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Abstract. A resource efficient hardware implementation method of polar decode 
is presented in this paper. It supports the configuration of bit allocation table with 
various code lengths and rates. The hardware implementation based on Succes-
sive Cancellation List Decoding (SCL) scheme makes BER (Bit-Error-Rate) per-
formance more excellent, and the pipe-lined and paralleled design achieved a 
good balance between performance and complexity, maintaining a high through-
put while consuming less resources. The method is implemented on FPGA and 
has excellent performance. Compared with other hardware implementation meth-
ods, the method can achieve the same throughput with less hardware resource. 
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1 Introduction 

Polar code is the first coding method that can be strictly proved to reach the Shannon 
limit. The concept of polar code was first proposed by Arikan in 2009 [1], which is the 
major research in the field of channel coding in recent years. It has been widely con-
cerned and studied since it was proposed, and has been applied to actual projects [2,3].  

With the development of polar code research and the expansion of application sce-
narios, hardware implementation for polar code has attracted much attention. To per-
form hardware implementation, resource utilization and throughput are important indi-
cators to measure performance. A polar encoding method with low hardware resource 
utilization is proposed in [4], but the supported code length is limited to N=8, and the 
implementation of the decoding method is not described in detail. [5] proposed a hard-
ware implementation method of polar code SCL decoding with large list capacity, 
which supports long code length of N=4096 and large linked list decoding with L=32. 
The bit error rate performance is better, but not suitable for other code length, and the 
latency and throughput are not optimized, the large linked list also leads to large re-
source occupation. For the common code length format N=1024, [6] proposed an em-
ulator platform, including encoder, channel model and decoder. [8] proposed a method 
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to support different code length. However, these researches only focus on the imple-
mentation and the resource utilization is not further optimized, which leads to the large 
consumption of hardware resources.  

Therefore, this paper presents a hardware implementation of polar decoding with 
low resource consumption. The paper is structured as followed: decoding theory of po-
lar codes is proposed in section II, the hardware implementation of decoding is followed 
in section III, section IV underlines hardware results and performances and the com-
parisons with other literature. 

2 Decode Theory for Polar Code 

Successive Cancellation (SC) decoding method is the basic decoding method for polar 
code, also the foundation for Successive Cancellation List (SCL) decoding method. SC 
can be performed by the following steps. 

Polar decode using the soft value log-likelihood ratio (LLR) to perform decoding. 
According to received LLR, the F function can be performed to calculate and judge 
information bit u1 by equation (1) and (2). 

f(L1, L2) = ln
1+eL1+L2

eL1+eL2
≈ sign(L1)sign(L2)min{|L1|, |L2|} (1) 

u1 = {
0, f(L1, L2) ≥ 0 or u is frozen bit 

1, f(L1, L2) < 0
  (2) 

The G function can be performed with u1 as the input value to judge u2 by equation (3) 
and (4). 

g(U1, L1, L2) = ln
Pr(Y1Y2U1|U2=0)

Pr(Y1Y2U1|U2=1)
= (1 − 2U1)L1 + L2 (3) 

u2 = {
0, g(U1, L1, L2) ≥ 0 or u is frozen bit

1, g(U1, L1, L2) < 0
 (4) 

After that, the decoding process for basic decoding unit is done, 2-bit polar code is 
decoded. For polar code with length 2n (n≥1), the decoding process will be divided into 
different stages, and the partial sum process needs to be done, which means the lower 
decoded bit needs to be transmit into higher rank for the calculation in the higher stage 
as the G-function input. 

Based on SC, the SCL decoding method is proposed to achieve a better performance. 
It introduces Path Metric (PM) which refers to the posterior probability of a decoding 
result. The larger the value, the higher the probability of correct decoding result will 
be, and the probability of obtaining the final correct decoding result by continuing to 
use SC decoding method along with this result will be higher. SCL decoder including 
K SC decoder inside which are placed in parallel. The first decoder performs operations 
with SC method until ruling out the first information bit, then the Kth decoder will copy 
all the intermediate data values and LLR values from the first decoder, and the newly 
decoded information bit for the original SC is 0, for the new SC is 1, which means 
retaining two kinds of results as different path. Thus, K different decoding results are 
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generated, and the decoding result with the minimum PM value can be selected as the 
output of SCL decoder. 

3 Hardware Implementation 

According to SCL decoding scheme, the basic decoding Processing Unit (PU) of this 
design is a SC decoding module, which realizes three functions of SC decoder: F func-
tion, G function and partial sum function. The structure of PU is shown by the FIG.1. 

When fsel=0, the module will perform F function with the current two input LLR 
(llr_a and llr_b), and output calculated LLR (llr_out) as the input of the next rank. When 
fsel=1, the control module will give the partial sum (PSUM) value from the low-rank 
operation module to the current module, which will be used as the input of the post-
decision bit, and realize the reuse of the module through the different input. 
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Fig. 1. Processing Unit 

Based on PU, the decoder module Process Unit Tree (PUT) is constructed. In order to 
cope with multiple code lengths and ensure the efficiency, the input will be divided into 
three layers. A code with length 2n can be divided into n ranks. The first layer is from 
the input to the rank 7, the second layer is from the rank 7 to the rank 4, and the third 
layer is below the rank 4. 
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Fig. 2. PUT on layer 1 
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FIG.2 shows the decoding structure for the first layer. Every 128 bit LLR input from 
top to bottom is an iteration. From right to left is each tier of the first layer. Each itera-
tion and the operation between each stage need to consume a cycle. When decoding 
from the first layer to the second layer, the largest line decoder (64 PUs) will start first, 
which means that if the code length N=2048, the input of the second layer will after the 
fourth tier; For code length N=1024, it is after the third tier; For code length N=512, it 
is after the second tier; For the code length N=256, it is after the first tier. In the case 
of code length N=128, PUT will directly perform the second layer processing.  

Since PUT requires multiple operations to fill rank 7 LLR memory with enough 
LLRs to perform rank 7 to rank 4 processing, iteration operation is necessary. For ex-
ample, when N=2048, the layer 2 input LLR uses the smallest line decoder to decode, 
and 8 outputs are generated through 8 decoding units. Therefore, 16 iterations are re-
quired to complete the 128 LLRs required for the second layer; When N=1024, the size 
of the line decoder adopted by the layer 2 input is 16, so 8 iterations are required to 
meet the needs of the second layer. The smaller the code length is, the fewer iterations 
are required to reach rank 7. 

The calculation of the second layer will be consistent with that of the first layer. The 
line decoder adopted is the first three layers (64, 32, 16), and then the output results 
will be sent to the third layer for minimum order decoding operation. 
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Fig. 3. Basic unit for layer 3 

FIG.3 shows the rank 2 structure in layer 3. The upper layer inputs from first rank (rank 
4) of F function to the child node (rank 1) to generate the first decoding bit, which will 
be returned to the current decoder as the input bit of G function, and the PSUM value 
and the LLR value of intermediate operation will be stored in the register for input to 
the upper rank SC decoding unit for G function. After the current chuck finishes de-
coding, the output PSUM can give the next chuck as the input to perform the decoding 
operation of the next chuck. When the current rank completes the operation, it continues 
to return the results to the upper layer, and perform the G function and partial sum 
function by means of back propagation. 

With all of the SC results, the SCL decode can be performed. In the decoding struc-
ture of the third layer the list size L is 8, so it can be considered that there are 8 SC 
decoders inside, and all decoders have the same initial value, which is the input value 
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of the upper layer. The first decoder performs operations and assigns values synchro-
nously to other decoders until the first information bit is decided. After the first bit 
calculated, all the intermediate data values with PSUM and LLR calculated by the first 
decoder are given to the eighth decoder, and the information bit obtained by the original 
decoder path is set to 0, and the information bit of the new path is set to 1, that is, the 
two results of information 0 and 1 are kept simultaneously. And the two activated de-
coders will continue to perform the following operations with their current results until 
the next information bit is decoded, and repeat the above steps respectively, thus pro-
ducing 8 different decoding results. After all the decoder values are updated the current 
paths needs to be selected. The newly updated PM value is compared with the original 
PM value, and the eight paths with the minimum PM value are selected as valid values, 
and the eight SC decoders are updated based on this. After the decoding of this layer, 
the path with the minimum PM is selected as the current decoding result, and the result 
is output to the upper layer as PSUM through the intermediate register. The reverse 
transmission data has completed the higher-order G function and partial sum function. 
Finally, the decoding result with the minimum PM can be obtained as the output of the 
decoding. 

In order to improve the generality of the module, the above decoding module is 
properly encapsulated, and the interface is configured using AXI protocol. For the con-
figuration interface, the AXI-Lite protocol is used for the configuration before data 
transmission. For the data transmission interface, AXI-Stream is adopted to satisfy 
high-speed streaming data transmission. The data is input by a block-by-block basis, 
and the configuration can be performed with the same basis. The corresponding archi-
tecture is shown as FIG.4. 

Config_Input

Ctrl_Input

Data_Input

Status_Output

Data_Output

Decoder

FIFO_Module

 
Fig. 4. Encapsulated decoder structure 

4 Results and Comparisons 

A verification platform for the design is shown by FIG.5, the encoder reads the data 
from the ROM as input, cache it in the FIFO and input it to the LLR conversion module 
to complete the conversion from hard-bits to LLR values, and then input the LLR values 
to the decoder, which outputs the decoding results to the Checker and compares them 
with the original ROM data to detect the bit error rate. 
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Fig. 5. Verification platform structure 

This design is implemented on XC7K325T-2FFG900C FPGA, FIG.6 shows the 
hardware result with Signal-Noise Ratio (SNR) is 0dB, FIG.7 shows the perfor-
mance statistics in the case of other code lengths. It can be seen that polar codes 
have achieved a relatively ideal performance in the current situation. 

 
Fig. 6. Hardware result for SNR = 0dB 

 
Fig. 7. BER curves of different code length 
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Table 1 shows the throughput and resource utilization of this design. Compared with 
[6] and [7], this design not only supports multi-code length configuration, but also con-
sumes resources of 36.5% and 29.5% respectively. Compared with [8], when N=1024, 
the proposed architecture can achieve almost the same throughput with 49.9% LUT 
consumption and 43.6% BRAM consumption. 

Table 1. Comparison with other design (N=1024) 

 [6] [7] [8] This Work 

FPGA Xilinx Kintex 7 

N 1024 1024 32-1024 32-1024 

L 4 16 8 8 

LUTs 142961 177306 104700 52220 

BRAMs - 130 39 17 

Throughput (Mbps) 115 - 160 158 

5 Conclusions 

In this paper, a resource efficient hardware implementation method is presented. 
This design support code word length from 32 to 1024, have a maximum through-
put of 158 Mbps for N = 1024. Compared with other hardware implementation 
method, this method can save up to 70% resource cost, which makes it a better 
construction method for hardware. 
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