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Abstract 
Weibull distribution is commonly applied in survival analysis and reliability analysis, whose shape and scale 
parameters are most commonly estimated by maximum likelihood estimation and related numerical methods. In this 
paper, by introducing an artificial parameter and then using the perturbative method, for the first time in the statistics 
literature, we conveniently obtain approximate analytical formulas of maximum likelihood estimates of the parameters 
in Weibull distributions, which are important complements to those tedious and unreliable numerical methods. Monte-
Carlo simulations show that the approximate analytical method proposed in this paper is fairly feasible and accurate. 
Using the similar method, we can also obtain the approximate analytical formulas of maximum likelihood estimates in 
many other statistical problems. 

Keywords: Approximate Analytical Method; Perturbative Method; Artificial Parameter; Maximum 
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1.INTRODUCTION 

Weibull distribution can well fit all kinds of life data, 
and describe the failure process and life characteristics 
of the research object more truly; hence, it plays a very 
important role in the survival and reliability analysis. 
The most prominent feature of Weibull distribution is 
that its shape parameter can take different values, which 
can describe different failure mechanisms of the 
research object. The scale parameter in the Weibull 
distribution can stretch the density function after 
determining its density function form, so that the failure 
rate of the research object can be described by coupling. 
With the development of the times, the Weibull 
distribution has gradually evolved into various improved 
forms, such as the Weibull mixed model, the Weibull 
piecewise model, and the Weibull regression model. 
However, as the most basic form, the two-parameters 
Weibull distribution still plays a central role in the 
statistical modelling of survival analysis and reliability 
analysis. 

Due to the importance and great practicability of 
Weibull distribution, there is much literature at home 

and abroad to study. [13] gave the fitting test method of 
two-parameters Weibull distribution under the condition 
of small sample fixed number censoring. [12] estimated 
the parameters of two-parameters Weibull distribution 
by two-logarithmic transformation and the least square 
method. Under the condition of a complete sample, [5] 
summarized various estimation methods of two-
parameters Weibull distribution. [14] studied the 
parameter evaluation of timing censoring test under two-
parameters Weibull distribution. [1] introduced a 
graphic method to solve the maximum likelihood 
estimation of two-parameters Weibull distribution, and 
then used this method to prove the existence and 
uniqueness of the maximum likelihood estimation. In 
the case of random censoring, [11] proposed an EM 
algorithm method to estimate the parameters of two-
parameters Weibull distribution. Based on the algorithm 
obtained from the allowable value analysis of new 
composite material, [7] proposed a simple and effective 
iterative method for the maximum likelihood estimator 
of parameters in two-parameters Weibull distribution. In 
the case of zero failure test data, [8] gave the modified 
maximum likelihood estimation method of Weibull 
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distribution shape parameter and its solution equation. [3] 
gave the approximate maximum likelihood estimation of 
parameters of two-parameters Weibull distribution 
products based on grouping data. [4] studied the 
parameter approximate maximum likelihood estimation 
method of two-parameters Weibull distribution under 
the condition of increasing the type-II censored life test 
step by step, and considered the two expansion methods 
of the first-order Taylor expansion of the function 
involved in this method. Based on parameter estimation 
of the least square method, [6] proposed the maximum 
likelihood optimization method for the distribution 
parameter point estimation and the distribution 
parameter interval estimation of Weibull distribution 
life-span products, so as to solve the problem of fast 
searching the transcendental equation for solving the 
maximum likelihood estimation of parameters in the real 
number range. [2] found a small parameter when 
proving the existence and uniqueness of the maximum 
likelihood estimator of two-parameters Weibull 
distribution, and then obtained the approximate 
analytical solution of the maximum likelihood estimator 
by using the small parameter perturbation method. In 
this paper, only a little literature on the large literature of 
Weibull distribution is listed. 

From the above literature on Weibull distribution 
and other related literature, it can be seen that the most 
important method of parameter estimation in Weibull 
distribution is the maximum likelihood method, and 
various cumbersome and unreliable numerical methods 
must be used in the process of solving. Although [2] 
gives the approximate analytical solution of the 
maximum likelihood estimator using the small 
parameter perturbation method, it uses a very special 
small parameter, so it is difficult to apply to other 
statistical problems. The perturbation method is an 
approximate analytical method originating from 
mechanics, and has been successfully applied in 
mechanics and some engineering fields. However, the 
authors found that only [2] has used the perturbation 
method in statistics so far. For the perturbation method 
and the artificial parameter perturbation method to be 
used in this paper, the specific content is referred to [10] 
and [9]. 

In this paper, by introducing an artificial parameter 
and using the perturbation method, the approximate 
analytical expressions of maximum likelihood 
estimations of parameters in two-parameters Weibull 
distribution are found, which provide an important 
supplement and guarantee for those cumbersome and 
unreliable numerical methods. At the same time, since 
the obtained approximate analytical expressions directly 
indicate the relationship between the approximate 
maximum likelihood estimators and the data, it has a 
certain theoretical significance. In this paper, a large 
number of Monte-Carlo simulations are carried out. 
These simulation results show that the approximate 

analytical method proposed in this paper has high 
accuracy. More importantly, the method proposed in this 
paper for solving the approximate analytical solution of 
the maximum likelihood estimation is generality. 
Similar to the method in this paper, the approximate 
analytical expressions of maximum likelihood estimates 
in many other statistical problems can also be obtained. 

2.THE CONSTRUCTION OF WEIBULL 
DISTRIBUTION LIKELIHOOD 
EQUATION 

Assuming that the independent and identically 
distributed lifetime data niti ,2,1,  obey the Weibull 
distribution ),( W with two parameters, the 
probability density function ),;( tf  is : 
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where  and  are scale parameter and shape parameter, 
respectively. 

We can get the following likelihood function: 

])(exp[][)(),(
11

1 


 n

i
i

n

i
i

n ttL 
 




 

 

(2) 

The logarithmic likelihood function is : 
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According to the maximum likelihood method, the 
partial derivatives of ),( l about and  are obtained 
respectively, and the likelihood equations are obtained 
by making them equal to 0. According to

0),(  l , we can get the maximum likelihood 
estimates of scale and shape parameters satisfying the 
following relation : 
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Substituting Equation (4) into 0),(  l , we 
obtain the maximum likelihood estimation of shape 
parameter  after simplification and consolidation, 
which satisfies Equation (5) : 
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Since Equation (5) is a transcendental equation, it is 
impossible to obtain the specific expression of the 
solution of the equation. Usually, it can only be solved 
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by various tedious and unreliable numerical methods. 
The main purpose of this paper is to construct a general 
perturbation equation by introducing an artificial 
parameter, obtain the approximate analytical expression 
of the maximum likelihood estimation of the shape 
parameter  , and then obtain the approximate analytical 
expression of the maximum likelihood estimation of . 

3.THE APPROXIMATE ANALYTICAL 
EXPRESSION OF THE MAXIMUM 
LIKELIHOOD ESTIMATION OF SHAPE 
PARAMETER 

First of all, using the idea in the literature of [2], we 
carry out Taylor expansion of each item in the 
likelihood equation (6) at 0 ; secondly, the general 
perturbation equation (16) is constructed by introducing 
the artificial parameter into the expanded likelihood 
equation (15); thirdly, the solution of Equation (16) is 
expanded into the power series form of the artificial 
parameter, and the expansion is substituted into the 
perturbation equation (16); then, by setting the 
coefficient of each power front of the artificial 
parameter to zero, we can obtain a system of equations; 
then, by solving the equations, we can obtain the power 
series expansion of the solution of Equation (16) with 
respect to the artificial parameter; finally, by taking the 
value of the artificial parameter as 1 and intercepting the 
first three terms of the power series expansion, we can 
obtain the approximate analytical expression of the 
maximum likelihood estimation of the shape parameter
 , thus obtaining the approximate analytical solution of 
Equation (5). 

Equation (5) can be rewritten as follows : 
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The left side of Equation (6) needs to use the 
relevant knowledge of Taylor series expansion. Firstly, 

it is expanded at 0 , and we can give the following 

expansions of 
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Then, according to the Taylor expansion formula of 
)(1 xn  at 0x , we can expand  

n
i it11  into the 

following form : 
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By multiplying formula (7) with formula (9), the 
following expansion is obtained: 
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where )( 4O denotes a quantity of the same order as 4 . 
From formula (10), we can get the following formula 
(11) : 
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Equation (6) can be rewritten as follows : 
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2  uuu   (15) 

Considering the relationship between the Weibull 
distribution and the extreme value distribution, the 
artificial parameter   is introduced in Equation (15) in 

the following way, we construct the following 
perturbation equation: 
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Using the idea of perturbation method, the solution 
 of Equation (16) is expressed as the following power 
series form of parameter   : 
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Replace the formula (17) with the equation (16) and 
retain it to term 2 , we can get the following result : 
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According to the perturbation method, the 
coefficient of each power front of the artificial 
parameter  on the left side of Equation (18) is set to 0, 
and the following equations are obtained : 
















032

02

01

2
4
011

2
00

2
1020

1
3
0010

0
2
0

uauaauauaa

uauaa

ua

 

 

 

 

(19) 

By solving the equations (19), the following solution 
can be obtained : 
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So we get the following power series expansion of 
the solution  of Equation (16) with respect to   : 
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Let 1 , the approximate analytical expression ~

of the maximum likelihood estimation of  can be 
obtained by taking the first three terms of expression (21) 
as follows : 
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Then, by substituting formula (22) into formula (4), 
the approximate analytical expression ~ of the 
maximum likelihood estimation of the scale parameter
 can be obtained. 
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As for the accuracy of the approximate analytical 
expression (22) of maximum likelihood estimation, we 
can make the following simple theoretical analysis. If 
the random variable T obeys two-parameters Weibull 
distribution ),( W , where and  are scale and shape 
parameters, then the random variable TX ln obeys 
extreme value distribution ),( vE , where  ln ,

 1 . It is easy to know that the variance of the 

random variable X  is )6(6)( 2222  XVar , so 
the shape parameter  can be expressed as

))(6()(6 XVarXVar   by the variance of 
the corresponding extreme value distribution. According 
to the large number theorem, it is easy to know that 0a is 

a good estimator of )(1 XVar , so the value of 0a is 
not far from the real value of the shape parameter  , 
and then through the adjustment of 1a and 2a , the 

approximate analytical expression 
~  of the maximum 

likelihood estimation of the shape parameter   can be 
quite accurate. 

4.NUMERICAL SIMULATION 

In this section, we use the software RStudio to do the 
Monte-Carlo simulation to verify the reliability and 
accuracy of the approximate analytical expression of 
maximum likelihood estimation. Firstly, we use the 
software RStudio to generate the random numbers of 
Weibull distribution, which obey the preset parameter 
values. Then, the generated random numbers are 
substituted into the approximate analytical expressions 
of maximum likelihood estimates to obtain the 
approximate maximum likelihood estimators of the 
shape parameter and the scale parameter. Because the 
random numbers generated in the simulation are pseudo-
random numbers, we simulate 5000 times for different 
sample sizes of each set of real parameter values. 
Approximate maximum likelihood estimators of the 
shape parameter and the scale parameter are calculated 
for each simulation. Finally, the average values of 5000 
approximate maximum likelihood estimators are 
calculated respectively. By comparing these average 
values with the corresponding real parameter values, we 
can verify the reliability and applicability of the 
approximate analytical expressions of maximum 
likelihood estimates. Since Equation (5) in this paper is 
a strong nonlinear problem, the true value of maximum 
likelihood estimation of shape parameter  cannot be 
found. However, we can use the standard function optim 
in R language to obtain the maximum likelihood 
estimation mle̂ and mle̂  of the parameters of the 
corresponding Weibull distribution as the standard 
values and compare them with the approximate 
analytical solutions. 

Considering the Weibull distributions of the 
following five sets of real parameter values: 

,1,5.0
;8.0,1.0;3,6

;2,2;2,1
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the Monte-Carlo simulation results are as follows: 

Table 1: :)2,1(),( truetrue  The simulation results of 
approximate analytical method and optim function. 

n 100 1000 10000 

~

 1.036285 1.00887 1.004516 

~  1.954278 1.943475 1.971819 

mle̂  1.031884 0.9830727 0.9947199 

mle̂  2.210849 1.9190384 2.0044835 
Table 2: :)2,2(),( truetrue  The simulation results of 

approximate analytical method and optim function. 

n 100 1000 10000 

~

 2.073536 2.018431 2.008921 

~  1.87147 1.945517 1.997938 

mle̂  2.387537 1.958556 1.994001 

mle̂  2.044412 1.990811 1.984543 
Table 3: :)3,6(),( truetrue  The simulation results of 

approximate analytical method and optim function. 

n 100 1000 10000 

~

 6.210159 6.055795 6.026922 

~  3.003619 3.001516 3.001014 

mle̂  6.415885 5.832113 6.022557 

mle̂  3.097322 2.964182 2.997604 
Table 4: :)8.0,1.0(),( truetrue  The simulation results 
of approximate analytical method and optim function. 

n 100 1000 10000 

~

 0.1037109 0.1008289 0.1004669 

~  1.4647502 0.8735634 0.8200441 

mle̂  0.09670285 0.1005416 0.09973063 

mle̂  0.30341086 0.7347735 0.80063109 
Table 5: :)1,5.0(),( truetrue  The simulation results 
of approximate analytical method and optim function. 

n 100 1000 10000 

~

 0.5177883 0.5044067 0.5021977  

~  1.0372842 1.0089008 1.0035362 

mle̂  0.5083463 0.4951559 0.5016259 

mle̂  0.8263514 0.9357381 1.0116090 
 
As can be seen from the above tables, with the 

increase of sample size n , the approximate analytical 
solutions of parameter maximum likelihood estimates 
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are closer to the real values; when the sample size 
reaches 10000, the results obtained from the 
approximate analytical expressions are very close to the 
real values of the parameters and the maximum 
likelihood estimates obtained from the optim function, 
which indicates the feasibility and accuracy of the 
proposed method. At the same time, it is also found that 
sometimes the results obtained by the approximate 
analytical expressions are closer to the real values of the 
parameters, and sometimes the maximum likelihood 
estimates obtained from the optim function are closer to 
the real values of the parameters. In addition, when the 
real shape parameter takes different values, the accuracy 
of the approximate analytical expression of the 
maximum likelihood estimation is different. This is 
mainly because the value of the real shape parameter 
determines the shape of the Weibull distribution density 
function. The size of the real shape parameter is one of 
the most important factors affecting the accuracy of the 
parameter estimation method of the Weibull distribution. 
Overall, the results in the above tables clearly show that 
the method proposed in this paper for solving the 
approximate analytical solutions of the maximum 
likelihood estimates is quite accurate. 

5.CONCLUSIONS 

By introducing an artificial parameter and using the 
idea of perturbation method, this paper proposes a 
general method to obtain the approximate analytical 
formulas of maximum likelihood estimates of Weibull 
distribution parameters; these approximate analytical 
formulas are not only convenient for computer 
calculation, but also for exploring the rules in practical 
application problems. In this paper, some Monte-Carlo 
simulations are further carried out. These Monte-Carlo 
simulation results show that the approximate analytical 
method proposed in this paper has high reliability and 
accuracy for Weibull maximum likelihood estimation. 

The authors have recently extended the approximate 
analytical method proposed in this paper to the 
maximum likelihood estimation of the Weibull 
Accelerated Failure Time Model. Some results have 
been obtained and will be published soon. 

Since this paper presents a general method to obtain 
an approximate analytical expression of maximum 
likelihood estimation, the authors believe that this 
method is naturally applicable to parameter estimation 
of other distribution models of life data, such as log-
normal distribution, gamma distribution, generalized 
gamma distribution, log-logistic distribution. The 
authors believe that the approximate analytical method 
is also applicable to the life data distribution model and 
the corresponding regression model in the case of 
censoring, such as the Weibull regression model. 
Moreover, the authors believe that the approximate 
analytical method should be applicable to the parameter 

estimation of the models such as the curve exponential 
family, the generalized linear model and the Cox 
proportional hazard model. The approximate analytical 
method proposed in this paper applied to the parameter 
estimation of these models mentioned above is not only 
an interesting exploration, but also has considerable 
practical and theoretical significance. 
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