortunately, although pipeline based NLIDB has drawn extensive research atten-
tion to facilitate non-professional users to interact with database, it is still challenging
to apply it to the public security population database (PSP-DB). Firstly, general NLIDB
techniques are unaware of domain knowledge, thus could not recognize domain specific
natural language expressions both in user queries and database table names. Secondly,
the complex relationship between tables in PSP-DB brings difficulties to generate com-
plex queries involving multiple tables.

To resolve the two problems, we propose an ontology-based NLIDB approach to
translate natural language queries into SQL statements. The ontology of the public se-
curity population is first constructed by parsing and mapping the schema of the PSP-
DB into Ontology Web Language (OWL). After that, the natural language queries are
transformed into an intermediate language using syntactic analysis with the ontology.
Finally, we propose an association path processing algorithm to generate SQL state-
ments from intermediate language. We have evaluated the approach on the population
database from Shanghai Public Security Bureau. As the results in Section 4 show, the
ontology based NLIDB achieves 83.3%, 68.8% and 51.9% precision rate of the trans-
lation of single table query, multi-table query and complex query respectively. This
paper makes the following contributions:

(1) The public security population domain ontology is established to help improve
the accuracy of subsequent syntactic analysis and SQL statement generation.

(2) The semantic disambiguation of synonyms is carried out in combination with the
synonym forest so that the interface can accept the flexible natural language input of
users.

(3) The association path algorithm is proposed, which is combined with the Steiner
tree optimization algorithm to better generate multi-table complex query statements.

2 Related Work

The natural language interface to database (NLIDB) transforms natural language into a
machine language that database could parse and execute, e.g. SQL [4]. Early research-
ers used natural language processing techniques such as pattern matching and keyword
matching to perform the transformation and experimented them in specific systems,
such as the American Baseball League database query system (BASEBALL system).
However, such systems rely on template libraries and only support queries in specific

Ontology-based natural language interface to public 349

formats. Subsequent researchers proposed knowledge models such as extended transfer
network, conceptual dependency theory, and grid grammar to assist computers in un-
derstanding natural language. Thanks to these technologies, a large number of NLIDB
customized for specific databases emerged during this period, e.g. LUNAR, LADDER,
PLANES. With the rapid development of natural language processing (NLP), multiple
NLP techniques were applied in the development of NLIDB. NaLIR [5] uses the exist-
ing parser to obtain the dependency parsing tree of a given query. It then maps the nodes
of the parse tree to SQL components. When the natural language query is not clear,
NaLIR relies on user interaction to perform disambiguation, but too much interactions
increase the burden on users. ATHENA system [6] takes the ontology query language
(OQL) as the intermediate languguage from natural language to SQL statement. It es-
tablishes the ontology knowledge base and analyses user queries in combination with
syntax rules. The idea is only effective in the simple query, because there will be se-
mantic mismatch between ontology and semantics of complex query, resulting in the
decline of accuracy. After that, the same research team proposed ATHENA++ system
[7], which propose a nested query classifier on the basis of ATHENA system to deal
with multi-layer complex nested queries. However, ATHENA++ is hard to be migrated
to other domains and is still difficult to deal with large-scale data.

In recent years, a large number of researchers have applied deep learning to the re-
search of NLIDB. Encoder-decoder based on recurrent neural network (RNN) is a neu-
ral network architecture widely used in NLIDB. The natural language query is analysed
by encoder-decoder, and finally transformed into SQL statement. Zhong et al. [8] pro-
posed the Seq2SQL model. In the decoding process, the slot value is filled based on the
fixed template, and the SQL generation is divided into three subtasks to predict the
AGG, SELCOL, and WHERE clauses respectively. Xu et al. [9] proposed SQLNET on
the basis of Seq2SQL, further refined the SQL generation subtask and divided the
WHERE clause generation into four interdependent subtasks. However, due to the lack
of domain knowledge, approaches based on deep learning perform poor in transforming
query statements of specific domain databases, and is limited to single table query and
specific query forms. By integrating domain knowledge, this paper improves the flexi-
bility of user input queries and the accuracy of transformation.

3 System Architecture

The overall architecture of the ontology-based NLIDB for public security domain is
shown in Fig.1. The system constructs knowledge base and domain ontology by crawl-
ing public data and database table structure and expands the ontology with two expan-
sion strategies. After the police user enters a natural language query, the system first
parses the query statement to generate the intermediate language, including query pre-
processing, query targets generation and query conditions generation. Then the associ-
ation path processing algorithm is applied to deal with multi-table association, and the
intermediate language is transformed into a complete SQL statement. Domain ontology
and knowledge base participate in the whole process and play a role in assisting inter-
mediate language transformation and SQL statement generation.

350 X. Ding and H. Liu

Fig. 1. System architecture of ontology-based NLIDB

3.1 Knowledge base and domain ontology

To improve the accuracy of intermediate language and final SQL statement generation,
domain knowledge and database related information are needed. This paper crawls the
public data of the Internet, constructs the domain ontology and knowledge base com-
bined with the analysis of the table schema of the public security population database,
and expands the domain ontology with the synonym forest. This section presents the
procedure of knowledge base construction, domain ontology construction and domain
ontology expansion.

3.1.1 Knowledge base construction.
Without semantics and information related to the database, it is difficult to analysis

and transform natural language queries. Thus, we construct the knowledge base to fa-
cilitate the transformation process, dictionary in which plays a vital role in the transfor-
mation from natural language into SQL statements. The knowledge base mainly in-
cludes three parts: general knowledge base, domain specific knowledge base and data-
base related knowledge base. Among them, the general knowledge base contains do-
main and database irrelevant words types, e.g. the logical word "as well as" corresponds
to "AND", and the aggregate word "average" corresponds to "AVG"; The domain spe-
cific knowledge base contains domain-related words, which are collected by crawlers,
e.g. Shanghai street names; Database related knowledge base contains database table
information, including primary key, foreign key, etc. This paper constructs a general
knowledge base and domain specific knowledge base through crawler and builds a da-
tabase-related knowledge base through the analysis of database table schema.

Ontology-based natural language interface to public 351

3.1.2 Domain ontology construction.
The goal of domain ontology is to capture and structure the domain knowledge of a

specific domain and provide a general understanding of the domain. In this paper, On-
tology Web Language (OWL) [10] is used to describe the ontology model. E-R model
is a tool to describe entities and relationships between entities in the real world. It can
be extracted from the schema of relational database. Relevant elements in the database
E-R model are transformed into concept classes, properties and individuals in the on-
tology model. The following E-R model describes the conceptual structure of relational
database:

𝐸𝑅＝(𝐸, 𝑅),

𝐸＝(𝐴, 𝐾, 𝐶),

𝐴＝(𝑇, 𝐷, 𝑅),

𝑅＝(𝐸1, 𝐸2, 𝐹𝐾)

where 𝐸 represents entities, 𝐴 represents attributes, 𝑅 represents relationships, 𝑇 repre-
sents attribute value types, 𝐷 represents domains, 𝐾 represents primary keys, 𝐹𝐾 rep-
resents foreign keys, and 𝐶 represents constraints. The process of generating public se-
curity population domain ontology from E-R model is as follows:

(1) Define OWL files. An ontology model is transformed from an E-R model. It is

necessary to define an independent OWL file of public security population domain on-

tology to represent the model.

𝐸𝑅_𝑀𝑜𝑑𝑒𝑙(𝐸𝑅) → 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦(𝑂𝑊𝐿)

(2) Extract concept classes. A concept class represents a fact concept in specific

domain. The corresponding mapping rules convert the entities in the E-R model into

concept classes in the ontology and map them into owl: Class in OWL files. For exam-

ple, the express entity and student entity correspond to the express class and the student

class respectively in OWL.

𝐸𝑅_𝑀𝑜𝑑𝑒𝑙(𝐸) → 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦(𝑜𝑤𝑙: 𝐶𝑙𝑎𝑠𝑠)

(3) Extract data attributes. Data attributes are the characteristics of specific domain

concepts. The mapping rules convert the attributes of entities in E-R model into the data

attributes of corresponding ontology concept classes. In OWL, rdfs: Domain specifies

the subject resource and rdfs: Range specifies the object resource. The two types of

entities associated with the association are mapped to rdfs: Domain and rdfs: Range.

𝐸𝑅_𝑀𝑜𝑑𝑒𝑙(𝐴)
→ 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦(𝑜𝑤𝑙: 𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝑟𝑑𝑓𝑠: 𝐷𝑜𝑚𝑎𝑖𝑛, 𝑟𝑑𝑓𝑠: 𝑅𝑎𝑛𝑔𝑒)

(4) Extract object properties. Object attributes are the relationship between domain

concepts. The corresponding mapping rule is to transform the relationship between

352 X. Ding and H. Liu

entities in E-R model into object properties in ontology and map them to owl: Object

Property.

𝐸𝑅_𝑀𝑜𝑑𝑒𝑙(𝑅) → 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦(𝑜𝑤𝑙: 𝑂𝑏𝑗𝑒𝑐𝑡𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦)

(5) Extract data instances. Since the stored data in the database will appear in natural

language query statements, we need to map these data to individuals.

𝐷𝑎𝑡𝑎(𝐸𝑅) → 𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦(𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠)

This paper applies D2RQ tool(http://d2rq.org/) to implement the above conversion

rules, the constructed public security population domain ontology is shown in the fol-

lowing Fig.2.

Fig. 2. Public security population domain ontology

Through the above steps and rules, the E-R model of the public security population
domain database is transformed into a preliminary OWL ontology model. In addition,
we need to enrich the ontology model through ontology expansion to facilitate the gen-
eration of intermediate languages and final SQL statements. Ontology expansion in-
cludes the integration of public security specific knowledge information such as related
concepts and synonymous expressions into the ontology model.

3.1.3 Domain ontology expansion.
Domain ontology expansion helps deal with the flexible query statements of users.

This paper designs and implements two domain ontology expansion strategies:
(1) Synonym expansion. As users are not familiar with the database table schema,

synonyms and approximate expressions are common in natural query sentences. There-

fore, this paper applies the synonym forest (extended version) proposed by Harbin In-

dustrial University (https://www.ltp-cloud.com) to find the synonyms in the descrip-

tions of concept classes or data attribute of the ontology and add these synonyms to the

corresponding descriptions. The synonym forest contains 77343 words in total. All

Ontology-based natural language interface to public 353

http://d2rq.org/
https://www.ltp-cloud.com/

words in the forest are in a tree hierarchy, which is divided into three categories: large,

medium and small, with 12 large categories, 97 medium categories and 1400 subcate-

gories. The subcategories are further divided into atomic word groups according to the

word meaning. The complete forest tree includes five layers of category, including the

root node layer. Combined with the word forest structure and coding form, this paper

defines the semantic similarity between the two words 𝐶1 and 𝐶2 as:

𝑠𝑖𝑚(𝐶1, 𝐶2) = 𝑚 ∗ cos (
𝑛𝜋

180
) ∗ (

𝑛 − 𝑘 + 1

𝑛
) (1)

where 𝑚 is the weight of the layer of the word forest coding, which is assigned manu-

ally as 0.6, 0.7, 0.91, and 0.97 from the second level to the fifth level, n is the total

number of words in the layer where 𝐶1 and 𝐶2 are located, and 𝑘 is the distance be-

tween the two words, which is used to adjust the value of semantic similarity to make

it fall into the interval [0,1]. If the semantic similarity between 𝐶1 and 𝐶2 exceeds the

preset threshold of 0.9, it is a similar word. This paper uses the above formula to find

all symptoms of words in descriptions of concept classes or data attribute and adds them

to the owl: Synonym field of the corresponding ontology element.

(2) Default attribute expansion. The user may not give the required attribute for con-

venience, thus the concept class needs to be equipped with a default query attribute.

This paper utilized the database related knowledge base to expand the default attribute

field for the concept class in the ontology model and add it to the owl: Datatype Prop-

erty field of each concept class. For example, the student entity is equipped with the

default attribute field "student’s ID number". When the query statement has only the

word "student", it can be inferred that the default query attribute is "student. student’s

ID number ".

3.2 Intermediate language generation

This section first gives the grammatical definition of query statements and the definition
of intermediate language. After that, we present the process of converting natural lan-
guage query statements into an intermediate language.

3.2.1 Query syntax definition.
This paper only focuses on a single round of natural language query statement, so

the syntax is relatively simple and belongs to context-free grammar. The query state-
ment complies with the following grammar rules:

< 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑞𝑢𝑒𝑟𝑦 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 > → [< 𝑞𝑢𝑒𝑟𝑦 𝑤𝑜𝑟𝑑 >][
< 𝑞𝑢𝑒𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 >] < 𝑞𝑢𝑒𝑟𝑦 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 >,

< 𝑞𝑢𝑒𝑟𝑦 𝑤𝑜𝑟𝑑 > → 𝑋,

< 𝑞𝑢𝑒𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 > → [< 𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔 𝑝ℎ𝑟𝑎𝑠𝑒 >] < 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝ℎ𝑟𝑎𝑠𝑒 > [
< 𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔 𝑝ℎ𝑟𝑎𝑠𝑒 >]{[< 𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔 𝑝ℎ𝑟𝑎𝑠𝑒 >][𝐿]
< 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝ℎ𝑟𝑎𝑠𝑒 > [< 𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔 𝑝ℎ𝑟𝑎𝑠𝑒 >]},

< 𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔 𝑝ℎ𝑟𝑎𝑠𝑒 > → 𝐺[𝐸|𝑃|𝐸𝑃],

354 X. Ding and H. Liu

< 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝ℎ𝑟𝑎𝑠𝑒 >

→ 𝑉|𝑃𝑂𝑉|𝐸𝑃𝑂𝑉|𝐸𝑂𝑉|𝐹𝑃𝑂𝑉|𝐸𝐸𝑂𝑉|𝐹𝑃|𝑃𝐹|𝐸𝐹𝑃𝑂𝑉|𝑃𝑂𝑉𝑃|𝐸𝑃𝑂𝑉𝑃|𝐸𝑂𝑉𝑃 |𝐹𝑃𝑂𝑉𝑃|𝐸𝐸𝑂𝑉𝑃|𝐸𝐹𝑃𝑂𝑉𝑃 ,

< 𝑞𝑢𝑒𝑟𝑦 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 > → < 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝ℎ𝑟𝑎𝑠𝑒 > {[𝐿] < 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝ℎ𝑟𝑎𝑠𝑒 >},

< 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝ℎ𝑟𝑎𝑠𝑒 > → 𝐸|𝐸𝐸|𝐸𝐹|𝐸𝐹𝑃|𝐸𝑃|𝐹𝐸|𝐹𝑃|𝑃|𝑃𝐹

where 𝑋 represents query verbs, 𝐿 represents logical words, 𝐺 represents grouping
words, 𝐸 represents entity words, 𝑃 represents attribute words, 𝑉 represents attribute
value words, 𝑂 represents relational words, 𝐹 represents function words, and 𝑍 may
also be used to represent auxiliary words.

3.2.2 Intermediate language definition.
The intermediate language of the system consists of sentence pattern array (SPA),

sentence object array (SOA), entity array (EA), query target phrase array (QTPA), query
condition phrase array (QCPA), query targets array (QTA), query conditions array
(QCA) and group array (GA). Once the query statement is automatically segmented, the
standard word (A synonymous representation is a metadata representation stored in a
database) of the word is found in combination with the domain ontology and knowledge
base, the corresponding word type are stored in the SPA, and the standard word is stored
in the SOA. The EA stores the entity table involved in the query statement. The QTPA
stores the description of the query targets in the user statement, which is used to gener-
ate the QTA. The QCPA stores the description of the query conditions in the user state-
ment and is used to generate the QCA. The QTA stores multiple query targets extracted
and identified. The QCA stores the conditional constraints that the query needs to meet
and the logical relationship between the conditional constraints. The GA stores the con-
tents required to generate the GROUP BY clause in the SQL statement.

3.2.3 Query statement pre-processing.
After the user enters the query statement, the query statement is pre-processed, in-

cluding Chinese Word Segmentation, Generation of Sentence Pattern Array and Sen-
tence Object Array, Target Phrase Extraction and Condition Phrase Extraction.

(1) Chinese Word Segmentation. In order to ensure the effectiveness of word seg-

mentation, this paper uses Jieba, a widely used Chinese word segmentation

tool(https://pypi.org/project/jieba/), combined with the dictionary in domain specific

knowledge base to segment the sentence. The word segmentation results are shown as

['query', 'number', 'is', '2202523', 'name'].

(2) Generation of Sentence Pattern Array and Sentence Object Array. The SPA is

the basis for subsequent query target and query condition analysis. The generation pro-

cess is as follows:

① Match words to entities in the domain ontology model. Words can be matched to

the names of concept classes, data attributes and object attributes in the ontology model,

and can also be matched to the entity synonymous expression and default attribute fields

after the expansion of the ontology model.

Ontology-based natural language interface to public 355

https://pypi.org/project/jieba/

② Search the domain ontology and knowledge base to find the standard word of the

word.

③ Add the matched parts of speech into the sentence pattern array, which may be

word categories such as concept class, data attribute, object attribute and conjunction.

For example, the SPA corresponding to the above word segmentation results ['query',

'number', 'is', '2202523', 'name'] is [𝑋𝑃𝑂𝑉𝑍𝑃]. In this example, the standard word

"number" in the database is "ID number", so the SOA is ['query', ' ID number ',

'is','2202526', 'name'].

(3) Target Phrase Extraction. The natural language input by the user includes query

verbs, query target phrase and query condition phrase according to grammar rules. Alt-

hough the position of the query targets in the query sentence is affected by the sentence

pattern, there exists some patterns in expression of the target phrase. Therefore, this

paper uses rule matching to extract the query target phrase. The extraction process is as

follows: sort the target phrase rules in the grammar from large to small according to the

length, in the other words, arrange them in the order of

𝐸𝐹𝑃|𝐸𝐸|𝐸𝐹|𝐸𝑃|𝐹𝐸|𝐹𝑃|𝑃𝐹|𝐸|𝑃, and match them with the word segmentation string

from back to front. If the match is successful, the word is stored in the QTPA, and the

word is deleted from the back of the SPA. If a stop sign, comma or some logical con-

nectives appear, it indicates that there are multiple query targets, and the connecting

characters are deleted from the word segmentation string. Recycle the above matching

steps for the remaining word segmentation strings until the division of the whole word

segmentation string is completed. If the query target cannot be found at last, an error

will be reported. The generated query target phrase is stored in the QTPA for subsequent

query targets generation.

(4) Condition Phrase Extraction. The extraction procedure of the query condition

phrase is the same as that of the query target phrase. The condition phrase rules in the

grammar are sorted from large to small according to the length, and the extraction pro-

cess is consistent with that of the above query target. Query conditions can be left blank.

The generated query condition phrase is stored in the QCPA for subsequent query con-

dition generation.

3.2.4 Query targets generation.
The query target phrase identified in the pre-processing stage does not conform to

the semantic expression in the database. Next, the QTA is generated as the intermediate

language of the query targets to facilitate the splicing of query targets in subsequent

SQL generation. Query targets can be divided into attribute target, entity target, full-

name target and aggregation target. These query targets and their generation are intro-

duced below.

(1) Attribute target. The query target type corresponding to the attribute target is 𝑃.

If "name" is the attribute name, it belongs to the attribute target. This kind of query

target is common. There is only attribute name but no entity name. The system needs

to find the entity table corresponding to this attribute. The algorithm idea is as follows:

store the entity table where the query condition is located, such as the "student" entity

table, into the entity array, then take out all the entity tables in the entity array, find all

356 X. Ding and H. Liu

the attributes 𝑡𝑜𝑡𝑎𝑙𝑃 in combination with the domain ontology, and intersect the

𝑡𝑜𝑡𝑎𝑙𝑃 with the "name", if 𝑃∩ 𝑡𝑜𝑡𝑎𝑙𝑃≠ Φ. The entity is returned and stored in the

entity array.

(2) Entity target. The query target type corresponding to the entity target is 𝐸. If

"student" is an entity target, there is a corresponding student table in the database. For

the processing of such query targets, the default attribute "student’s ID number" of the

entity can be found directly on the domain ontology.

(3) Full-name target. The query target type corresponding to full-name target is

𝐸𝑃|𝐸𝑍𝑃 . For example, "student’s name" includes entity name and attribute name,

which belongs to the full-name target. The standard words stanE and stanP correspond-

ing to 𝐸 and 𝑃 can be found, and directly return the query target stanE.stanP and store

it in the QTA, and store the entity stanE in the EA at the same time.

(4) Aggregation target. The query target type corresponding to the aggregation target

is 𝐹𝑃|𝑃𝐹|𝐸𝐹|𝐹𝐸|𝐸𝐹𝑃. If "maximum salary" contains aggregation words, it belongs to

the aggregation target. The main feature of this target phrase is the existence of aggre-

gation function 𝐹. The processing methods of 𝐹𝑃 and 𝑃𝐹 are the same. First separate

𝐹, process 𝑃 according to the attribute target, and then store it in the QTA in the form

of 𝐹(𝐸. 𝑃).

3.2.5 Query conditions generation.
Next, the QCA will be generated and used as the intermediate language of query

conditions to facilitate the transformation of subsequent query conditions. Query con-

ditions can be divided into nested and non-nested condition. Non-nested condition can

be subdivided into value condition, value-name condition, aggregation condition and

grouping condition.

(1) Value condition. The query condition type corresponding to the value condition

is 𝑉. For example, "apple juice" in "find the unit price of apple juice" is the value of the

attribute column, which belongs to the value condition. The ambiguity problem should

also be considered in the analysis algorithm of value condition. The processing algo-

rithm of this kind of query condition is the same as that of attribute target.

(2) Value-name condition. The query condition type corresponding to the value-

name condition is 𝑃𝑂𝑉|𝐸𝑃𝑂𝑉|𝐸𝐸𝑂𝑉|𝐸𝑂𝑉 . For example, "find products with unit

price higher than $20 ", where "unit price higher than $20 " contains attribute column

name, relational word and attribute value. For the analysis of such conditions, the ele-

ment before the relational word can be used to exclude the ambiguity of the entity cor-

responding to 𝑉. for 𝐸𝑃𝑂𝑉|𝐸𝐸𝑂𝑉|𝐸𝑂𝑉, the first entity 𝐸 can be directly used as the

query condition entity. For 𝑃𝑂𝑉, you still need to use the EA to determine the condi-

tional entity. Add the 𝐸𝑃𝑂𝑉 of the complement component to the QCA.

(3) Aggregation condition. The query condition type corresponding to the aggrega-

tion condition is 𝐸𝐹𝑃𝑂𝑉|𝐹𝑃𝑂𝑉|𝐹𝑃|𝑃𝐹. For example, "find the product with the high-

est unit price", where "the highest unit price" needs to use the aggregation function. The

aggregation condition can be processed by sub-query. Taking 𝑃𝐹 as an example, the

algorithm idea is taking out the conditional phrase and finding the entity 𝐸 correspond-

ing to 𝑃 through the domain ontology. If there is ambiguity, use the EA disambiguation

Ontology-based natural language interface to public 357

and find the aggregation function corresponding to 𝐹 in combination with the general

knowledge base. Add 𝐹(𝐸. 𝑃) to the QCA, and add entity 𝐸 to the EA at the same time.

(4) Grouping condition. The query condition type corresponding to the grouping

condition is 𝐺[𝐸|𝑃|𝐸𝑃]. For example, "the highest unit price of each type of product",

afterword segmentation, "each (𝐺) type (𝑃)" is added to the GA, and "the highest (𝐹)

unit price of product (𝐸) (𝑃)" is added to the QTA. Here, the 𝐸. 𝑃 in the grouping seg-

ment needs to be matched with each item in the QTA. If there is no 𝐸. 𝑃 in the QTA, it

will be added to this array.

(5) Nested condition. This type of condition phrase is the condition of related sub-

query implicit in the query statement. To understand this sentence pattern, we must first

determine the query expression of sub-query. It is easy to recognize the existence of

𝑂𝑉𝑃 in the form of nested query. Maybe the front of 𝑂 is 𝑃|𝐸𝑃|𝐸𝐸, but they can all

get the form of 𝐸𝑃 through the domain ontology. Here, if "𝑃" in 𝐸𝑃 and "𝑃" in 𝑂𝑉𝑃

are the same attribute, then the 𝑉𝑃 component in 𝑂𝑉𝑃 is a nested condition, 𝑉 is the

sub-query condition and 𝑃 is the sub-query target. For example, "find products whose

unit price is higher than the unit price of apple juice", we can get "higher than (𝑂) apple

juice (𝑉) unit price (𝑃)". For nested sub-query "apple juice (𝑉) unit price (𝑃)", we can

use the previous non-nested query objectives and query conditions to generate ideas.

3.3 Structured query language generation

This section introduces the association path processing algorithm and its optimization
algorithm and describes the process of transforming intermediate language into com-
plete SQL statements.

3.3.1 Association path processing.
In the process of transformation, the most important step is to deal with the problem

of multi-table connection path. If the table where the query target is located is the same

as the table where the query conditions are located, that is single table query. If it is

different, it is multi-table query. The form of the association path between multiple

tables needs to be discussed in detail.

Def.1 Direct Association Path. Two tables are directly associated through the pri-

mary key and foreign key.

Def.2 Indirect Association Paths. Two tables are connected through an intermediate

table, which can be summarized as special cases of complex association paths.

Def.3 Complex Association Paths. The complex connections between three or more

tables.

This paper will do general research on the association path, that is, considering the

processing of complex association paths. General natural query statements do not con-

tain hidden Association path information. The natural language query interface needs

to automatically find out the relationship between tables and generate the correct asso-

ciation path. The general form of the Complex Association Paths is shown in Fig.3:

358 X. Ding and H. Liu

Fig. 3. The general form of complex association path

As shown in Fig.3, when the query target of the entity table A is different from the
query condition of the entity table B, the two tables A and B need to be associated
through intermediate entities. The intermediate associated entity table may be one, or it
may contain multiple in complex cases. Given the above complex situations, this paper
proposes an association path algorithm to solve the association path problem. The spe-
cific algorithm is shown in algorithm 1.

Algorithm 1: Association Path Processing
Input: TableList = { 𝑇1, 𝑇2,…, 𝑇𝑛 }
Output: JoinList

1) Initialize JoinList;
2) Initialize database incidence matrix;
3) if len(TableList)<=1 then
4) return JoinList;
5) else
6) Set the first node 𝑇1 in the TableList as the reference node;
7) Foreach 𝑇𝑟 in { 𝑇2,…, 𝑇𝑛 } do
8) In the incidence matrix, the BFS search algorithm is used to find

the shortest path 𝑇_𝑝𝑎𝑡ℎ between 𝑇1 and 𝑇𝑟;
9) if the node in the 𝑇_𝑝𝑎𝑡ℎ does not exist in the JoinList then
10) add 𝑇_𝑝𝑎𝑡ℎ;
11) else
12) skip and do not add repeatedly;
13) return JoinList;

The algorithm process of generating the association path described above takes the

Actual Population table and the Education Committee table as an example, TableList =

{syrk, jw}. The Actual Population table and the Education Committee table cannot be

directly connected through the primary key and foreign key. The association path algo-

rithm automatically finds the intermediate table connected by the two tables, and then

generates JoinList = {syrk, zjb, jw}. The tables in the JoinList are arranged in order

according to the connection relationship and finally returned. Because the algorithm

takes the first node in the data table set as the reference node, the selection of the

Ontology-based natural language interface to public 359

reference node may affect the generation of the final association path. In addition, re-

peated association paths may be generated through the above algorithm, so it is re-

garded as a local optimal scheme.

In this paper, the above association path algorithm is globally optimized in combi-

nation with Steiner tree [11], and the search of its association path is regarded as the

generation of Steiner tree. The main idea is to generate a tree containing all nodes of

the data table set TableList in the graph represented by the Ontology Graph. the nodes

in the tree need to meet the requirements of the shortest path between two, and the

generated tree needs to achieve the minimum overhead.

Def.4 Ontology Graph. It belongs to the concept class in the same ontology, and the

corresponding data table has the association relationship. It is a graph constructed by

the association relationship in relational database.

The Ontology Graph is formally defined as follows:

𝐺 = (𝐷, 𝐸, 𝑊)

Where 𝐺 is the Ontology Graph; 𝐷 is the set of data tables contained, that is, the set

of nodes in the graph; 𝐸 is the edge set of the graph, corresponding to the primary key

and foreign key association in the relational database; 𝑊 is the weight of each edge and

is set to 1 by default. The specific algorithm is shown in algorithm 2.

Algorithm 2: Path Optimization Based on Steiner Tree
Input: TableList = {𝑇1,𝑇2,…,𝑇𝑛}
Output: JoinList (Steiner tree 𝑇𝑠)

1) Initialize JoinList;
2) Initialize Ontology Graph 𝐺;
3) The Ontology Graph 𝐺 and the data table set TableList generate a com-

plete graph 𝐺1 (𝐷1, 𝐸1, 𝐸1), where 𝐷1 = TableList, 𝐸1 is the associ-
ated edge set;

4) Generate a minimum spanning tree 𝑇𝑚 in graph 𝐺1;
5) Replace the edge in the minimum spanning tree 𝑇𝑚 with the corre-

sponding shortest path in the graph 𝐺 to obtain the subgraph 𝐺𝑘 of the
graph 𝐺; (if there are multiple shortest paths, select one at random)

6) The minimum spanning tree 𝑇𝑘 is obtained from subgraph 𝐺𝑘;
7) Delete unnecessary nodes in the minimum spanning tree 𝑇𝑘 to obtain

the Steiner tree 𝑇𝑠. The leaf node set of 𝑇𝑠 is equivalent to the node set
TableList;

3.3.2 SQL generation.
There is a semantic gap between natural language and SQL statements. There will

be great challenges in direct transformation, and semantic transition needs to be carried

out in the form of intermediate language. The components of the intermediate language

formed by the above series of processes are: sentence pattern array (SPA), sentence

object array (SOA), entity array (EA), query targets array (QTA), query conditions array

360 X. Ding and H. Liu

(QCA), group array (GA), query target phrase array (QTPA) and query condition phrase

array (QCPA). The SELECT clause is transformed by the QTA, the FROM clause is

transformed by the EA, the WHERE clause is transformed by the QCA, and the GROUP

BY clause is transformed by the GA. After splicing, a complete SQL statement is gen-

erated. The SQL generation process is as follows:

(1) Initialize the query target string, add 'SELECT', cycle through the QTA and add

each target in the array in turn. Each target is separated by ',', and the last target is not

added with ','; Initialize the entity string, add 'FROM', loop through the EA, and add the

entities in the array in turn. Each entity is separated by ',', splicing the query target string

and entity string. The generated results are as follows: SELECT [aggregate function]

entity. attribute name [, entity. attribute name] FROM entity.

(2) Initialize the query condition string, add 'WHERE', cycle through the QCA, and

add the logical relationship between the query conditions and conditions in the array in

turn. At this time, you need to judge whether the entity corresponding to the query

targets and the query conditions are the same. ① If the two corresponding entities are

the same entity, the generation form of WHERE clause can not consider the entity as-

sociation relationship. The generation results are as follows: WHERE entity. attribute

name = |LIKE 'attribute value' [AND| OR entity. attribute name = | LIKE 'attribute val-

ue'] [ORDER BY attribute name]; ② If the two entities are different, the generation

form of WHERE clause needs to consider the entity association relationship, and add

the path generated by the association path algorithm to the query condition string.

(3) If the GA is not empty, initialize the grouping string, add 'GROUP BY', and then

fill the GA field into the string. Finally, all strings are spliced into a complete SQL

statement and returned.

The generated complete SQL query statement is submitted to the database manage-

ment system of the application system, and the query result is returned to the user after

the statement is processed.

4 Experiment and verification

4.1 Experimental data set and evaluation index

The data set in this paper is provided by the population Department of Shanghai Public
Security Bureau. The data consists of two parts: common query questions of public
security population and database structure. There are 100 common query questions,
including 40 single table query questions, 40 multi-table query questions and 20 com-
plex query questions. An example of query statement is shown in Tab.1. The database
structure contains 1143 tables and table metadata, which contains the meta information
of the table (for example, table size, field attributes, etc.). Note that due to data sensi-
tivity, the data does not contain personal privacy related data. We will use precision as
the metric to evaluate the effectiveness of NLIDB.

Ontology-based natural language interface to public 361

Table 1. Examples of query statement data

Single table query

Show me the delisted housing codes in Xuhui District.

What is the ID number of the person named Zhang San?

What is the total population of Huangpu District?

Multi-table query

Show me the work unit of the delisted house owner in Huangpu
District.

What is the domicile address of Ctrip's personnel?

What is the provident fund for teachers of Donghua University?

Complex query

Show me the contact details of the courier recipient before April
2020.

What is the name of the student who did not graduate?

Show me the population of all Jiuting Streets in Songjiang District
in descending order.

4.2 Experimental results and discussion

Only if the generated SQL statement is syntactically correct, and the query results
through the SQL statement meet the user's query intention, we mark it a correct trans-
formation. This paper will analyse and evaluate the effectiveness of NLIDB from mul-
tiple perspectives, including single-table query, multi-table query and complex query.

Precision: The ratio of the number of correctly retrieved samples to the total number

of retrieved samples, that is, the ratio of correctly executed query statements to the total

number of test set statements.

The results of different queries are shown in Fig.4. The precision rate of single table

query, multi-table query and complex query is 83.3%, 68.8% and 51.9% respectively.

The main reason for the failure of single table query is that the table where the query

target is located is not found. The main reason for the failure of multi-table query is that

the value condition query cannot correspond to the entity object and the generation error

of association path. The main reason for the failure of complex query example sentence

query is that there are deeply nested queries and the generation error of aggregation

condition clauses.

362 X. Ding and H. Liu

Fig. 4. Precision of different queries

The evaluation of the conversion effect of various types of query targets and query

conditions is shown in Fig.5. The precision of explicit target and aggregation target is

79.4% and 64.1% respectively. There are several reasons that lead to the failure of nat-

ural language transformation into SQL: the standard words expressed by users' syno-

nyms are not found, the query statements do not comply with grammar rules and re-

stricted grammar, and there are compound concepts. In the query conditions, the preci-

sion rate of value-name condition is 78.4%, the precision rate of value condition is

70.3%, and the precision rate of aggregation condition is 56.5%. In addition, the usage

frequency of value-name and value condition is higher than other conditions.

Fig. 5. Precision of different query targets and query conditions

Ontology-based natural language interface to public 363

5 Conclusion

In this paper, we propose an ontology-based NLIDB approach combining with public
security population ontology and syntactic analysis. The ontology is first constructed
by parsing and mapping the schema of the PSP-DB to integrate the public security do-
main knowledge effectively. After that, we propose an association path processing al-
gorithm to handle multi-table connection path in SQL generation. The evaluation re-
sults show that the ontology-based NLIDB is effective and could fit the query scenario
of public security population database well.

In the future, we will propose the algorithm to solve the problem of deep nesting and
improve the accuracy of complex queries. In addition, the Chinese Word Segmentation
can be optimized in combination with the deep learning of Named Entity Recognition
(NER).

References

1. He P, Mao Y, Chakrabarti K, et al. X-SQL: reinforce schema representation with context
[J]. arXiv, 2019.

2. Brunner U, Stockinger K. ValueNet: A Natural Language-to-SQL System that Learns from
Database Information [J]. 2020.

3. Das A, Balabantaray R C. MyNLIDB: a natural language interface to database[C]//2019
International Conference on Information Technology (ICIT). IEEE, 2019: 234-238.

4. Affolter K, Stockinger K, Bernstein A. A Comparative Survey of Recent Natural Language
Interfaces for Databases [J]. The VLDB Journal, 2019.

5. F. Li and H. V. Jagadish. Constructing an Interactive NaturalLanguage Interface for Rela-
tional Databases.PVLDB,8(1):73–84, 2014.

6. Saha D, Floratou A, Sankaranarayanan K, et al. ATHENA: An ontology-driven system for
natural language querying over relational data stores[J].Proceedings of the VLDB Endow-
ment, 2016, 9(12):1209-1220.

7. Jaydeep Sen, Chuan Lei, Abdul Quamar, et al. ATHENA++: natural language querying for
complex nested SQL queries. Proc. VLDB Endow. 13, 12 (August 2020), 2747–2759.

8. Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries
from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103,
2017.

9. Xu X, Liu C, Song D. SQLNet: Generating Structured Queries from Natural Language With-
out Reinforcement Learning [J]. 2017.

10. McGuinness D L, Van Harmelen F. OWL web ontology language overview [J]. W3C rec-
ommendation, 2004, 10(10): 2004.

11. Kou L, Markowsky G, Berman L. A fast algorithm for Steiner trees [J]. Acta informatica,
1981, 15(2): 141-145.

364 X. Ding and H. Liu

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

Ontology-based natural language interface to public 365

