
A Resource Efficient Decoder for Polar Code Based on
FPGA

Chenguang Yang1, *, Huibin Zhang2

1, 2School of Electronic Engineering, Beijing University of Posts and Telecommunications

1,*yang545815441@126.com, 2zhanghuibin@bupt.edu.cn

Abstract. A resource efficient hardware implementation method of polar decode
is presented in this paper. It supports the configuration of bit allocation table with
various code lengths and rates. The hardware implementation based on Succes-
sive Cancellation List Decoding (SCL) scheme makes BER (Bit-Error-Rate) per-
formance more excellent, and the pipe-lined and paralleled design achieved a
good balance between performance and complexity, maintaining a high through-
put while consuming less resources. The method is implemented on FPGA and
has excellent performance. Compared with other hardware implementation meth-
ods, the method can achieve the same throughput with less hardware resource.

Keywords: polar code, low resource consumption, successive cancellation list
decoding, FPGA implementation

1 Introduction

Polar code is the first coding method that can be strictly proved to reach the Shannon
limit. The concept of polar code was first proposed by Arikan in 2009 [1], which is the
major research in the field of channel coding in recent years. It has been widely con-
cerned and studied since it was proposed, and has been applied to actual projects [2,3].

With the development of polar code research and the expansion of application sce-
narios, hardware implementation for polar code has attracted much attention. To per-
form hardware implementation, resource utilization and throughput are important indi-
cators to measure performance. A polar encoding method with low hardware resource
utilization is proposed in [4], but the supported code length is limited to N=8, and the
implementation of the decoding method is not described in detail. [5] proposed a hard-
ware implementation method of polar code SCL decoding with large list capacity,
which supports long code length of N=4096 and large linked list decoding with L=32.
The bit error rate performance is better, but not suitable for other code length, and the
latency and throughput are not optimized, the large linked list also leads to large re-
source occupation. For the common code length format N=1024, [6] proposed an em-
ulator platform, including encoder, channel model and decoder. [8] proposed a method

© The Author(s) 2022
H. Wu et al. (Eds.): CSIEDE 2022, ACSR 103, pp. 774–���, 2022.
https://doi.org/10.2991/978-94-6463-108-1_86

mailto:yang545815441@126.com
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-108-1_86&domain=pdf
https://doi.org/10.2991/978-94-6463-108-1_86

to support different code length. However, these researches only focus on the imple-
mentation and the resource utilization is not further optimized, which leads to the large
consumption of hardware resources.

Therefore, this paper presents a hardware implementation of polar decoding with
low resource consumption. The paper is structured as followed: decoding theory of po-
lar codes is proposed in section II, the hardware implementation of decoding is followed
in section III, section IV underlines hardware results and performances and the com-
parisons with other literature.

2 Decode Theory for Polar Code

Successive Cancellation (SC) decoding method is the basic decoding method for polar
code, also the foundation for Successive Cancellation List (SCL) decoding method. SC
can be performed by the following steps.

Polar decode using the soft value log-likelihood ratio (LLR) to perform decoding.
According to received LLR, the F function can be performed to calculate and judge
information bit u1 by equation (1) and (2).

f(L1, L2) = ln
1+eL1+L2

eL1+eL2
≈ sign(L1)sign(L2)min{|L1|, |L2|} (1)

u1 = {
0, f(L1, L2) ≥ 0 or u is frozen bit

1, f(L1, L2) < 0
 (2)

The G function can be performed with u1 as the input value to judge u2 by equation (3)
and (4).

g(U1, L1, L2) = ln
Pr(Y1Y2U1|U2=0)

Pr(Y1Y2U1|U2=1)
= (1 − 2U1)L1 + L2 (3)

u2 = {
0, g(U1, L1, L2) ≥ 0 or u is frozen bit

1, g(U1, L1, L2) < 0
 (4)

After that, the decoding process for basic decoding unit is done, 2-bit polar code is
decoded. For polar code with length 2n (n≥1), the decoding process will be divided into
different stages, and the partial sum process needs to be done, which means the lower
decoded bit needs to be transmit into higher rank for the calculation in the higher stage
as the G-function input.

Based on SC, the SCL decoding method is proposed to achieve a better performance.
It introduces Path Metric (PM) which refers to the posterior probability of a decoding
result. The larger the value, the higher the probability of correct decoding result will
be, and the probability of obtaining the final correct decoding result by continuing to
use SC decoding method along with this result will be higher. SCL decoder including
K SC decoder inside which are placed in parallel. The first decoder performs operations
with SC method until ruling out the first information bit, then the Kth decoder will copy
all the intermediate data values and LLR values from the first decoder, and the newly
decoded information bit for the original SC is 0, for the new SC is 1, which means
retaining two kinds of results as different path. Thus, K different decoding results are

775A Resource Efficient Decoder for Polar Code Based on FPGA

generated, and the decoding result with the minimum PM value can be selected as the
output of SCL decoder.

3 Hardware Implementation

According to SCL decoding scheme, the basic decoding Processing Unit (PU) of this
design is a SC decoding module, which realizes three functions of SC decoder: F func-
tion, G function and partial sum function. The structure of PU is shown by the FIG.1.

When fsel=0, the module will perform F function with the current two input LLR
(llr_a and llr_b), and output calculated LLR (llr_out) as the input of the next rank. When
fsel=1, the control module will give the partial sum (PSUM) value from the low-rank
operation module to the current module, which will be used as the input of the post-
decision bit, and realize the reuse of the module through the different input.

F

G

llr_b

llr_a

fsel

psumm
u

x

llr_out

Fig. 1. Processing Unit

Based on PU, the decoder module Process Unit Tree (PUT) is constructed. In order to
cope with multiple code lengths and ensure the efficiency, the input will be divided into
three layers. A code with length 2n can be divided into n ranks. The first layer is from
the input to the rank 7, the second layer is from the rank 7 to the rank 4, and the third
layer is below the rank 4.

Line Decoder

（8）

Tier

Iteration

RankN_PU

Line Decoder

（16）

Line Decoder

（32）

Line Decoder

（64）

llr_input
(per

cycle)

Fig. 2. PUT on layer 1

776 C. Yang and H. Zhang

FIG.2 shows the decoding structure for the first layer. Every 128 bit LLR input from
top to bottom is an iteration. From right to left is each tier of the first layer. Each itera-
tion and the operation between each stage need to consume a cycle. When decoding
from the first layer to the second layer, the largest line decoder (64 PUs) will start first,
which means that if the code length N=2048, the input of the second layer will after the
fourth tier; For code length N=1024, it is after the third tier; For code length N=512, it
is after the second tier; For the code length N=256, it is after the first tier. In the case
of code length N=128, PUT will directly perform the second layer processing.

Since PUT requires multiple operations to fill rank 7 LLR memory with enough
LLRs to perform rank 7 to rank 4 processing, iteration operation is necessary. For ex-
ample, when N=2048, the layer 2 input LLR uses the smallest line decoder to decode,
and 8 outputs are generated through 8 decoding units. Therefore, 16 iterations are re-
quired to complete the 128 LLRs required for the second layer; When N=1024, the size
of the line decoder adopted by the layer 2 input is 16, so 8 iterations are required to
meet the needs of the second layer. The smaller the code length is, the fewer iterations
are required to reach rank 7.

The calculation of the second layer will be consistent with that of the first layer. The
line decoder adopted is the first three layers (64, 32, 16), and then the output results
will be sent to the third layer for minimum order decoding operation.

F()F()
u1

G()u2

psum1
G()

G()
...

psum2

Psum_reg

Psum1

Psum2

Fig. 3. Basic unit for layer 3

FIG.3 shows the rank 2 structure in layer 3. The upper layer inputs from first rank (rank
4) of F function to the child node (rank 1) to generate the first decoding bit, which will
be returned to the current decoder as the input bit of G function, and the PSUM value
and the LLR value of intermediate operation will be stored in the register for input to
the upper rank SC decoding unit for G function. After the current chuck finishes de-
coding, the output PSUM can give the next chuck as the input to perform the decoding
operation of the next chuck. When the current rank completes the operation, it continues
to return the results to the upper layer, and perform the G function and partial sum
function by means of back propagation.

With all of the SC results, the SCL decode can be performed. In the decoding struc-
ture of the third layer the list size L is 8, so it can be considered that there are 8 SC
decoders inside, and all decoders have the same initial value, which is the input value

777A Resource Efficient Decoder for Polar Code Based on FPGA

of the upper layer. The first decoder performs operations and assigns values synchro-
nously to other decoders until the first information bit is decided. After the first bit
calculated, all the intermediate data values with PSUM and LLR calculated by the first
decoder are given to the eighth decoder, and the information bit obtained by the original
decoder path is set to 0, and the information bit of the new path is set to 1, that is, the
two results of information 0 and 1 are kept simultaneously. And the two activated de-
coders will continue to perform the following operations with their current results until
the next information bit is decoded, and repeat the above steps respectively, thus pro-
ducing 8 different decoding results. After all the decoder values are updated the current
paths needs to be selected. The newly updated PM value is compared with the original
PM value, and the eight paths with the minimum PM value are selected as valid values,
and the eight SC decoders are updated based on this. After the decoding of this layer,
the path with the minimum PM is selected as the current decoding result, and the result
is output to the upper layer as PSUM through the intermediate register. The reverse
transmission data has completed the higher-order G function and partial sum function.
Finally, the decoding result with the minimum PM can be obtained as the output of the
decoding.

In order to improve the generality of the module, the above decoding module is
properly encapsulated, and the interface is configured using AXI protocol. For the con-
figuration interface, the AXI-Lite protocol is used for the configuration before data
transmission. For the data transmission interface, AXI-Stream is adopted to satisfy
high-speed streaming data transmission. The data is input by a block-by-block basis,
and the configuration can be performed with the same basis. The corresponding archi-
tecture is shown as FIG.4.

Config_Input

Ctrl_Input

Data_Input

Status_Output

Data_Output

Decoder

FIFO_Module

Fig. 4. Encapsulated decoder structure

4 Results and Comparisons

A verification platform for the design is shown by FIG.5, the encoder reads the data
from the ROM as input, cache it in the FIFO and input it to the LLR conversion module
to complete the conversion from hard-bits to LLR values, and then input the LLR values
to the decoder, which outputs the decoding results to the Checker and compares them
with the original ROM data to detect the bit error rate.

778 C. Yang and H. Zhang

Encoder Decoder

Data_rom

Enc_fifo LLR_Trans

CheckerCompare

Fig. 5. Verification platform structure

This design is implemented on XC7K325T-2FFG900C FPGA, FIG.6 shows the
hardware result with Signal-Noise Ratio (SNR) is 0dB, FIG.7 shows the perfor-
mance statistics in the case of other code lengths. It can be seen that polar codes
have achieved a relatively ideal performance in the current situation.

Fig. 6. Hardware result for SNR = 0dB

Fig. 7. BER curves of different code length

779A Resource Efficient Decoder for Polar Code Based on FPGA

Table 1 shows the throughput and resource utilization of this design. Compared with
[6] and [7], this design not only supports multi-code length configuration, but also con-
sumes resources of 36.5% and 29.5% respectively. Compared with [8], when N=1024,
the proposed architecture can achieve almost the same throughput with 49.9% LUT
consumption and 43.6% BRAM consumption.

Table 1. Comparison with other design (N=1024)

 [6] [7] [8] This Work

FPGA Xilinx Kintex 7

N 1024 1024 32-1024 32-1024

L 4 16 8 8

LUTs 142961 177306 104700 52220

BRAMs - 130 39 17

Throughput (Mbps) 115 - 160 158

5 Conclusions

In this paper, a resource efficient hardware implementation method is presented.
This design support code word length from 32 to 1024, have a maximum through-
put of 158 Mbps for N = 1024. Compared with other hardware implementation
method, this method can save up to 70% resource cost, which makes it a better
construction method for hardware.

References

1. Arikan E. Channel polarization: A method for constructing capacity-achieving codes
for symmetric binary-input memoryless channels [J]. IEEE Transactions on Information
Theory, 2009, 55(7): 3051-3073

2. Trifonov P. Effificient design and decoding of polar codes [J]. IEEE Transactions on
Communications, 2012, 60(11): 3221-3227

3. H. Afşer and H. Deliç, "On the Channel-Specific Construction of Polar Codes," in IEEE
Communications Letters, vol. 19, no. 9, pp. 1480-1483, Sept. 2015, doi:
10.1109/LCOMM.2015.2450213.

4. A. Arpure and S. Gugulothu, "FPGA implementation of polar code based encoder ar-
chitecture," 2016 International Conference on Communication and Signal Processing
(ICCSP), 2016, pp. 0691-0695

5. C. Xia et al., "An implementation of list successive cancellation decoder with large list
size for polar codes," 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), 2017, pp. 1-4.

6. C. Xiong, Y. Zhong, C. Zhang, and Z. Yan, An FPGA Emulation Platform for Polar
Codes, in 2016 IEEE International Workshop on Signal Processing Systems (SiPS),
2016, pp. 148153.

780 C. Yang and H. Zhang

7. http://www.polaran.com/products.html.
8. L. V. Q. Nguyen, J. Dion and N. Gresset, "Polar Decoding Hardware Implementa-

tion," 2019 26th IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2019, pp. 622-625.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included
in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

781A Resource Efficient Decoder for Polar Code Based on FPGA

http://creativecommons.org/licenses/by-nc/4.0/

