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Abstract 
Ethereum has recently surged in popularity, as it can hold various digital tokens and decentralized applications. This 
paper aims to predict UNI’s price in USD through dynamic network analysis and time-series analysis. Previous research 
in this field rarely considers comprehensive network analysis while predicting token price. This paper puts forward a 
strengthened Bidirectional LSTM model that includes token economical features and network features. We use Root 
Mean Squared Error (RMSE) to verify the validity and compare it with other LSTM and GRU models on performance. 
Lastly, a logarithm difference method for data preprocessing was introduced to resolve the lag problems.  
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1. INTRODUCTION 

In recent years, there is a growing trend among 
scholars in studying cryptocurrencies, such as Ethereum 
and Bitcoin, based on blockchains. Most previous 
research mainly focused on Bitcoin, but Ethereum ERC20 
tokens are also worth investigating. On the one hand, they 
can represent some non-physical objects like financial 
instruments – bonds, stocks [1]; on the other hand, they 
can also represent physical objects like gold.  Modelling 
and predicting Ethereum token prices are two of the most 
crucial aspects of studying the Ethereum token dynamic 
transactions. 

For Ethereum ERC20 tokens, all economic and 
transaction data are public on the blockchain [2], making 
it possible to establish Ethereum token transaction 
networks for price prediction. In analyzing complex 
networks, a commonly used method is to split a network 
into smaller sub-fractions to study the functionality. In 
exploring the sub-fractions, traditional graph topological 
features reflect the essential traits of the whole network [3].  

Thus, in the proposed research, we build a one-day 
interval transaction network, extract topological features, 
and combine them with economical features to construct 
a token price prediction model. We put forward a 
strengthened Bidirectional LSTM model that includes 
token economic and topological features. In addition, the 
performance of the proposed model was compared with 
different types of LSTM models and GRU models to 

predict token UNI’s price. UNI is the primary token for 
Uniswap DEX (decentralized exchange); Uniswap is the 
largest DEX in the world in terms of market capitalization 
at the time. 

The paper is organized as the following: Within 
section 2, the existing methods related to Ethereum token 
price prediction are concisely introduced and analyzed. 
Section 3 will first present the data preprocessing of UNI 
info data and UNI transaction data. Then, the daily 
dynamic network building and analysis are presented. In 
addition, we will introduce the variable input 
combinations and the proposed Bidirectional LSTM 
model in this section. In section 4, verifying the validity, 
experimental results for studying the token UNI price are 
presented. Detailed model comparisons, optimization, 
and analysis of one-day lag problems are provided in 
section 4. Eventually, in section 5, some conclusions and 
possible future directions are presented. 

2. LITERATURE REVIEW 

To predict the token price, traditional time series 
models were most frequently used. For example, the 
Linear Ridge Regression model [4] can be used to analyze 
multiple regression data that suffer from multicollinearity 
and can avoid overfitting issues; Autoregressive 
Integrated Moving Average model (ARIMA), generated 
by changing fluid time series to stable ones and only 
regressing its lag value, presents value and the lag value 
of stochastic error term [5]; Autoregressive Conditional 
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Heteroskedasticity (ARCH) model is frequently used 
when the error variance of time series follows an 
autoregressive model [6]. Researchers use machine 
learning algorithms, such as RNNs and random forest, to 
predict the token price based on these time series models 
and token market information.  

Neural networks can provide a suitable solution for 
time series data with time-varying covariables in high-
dimension and small signal-to-noise ratio [7]. The 
structure of recurrent neural networks (RNNs) [1] has 
periodic links over time, and it can seize the dimensional 
and time-based information that exceeds the time step 
through laying information and past state on the internal 
state of its output [8]. In this manner, as for time series 
data, RNNs are more appropriate for generation, 
classification, and prediction.  

However, it is not easy to train traditional RNNs with 
“Real-Time Recurrent Learning” (RTRL) [9] or “Back-
Propagation Through Time” (BPTT) [10] methods 
because of gradient extinction and explosion. As a result, 
traditional RNNs are not considered appropriate tools for 
modelling the huge discrete time step dependencies (e.g., 
more significant than 50) between correlative signals and 
events. An improvement on the original architecture of 
RNN can be Long Short-Term Memory (LSTM), which 
has been used to model time series with long-range 
correlation and generate more accurate results than 
traditional neural networks and other models [11]. 

An existing method combines the network motifs with 
deep portfolios and LSTM models for Ethereum token 
price prediction [1]. However, without employing the tool 
of a topological analysis, the model does not include 
comprehensive network features as input. In addition, the 
previous research only compared the proposed model with 
the regular LSTM model, instead of having various types 
of neural networks. Furthermore, prior research focused 
on mainstream cryptocurrencies such as Bitcoin and Ether, 
but not ERC20 tokens, which is a crucial standard for 
creating and issuing smart contracts on the Ethereum 
blockchain.  

Our proposed research contained transaction network 
analysis and applied a particular LSTM model on the 
price prediction of one of the ERC20 tokens. Our LSTM 
model took more topological features and critical features 
extracted from token economic data than the previous 
methods. Incorporating network analysis, we studied how 
those factors work within specific transaction networks. 
Moreover, the proposed study embodied comprehensive 
model comparison ranging from varieties of LSTM 
models to GRU models. 

3. METHODOLOGY 

3.1. Data 

3.1.1. UNI economic data preprocessing: 

UNI economic data was queried from CoinMetrics 
Github and data is extracted from September 18, 2020 (the 
starting date for the existence of UNI token prices) to 
April 24, 2021. Outliers were calculated based on 3∂ 
principles; we replaced them with the average value in the 
past five days to get the actual data trend.  

The metric of UNI economic features is given in 
Table. 1: 

TABLE 1. METRIC OF UNI ECONOMIC FEATURES 

Variable Description 

PriceUSD The fixed closing price of UNI 

in USD 

SplyFF Number of available UNI 

units to trade within one day 

in the market 

TxTfrValMeanUSD Ratio of total value (USD) of 

all UNI units to the number of 

transactions between unique 

addresses within one day 

TxTfrValUSD Total value (in USD) of all the 

Uni units been traded 

between unique addresses 

within one day 

AdrActCnt  Number of unique active 

addresses in the network. 

TxTfrCnt The sum count of transfers 

that interval 
 
Then, the correlation between certain features (input 

variables) and the priceUSD (output variable) was 
calculated in Table. 2:  

TABLE 2. CORRELATION BETWEEN UNI ECONOMIC 
FEATURES AND PRICEUSD 

Econ Features Correlation Coefficient 

 PriceUSD 

SplyFF 0.61 

TxTfrValMean 0.77 

TxTfrVal 0.59 

AdrActCnt 0.01 

TxTfrCnt -0.07 
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According to the table, SplyFF, TxTfrValUSD, and  

TxTfrValMeanUSD were selected to be the candidates 
of independent variables due to the high correlation (> 0.5) 
with price. 

3.1.2. UNI transaction data preprocessing: 

The transaction data were queried from Google 
BigQuery public dataset Ethereum_blockchain from 
September 18, 2020 to April 24, 2021, and eliminated all 
missing values, and finally obtained the transaction data 
of 1,936,030 lines, including 1) from_address (address of 
the sender), 2) to_address (address of receiver), 3) value 
(amount of UNI token transferred), and 4) 
block_timestamp (transaction time).  

As for the timestamp variable, the original form of 
timestamp (2020-12-24 03:25:54+00:00) was changed to 
the form of date (2020-12-24) to match with the data of 
daily token price. 

3.2. Network Analysis 

3.2.1. Network Building (Network X): 

NetworkX, a python package, was chosen to build, 
visualize the network and calculate the features of the 
daily transaction network. The four basic elements of a 
network are given as: 

a)Nodes: Ethereum accounts (ie, external accounts or 
smart contracts), which is given in our transaction dataset 
as from_address (seller) and to_address (buyer) 

b)Edges: each transaction recorded in the blockchain 

c)Weight: number of transactions between addresses 

d)Direction: from buyer to sender 

A MultiDiGraph that captures both directions and 
weights for each transaction record were built daily to 
plot the number of nodes and weighted edges, which is 
shown in Fig. 1: 

 
Figure 1.  Number of nodes and edges for the whole 

network 

The plot illustrates that the time series of the number 
of nodes and edges are relatively plain, and no significant 
changes over time make the network relatively stable.  

3.2.2. Feature Extraction: 

To analyze how addresses interact with each other, 
the topological features were computed and extracted 
from the dataset. Fig. 2 below captures the sample 
addresses on [2021-03-20].  

 
Figure 2.  Network for sample addresses on 2021-03-20 

Six network features were extracted from the dataset: 

a)Degree Centrality: It measures the total weighted 
edges and the number of directed links between a node 
and its neighbors. The higher the degree, the more central 
the node is.  

b)Clustering Coefficient: It measures the degree to 
which nodes in a graph tend to cluster together [12]. Local 
Clustering coefficient can be calculated by  

                                      𝐶                         (1) 

where 𝑘  denotes the degree of node 𝑖 and  𝐿  denotes the 
number of edges between the 𝑘  neighbors of node 𝑖. We 
took the mean and standard deviation of it in this study. 

c)Network Modularity: It measures the degree to 
which the division of a network into communities is [13], 

𝑄 ∑ 𝐴 ,  
 
     (2) 

where 𝐴 ,   is the adjacency matrix, m represents the 
number of edges in the network, and 𝑘  denotes the 
degree of node 𝑖. The stronger this division the higher is 
the value of  𝑄. 

d)Eigenvector Centrality: It measures the 
significance of a node given the significance of its 
neighbors [14]. 𝐴 𝑎 ,  is the adjacency matrix of a 
network. The eigenvector centrality 𝑥  of node 𝑖 is given 
by: 

𝑥 ∑ 𝑎 ,  𝑥 
                     (3) 

where 𝜆 0 is a constant. In matrix form, we have 𝜆𝑥
𝑥𝐴. 
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e)Transitivity: It measures the density of loops of 
length three (triangles) in a network, it is the ratio of the 
number of loops of length three and the number of paths 
of length two. 

𝑇 3    (4) 

where 𝑁  refers to the number of triangles in the network, 
𝑁  refers to the number of connected triples of nodes in 
the network.  

f)Critical Point: It is defined as the node that has the 
largest number of transactions and the highest total 
transaction value. This concept aims to analyze a single 
node and its influence on prices. Results show that the 
critical point for each transaction day belongs to the 
Uniswap ETH pool token holders 
"0xd3d2e2692501a5c9ca623199d38826e513033a17", 
an account that produces tokens and initiates transfers 
between individuals. 

3.3. Statistical Analysis 

3.3.1. Correlation:  

Table. 3 shows the correlation between network 
features and the price, based on which the input variable 
pairs will be decided. 

TABLE 3. CORRELATION BETWEEN NEYWORK 
FEATURES AND PRICEUSD 

Network Features Correlation with 

PriceUSD 

Degree Centrality 

MEAN 

-0.52 

Degree Centrality STD -0.75 

Cluster Mean -0.66 

Cluster STD -0.61 

Modularity 0.73 

Transitivity 0.05 

Eigen Vector Mean -0.55 

Eigen Vector STD -0.24 

Critical Point Mean -0.33 

Critical Point Degree -0.21 

3.3.2. Input Variable Pairs: 

From the calculation, we finally included all the UNI 
economic features: priceUSD, SplyFF, 
TxTfrValMeanUSD, TxTfrValUSD (named as [U]) and 
network features: Modularity, Degree Centrality, 
Clustering Coefficient, Eigen Mean, which have a 
correlation value larger than 0.5 with the price.  

Hence, we design our initial input pairs in Table. 4 as 
follows: 

TABLE 4. INPUT PAIRS FOR MODEL COMPARISONS 

Group ID Input Variables 

UNI 

Economic 

Features 

(U) 

[priceUSD, SplyFF, TxTfrValMeanUSD, 

TxTfrValUSD] 

Group 1 DCmean +[U] 

Group 2 DCstd + [U] 

Group 3 Clustermean + ClusterSTD +[U] 

Group 4 Modularity +[U] 

Group 5 EigMean +[U] 

Group 6 DCmean +DCstd +Clustermean 

+Clusterstd +[U] 

3.4. Prediction Model 

3.4.1. Introduction to Bi-directional LSTM: 

The Bidirectional LSTM model can be regarded as a 
revised augmentation of the simple LSTM model. For the 
issues of sequence classification types, the BI-LSTM 
model can help promote the execution of the model. It 
encodes the sequence of inputs in two directions: forward 
direction & backward direction. Then, it joints the results 
from both LSTMS of two directions at each timestep [15]. 

3.4.2. Model Building: 

The following Table. 5 includes the parameters 
chosen for our Bidirectional LSTM model: 

TABLE 5. PARAMETERS CHOSEN FOR THE 
BIDIRECTIONAL LSTM MODEL 

Parameter Value 

Hidden Unit (Hidden 

Size) 

100 

Activation Sigmoid 

Optimizer Adam 

Learning Rate 0.1 

Loss Function MSE 

Epoch 300 

Batch_Size 64 
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4. PERFORMANCE EVALUATION AND DISCUSSION 

4.1. Evaluation Methods 

To evaluate the performance of our applied models, 
we used Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸  
∑          (5) 

Training loss score and validation loss score (both 
based on MSE) were utilized to compute the model's error 
during optimization. 

4.2. Bi-directional Training Results 

Bidirectional LSTM model is utilized to train on four 
window sizes, three train-test split modes [1], and 7 input 
variable combinations in a total of 84 combinations, all 
the combinations are given as: 

a)Window Size: 4,5,6,7 

b)Train-test Split: 9:1, 8:2, 7:3 

c)Input pairs: (Table 4 in 3.3.2) 

The average RMSE (average three times) for each 
combination is summarized in Table. 6 below: 

TABLE 6. AVERAGE RMSE FOR DIFFERENT INPUT 
PAIRS 

  Input Pair Groups 

train/tes

t 

W

L 

[U] 1 2 3 4 5 6 

9--1 4 3.2

2  

2.5

6  

4.1

4  

3.2

7  

2.77  2.5

9  

4.5

9  

5 2.7

4  

2.2

8  

2.3

3  

2.2

7  

2.18  2.9

4  

3.3

6  

6 3.0

3  

2.5

7  

2.4

7  

4.2

8  

2.36  2.4

6  

3.2

6  

7 3.3

4  

2.4

8  

2.1

0  

4.1

7  

3.22  3.4

0  

2.6

0  

8--2 4 2.8

8  

3.0

5  

2.3

0  

3.9

7  

3.95  1.9

0  

2.6

2  

5 2.5

8  

2.2

9  

2.6

4  

3.6

7  

2.08  2.1

0  

2.2

7  

6 2.4

0  

3.4

3  

3.0

5  

3.5

6  

2.36  2.7

2  

3.1

3  

7 2.2

7  

2.6

5  

2.3

1  

2.0

0  

2.13  2.4

4  

3.2

7  

7--3 4 4.8

1  

9.8

5  

8.8

3  

10.

0 

8.06  9.5

9  

8.5

2  

5 3.3

9  

8.7

9  

4.3

8  

8.0

7  

3.30  3.6

2  

7.1

1  

6 9.8

8  

3.4

0  

8.5

7  

4.7

8  

3.90  9.3

7  

4.5

5  

7 3.9

1  

6.0

8  

4.9

4  

3.9

3  

6.94  4.2

9  

5.6

0  

 
The results demonstrated that: 

1) Train-test split: when ratio = 8:2, performed best. 

2) Window length: when WL = 5, performed best 
generally. 

3) Input variables:  

a) Adding network topological features to input 
improved model performance, which implies that those 
factors have specific benefits for price prediction.  

b) Group 4 (modularity, priceUSD, SplyFF, 
TxTfrValMeanUSD, TxTfrValUSD) had the best 
performance relatively, showing that the token price has 
a higher correlation with the tendency towards clustering 
of transaction accounts.  

c) Including all network features hampered 
performance due to the “multicollinearity” between 
variables [16]. 

4.3. Model Comparisons 

1)For different models: Bidirectional LSTM model is 
compared with the other 6 models in performance, below 
gives an introduction to the models: 

a)Vanilla LSTM: It is the simplest of the LSTM 
models, with only a single hidden layer of LSTM units 
and an output layer for prediction. 

b)The Stacked LSTM model: It is an LSTM model 
with multiple hidden LSTM layers stacked one on top of 
another. 

c)GRU: It is a new generation of RNN that is very 
similar to LSTM. However, instead of using a unit state, 
the GRU uses a hidden state to transfer information [17].  

2)For combination: Input, window, and train-test 
split combination that performed generally great (RMSE) 
in Bidirectional LSTM is chosen for model comparison:  

a)Input: Modularity, priceUSD, SplyFF, 
TxTfrValMeanUSD, TxTfrValUSD 

b)Window size: 5 

c)Train-test split: 8:2 

7 different models are run 3 times each and their 
average RMSEs are summarized in the Table. 7 below: 

TABLE 7. RMSES AND LOSS FOR DIFFERENT MODELS 

Models Evaluation Methods 
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 RMSE Train loss 

converges? 

Validation 

loss 

converges? 

Vanilla LSTM 2.6728 Yes Yes 

Vanilla 

LSTM-

dropout 

3.0308 Yes Yes 

Stacked 

LSTM 

3.1366 Yes Yes 

Bidirectional 

LSTM 

2.0756 Yes Yes 

Bidirectional 

LSTM- 

dropout 

3.5562 Yes Yes 

GRU 2.8478 Yes Yes 

GRU-

dropout 

3.5097 Yes Yes 

 
The summary evaluation table above demonstrated 

that: 

 For all the seven models we trained, both train loss 
and validation loss function converge well, 
suggesting that the training effect improves with 
the Epochs' increase and reaches stability and 
saturation. 

 According to Vanilla LSTM, Bidirectional LSTM, 
and GRU, adding a dropout (0.2) layer makes the 
model perform worse than not. Since we only have 
less than 200 data sizes for training, dropping out 
is likely to let the model omit some essential 
features in price, leading to a worse fit. Therefore, 
in this case of the UNI token, we do not add 
dropout layers into our model. 

Comparing the average RMSE for the seven models, 
we have Bidirectional LSTM performs the best generally, 
with the lowest average RMSE. 

4.4. Lag Problem 

4.4.1. Log Difference Method: 

The predicted value by Bidirectional LSTM model 
and ground truth for price is shown in Fig. 3: 

 
Figure 3.  Predicted value and ground truth (BI-LSTM) 

From the above section’s output, the predicted value 
at time t is often the actual value at time t-1; the natural 
value curve lags the expected value curve. This is resulted 
from the autocorrelation [18] of our time series data, 
making it not stationary. To eliminate autocorrelation, the 
first log difference between t and t-1 price was taken. 
In this way, our regression goal could be the difference 
between the current moment and the last moment.  

The distribution, autocorrelation, partial 
autocorrelation plots and for UNI price before and after 
log_difference processing are shown in Fig. 4 below. 

 

 
Figure 4.  Statistical test resulst for UNI token price 

with and without log_difference preprocessing 

The Dickey-Fuller statistical test results are shown in 
Table. 8 below: 

TABLE 8. P-VALUE FOR UNI TOKEN PRICE WITH AND 
WITHOUT KOG DIFFERENCE PREPROCESSING 

 Before Log 

Difference 

After Log 

Difference 
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Preprocessing Preprocessing 

P-Value 0.9411 0.00000 

 
The graphs and statistics illustrate that after the first 

log_difference, the upward trend and autocorrelation 
were eliminated, making the vibration dependent purely 
on day-to-day changes. P-value for Dickey-Fuller 
statistical test [19] decreased to zero, indicating that the 
series became stationary after processing. 

4.4.2. Training results and comparison: 

After log_difference preprocessing, we trained the 
previously chosen input pairs with our Bidirectional 
LSTM model. A dropout layer (dropout = 0.3) was added 
to solve the potential overfitting problem. The predicted 
price graphs under the MinMacScalar method and 
log_difference method are shown in Fig. 5: 

 

 

 
Figure 5.  Predicted values and ground truth plots with 

different preprocessing methods 

The RMSE under the MinMacScalar method and 
log_difference method are shown in Table. 9: 

TABLE 9. RMSES WITH DIFFERENT PREPROCESSING 
METHODS 

RMSE (price) MinMaxScalar Log 

Difference 

Train-Test Split = 

9:1 

2.1781 2.2013 

Train-Test Split = 

8:2 

2.0756 2.0689 

From the above graphs and statistics, it could be 
concluded that after log_difference preprocessing:  

 Lag problem was solved for △price prediction. 
The predicted and actual △price trend is 
consistent, suggesting 
that log_difference preprocessing could provide a 
relatively accurate prediction result for the price 
difference. 

 Lagging still bothers the prediction of price value. 
However, it could be observed that the predicted 
value is generally closer to the actual value, as is 
reflected from the graph, but the lag problem still 
existed. This is probably caused by the 
accumulation of errors in forecasting the △price, 
which is amplified when converted into the price, 
thus presenting a lag problem. 

4.4.3. Discussion for the existence of the lag 
problem 

 Limitation from the size of the training dataset.  

 Room for model trials and improvement. 
Ensembling GRU, Vanilla LSTM, and BI-LSTM 
with a painfully weighted average method was 
tried, but the prediction effect has not been 
significantly improved.  

 Enlarge the model input pool. It is concluded that 
network characteristic data can improve 
prediction accuracy, but there are probably more 
critical independent variables that need further 
exploration. Specific research measures in the 
future will be described in the Future 
Work section. 

5. CONCLUSION AND FUTURE WORK 

5.1. Conclusion 

 Adding topological network features to input 
variables could generally improve the model 
performance (lower RMSE), suggesting that the 
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characteristics of the UNI transaction network 
affect its price to a certain degree. Among the five 
network features we tested; modularity had the 
best effect on UNI token price prediction 
relatively.  

 Including all network features hampered 
prediction results due to the “multicollinearity” 
between features. 

 Among the seven models, our 
proposed Bidirectional LSTM performs the best 
on UNI price prediction. 

 The instability, upward trend, and the 
autocorrelation of input data series lead to a one-
day lag between the real and the predicted 
price. Log_difference is adapted to eliminate the 
movement and the autocorrelation, the lag 
problem was solved when predicting price 
difference, and the accuracy (RMSE) for price 
prediction was improved. 

5.2. Future Work 

 Explore other influential input variables. Potential 
input variables include other closely related 
ERC20 tokens’ price, BTC price, ETH price, etc.; 
Unexpected events such as the number of 
COVID-19 daily new cases; Social and 
government influences news, policies, etc. 

 Optimize the prediction model and explore other 
potential deep learning models after adding more 
input variables to further deal with the lag problem. 

 Resolve the problem of technical constraints. 
Topological features including Closeness 
Centrality, Betweenness Centrality, etc., are 
expensive to calculate. Possible solutions include 
running on a more powerful GPU, segmenting 
addresses based on activeness, and combining 
each weighted category’s influence on prediction. 
By adding more network features as input 
variables, we expect our model to have better 
performance. 
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