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Abstract. As neuroimaging technology matures, high-dimensional biomedical 
data is gradually applied to research. Location of activated regions from multi 
subject fMRI data is the foundation for exploring functional brain tissue in 
neuroscience. However, most of the methods ignore the multi-way nature of the 
data and the crosstalk or overlap in the spatiotemporal representation of the lo-
cated components. To this end, we propose an orthogonal analysis method 
based on sparse decomposition of tensors. Specifically, a novel sparse tensor 
decomposition with orthogonality is designed to decompose the tensor into 
three matrices (subject, space and time), which can extract common compo-
nents across subjects and reduce components. To verify the effectiveness of the 
proposed model, our model is compared with CANDECOMP/PARAFAC de-
composition (CPD), tensor independent component analysis (Tensor ICA), in-
dependent component analysis, group independent component analysis (GICA), 
and method based on nonnegative matrix decomposition using simulated data. 
The experimental results show that our proposed model can effectively locate 
the activation area and activation time as well as improve the calculation speed 
of decomposition. Moreover, the components decomposed by our model simply 
and efficiently represent multi-subject fMRI data which facilitates interpretation 
and optimization of group fMRI studies. 

Keywords: fMRI, tensor decomposition, functional network, component, multi 
subject. 

1 Introduction 

Functional magnetic resonance imaging(fMRI) is an emerging imaging modality for 
studying human neural brain tissue. Its principle is to use magnetic resonance imaging 
to measure hemodynamic changes caused by neuronal activity. Due to the non-invasive 
and safety features of fMRI, it is widely used in research. Researchers found that 
human brain always has brain activity [1]. Locating brain activated regions is defined 
as blind source separation (BSS), where sources include spatial maps (SMs) and time 
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courses (TCs) [2]. Matrix-based techniques are the most common method solving blind 
source analysis. 

Gael Varoquaux et al [3] and Harrison et al [4] decompose fMRI data with multi 
subject dictionary learning approach and assume that the decomposed components 
follow a Gaussian distribution or delta Gaussian distribution. JingLei Lv et al [5] 
compare the two hypotheses and incorporate sparsity into the dictionary learning de-
composition. Subsequently, C.F. Beckmann et al [6] studied the fMRI data with in-
dependent component analysis (ICA) to obtain the SMs and TCs. Nevertheless, some 
researchers have proposed that decomposing the mixed data of a group of subjects can 
obtain more robust independent components (ICs) [7]. Therefore, Calhoun et al [8] 
proposed group ICA (GICA) to decompose functional data, while it is a challenging 
thing to decompose the components of subjects from mixed data. To address this 
problem, we generally use heuristic techniques such as back-reconstruction and dual 
regression. Afterwards, Hongming Li et al [7] proposed a hypothesis that defined 
negative loading as an anticorrelation signal and believed that we difficultly explain the 
biological significance of time course of a component with positive and negative 
loading. However, these methods based on matrix factorization have shortcomings in 
utilizing the inherent multi way of fMRI data [9]. In contrast, the tensor analysis model 
retains this feature. The tensor analysis model generates unique representation under 
mild conditions [10], improves the ability of extracting spatiotemporal models of 
interest [11][12] and facilitates neurophysiologically meaningful interpretations [10]. 
And the advantages of locating sources with tensor analysis methods over matrix-based 
methods have been proven [2]. Tensor methods for multi subject fMRI data include 
CANDECOMP/PARAFAC decomposition (CPD) by Bhaskar Sen et al [11] and tensor 
independent component analysis proposed by C.F. Beckmann and S.M. Smith [12]. 

However, neither CPD nor Tensor ICA consider component redundancy and com-
ponent crosstalk. To this end, we propose our model based on CPD and add the fol-
lowing items: 1) the group sparsity term is added in the subject matrix to remove the 
redundant components of each subject; 2) in order to reduce the crosstalk between 
components; 3) the parsimonious regularization term is increased in temporal matrix, 
so that we extract the activated time points of each component. 

2 Materials and Methods 

2.1 Notion 

The model of tensor-based analysis is characterized by the following: 

 
R

ijk ir
r

jr kr ijkx a b c = +  (1) 

where   is additional noise with a Gaussian distribution (0, )N I . The objective 
function of this tensor-based model is as follow: 
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min a b
R

ijk ir jr kr
i j k r

x c
=

− A B C
 (2) 

Here, I RA , J RB , K RC and the matrices containing R components in 
subject, spatial and temporal matrices subscribed as column. The tensor   in the 
formula (2) can be matrixed by tensor unfolding according to mode-n: 

 
( ) ( ) ( )1 1, I JK = X A C B X  (3) 

 
( ) ( ) ( )2 2, J KI = X B C A X  (4) 

 
( ) ( ) ( )3 3, K JI = X C B A X  (5) 

where stands for Khatri-Rao product. 
( )nX is the matrix of the tensor unfolding in 

the n-th dimension that reduce the calculation difficulty. The objective functions can be 
rewritten as: 

 ( ) ( )1min 
−

A
X A C B  (6) 

 
( ) ( )2min 
−

B
X B C A  (7) 

 
( ) ( )3min 
−

C
X C B A  (8) 

2.2 Algorithms and model 

Considering the characteristics of the three dimensions of tensor, our method built upon 
CPD and enhanced three kinds of constraints. First, 2,1L -norm penalty term is added in 
subject matrix A , which makes each column of the transposed matrix of A sparse and 
eliminates redundant components to retain common components across subjects. 
Secondly, orthogonality term is adopted to spatial matrix B , so that the correlation and 
crosstalk between components are reduced. Thirdly, enhancing 1L sparse term in the 
temporal matrix C removes redundant time points through non-zero values and extracts 
important time points. The specific explanation is shown in Figure 1. The proposed 
model is as follows: 

 2 T 22
1 2,1 3 1, ,

1min , ,
2 2F F


  − + + − +

A B C
A B C A B B I C  (9) 

 2 2

1 1
. . 1, 1, 1,2, ,

J K

jr kr
j k

s t b c r R
= =

= =     

Here, 1 , 2 and 3 are positive regularization parameters that balance the data fitting, 
the degree of sparsity and orthogonality. In addition, constraints are imposed on the 
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matrices B and C . In particularly, in each iteration, normalizing each column 
of B and C avoids matrix A being too large or too small. 

According to joint model, the objective function can be rewritten as: 

 T 2 T T 22
(1) 1 2 1 3 1

1: ( )
2 2F F


  = −  + + − +X B C A A B B I C，  (10) 

or 

 T 2 T 22
(2) 1 2 1 3 1

1: ( ) I
2 2F F


  = −  + + − +X C A Β A B B C，  (11) 

or 

 2 T T 22
(3) 1 2 1 3 1

1: ( )
2 2F F


  = −  + + − +X A B C A B B I C，  (12) 

The objective functions respectively take the partial derivatives of the matri-
ces A , B and C . The following results are obtained: 

 ( )( )( )(1) 1


= − +


A C B X C B AΘ
A

 (13) 

 ( )( )( ) ( )
T T

(2) 22
= − + −


B C A X C A BB I B

B
 (14) 

 ( )( )( )(3) 3 ( )sgn


= − +


C B A X B A C
C

 (15) 

where ( )sgn represents sign function. R R is a diagonal matrix with elements 

21/ ra and T
2,1( ) /=  AΘ A A . The formulas after partial derivative are settled 

to zero to get the updated formulas of A and C . The updated formulas are as follows: 

 ( ) ( )

( ) ( )
11

1

t t
t

t t t t 

+


=

 +

X C B
A

C B C Θ
 (16) 

 ( ) ( ) ( )

( ) ( )

331
t t t

t

t t t t

sgn
+



−
=

X B A C
C

B A B A
 (17) 

 ( ) ( )( )( ) ( )
T+1 T

22 2t t t t t t t t t t  = − − + −
  

B B C A B X C A B B I B  (18) 
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Table 1. The pseudocode of the proposed optimization algorithm (owner-draw) 

Algorithm 1 The orthogonal analysis of tensor decomposition 
Input:   :functional data of all subjects; 1 , 2 , 3 , R  
Output: A , B and C  
Alternative updates: 
        for t = 1 to mixites do 
           update A as in Eq. (16) 
           update C as in Eq. (17) 
           for r = 1 to R do  
              1/t t t

r r rc c c=  

           end for 
update B as in Eq. (17) 

           for r = 1 to R do  
              1/t t t

r r rb b b=  

           end for 
           until converge 
        end for 

Here,  is learning rate. t represents the t -th iteration. The update process is 
shown in Algorithm 1. 

 

Fig. 1. Schematic diagram of joint model based on CPD (owner-draw) 

2.3 Performance evaluation 

Model performance is evaluated using the accuracies between the components in the 
decomposed temporal and spatial matrices and the sources corresponding to the ground 
truth in time and space [2]. There are two types of model accuracy: spatial accuracy 
(SM accuracy) and temporal accuracy (TC accuracy). The spatial accuracy is calcu-
lated by the activated region and ground truth according to formula (19). The temporal 
accuracy is calculated by the activated time and ground truth according to formula (20). 
The formulas for calculating SMerror and TCerror are as follows: 
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 SM SM| ( , ) |r nerror corr= B Β  (19) 

 TC TC| ( , ) |r nerror corr= C C  (20) 

Here, ( )corr means to calculate the Pearson correlation coefficient. 
Where 1,2, ,r R= , 1,2, ,n N= . R is the number of components of the decom-
posed matrix using MELODIC of FSL [13]. N is the number of components. rB rep-
resents the -thr column of the decomposed spatial matrix. SMnΒ  represents 
the -thn column of the spatial ground truth. Similarly, the -thr column of the decom-
posed temporal matrix is denoted by rC and TCnC is the -thn column of the temporal 
ground truth.  

3 Result 

3.1 Synthetic data 

In this work, simulation dataset is generated by SimTB toolbox in MATLAB [14], in 
which the dataset is consists of 100 subjects and each of subject has 50 2D images 
with 50 50  voxels, composed by 25 different components. When generating data, 
there are not only individual differences in spatial translation, rotation and spread 
between subjects, but also Rician noise and random contrast in the range of 0.1 to 2 
are added, so that all signals between subjects are inconsistent in time and space.  

3.2 Parameter Selection and Experiment Result 

The proposed method has three positive regularization terms including 1 , 2 and 3 . 
Using the grid search method, exacting parameter values can be adjusted by accuracies 
between the components of the temporal matrix and the spatial matrix and the sources 
corresponding to the ground truth in time and space within the range of parameters. The 
results of parameter adjustment under SM precision and TC precision are shown in Fig 
2. The tuning ranges of the three parameters of our model are: 

4 3 3 2 2 2 2 2 2 2
1 {5 10 ,1 10 ,5 10 ,1 10 ,2 10 ,3 10 ,4 10 ,5 10 ,6 10 ,7 10 , − − − − − − − − − −          

 2 2 3 3 3 3 3 3 3
28 10 ,9 10 ,0.1,1} 3 10 ,4 10 ,5 10 ,6 10 ,7 10 ,8 10 ,9 10− − − − − − − − −         ，

and  2 1
3 1 10 ,1 10 ,1,5,10,15,20,25,30,35,40,45,50,70,100 − −   . Finally our pro-

posed model achieves the best time course accuracy and spatial map accuracy at 
1 0.005 = , 2 0.007 =  and 3 20 = . 
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(a)                                          (b)  

Fig. 2. The accuracy of our model in different parameter ranges. (a) Time course accuracy 
within parameter range. (b) Spatial map accuracy within the parameter range (owner-draw) 

In experiments, the proposed model is compared with 5 models, such as non-negative 
matrix factorization based sparse model analysis (Sparse NMF is used to represent the 
method) in Reference [7], ICA, group ICA, CPD and Tensor ICA. Specifically, the 
mean and standard deviation of the model accuracy are obtained by repeating the 
decomposition process 20 times for each model. Fig. 3 shows the time course accuracy 
and spatial map accuracy for all models. In Figure 3, Sparse NMF1 means that Sparse 
NMF performs model analysis on subject level fMRI data, while Sparse NMF performs 
model analysis under pooled data of a group of subject fMRI data, which is denoted by 
Sparse NMF2. As shown in Table 1, the algorithmic performance of the six models on 
synthetic data is summarized. 

    
(a)                                          (b) 

Fig. 3. Time course accuracy and spatial map accuracy for all models. (a) Time courses accuracy 
of all models. (b) Spatial maps accuracy of all models. (owner-draw) 

Table 2. Time course accuracy (mean  std) and spatial map accuracy (mean  std) of the six 
models (owner-draw) 

Model TC Accuracy SM Accuracy 
the proposed method . .0 8983 0 0317  . .0 8157 0 0293  

CPD 0.8250 0.0063  0.7250 0.0109  

Tensor ICA 0.8540 0.0157  0.7796 0.0081  

Sparse NMF1 0.8512 0.0048  0.7773 0.0057  

Sparse NMF2 0.7840 0.0047  0.6753 0.0145  

ICA 0.8160 0.0143  0.4906 0.0114  

GICA 0.8211 0.0013  0.6427 0.0037  
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The temporal and spatial accuracy of our model 
are 0.8983 0.0317 and 0.8157 0.0293 . From the above, it can be concluded that our 
model is superior to several other models. Our model achieves TC accuracy of 0.9652 
and SM accuracy of 0.8537 in 20 decomposition runs. We also compare the computa-
tional speed of all models, which is the average time of running the decomposed model 
5 times in full on multi-subject fMRI simulation data. Where Sparse NMF2 and GICA 
are decomposed by concatenating data along the temporal dimension with a group of 
subject fMRI data. The data size used by other models except Sparse NM2 and GICA is 
100 2500 50  , and the dimension is expressed as subject voxels time. The cal-
culation speed of each model is shown in Table 2. Both the Sparse NMF2 and GICA 
algorithms were run 5 times on pooled data and the average time was calculated.  

Table 3. Mean computation time of each method in seconds (s) (owner-draw) 

Data Model Computing Speed 

subject voxels time 
(100 2500 50  ) 

Our proposed method 203.818875 s 
CPD 363.371302 s 

Tensor ICA 265.816607 s 
Sparse NMF1 753.995162 s 

ICA 646.135286 s 
a group of subjects 

( (2500*10) 50 ) 

(number of subjects = 10) 

Sparse NMF2 267.358157 s 

GICA 353.995162 s 

3.3 Analysis and discussion 

To analyze TCs and SMs from multi-subject fMRI data, matrix-based methods are 
often employed for this problem. But the essence of matrix representation is the de-
composition of bilinear data, by decomposing single subject data or pooled data of 
multiple subjects in time or space [15], such as ICA, GICA and Sparse NMF. These 
methods risk losing the multi-way nature and interactions in the data.  

However, tensor analysis methods combine the compression ratio and multidimen-
sional nature of the data, such as our proposed model, CPD and Tensor ICA. But 
neither of two tensor methods considers the crosstalk between components and the 
component redundancy in the decomposition matrixes. Unlike other tensor analysis 
methods, our proposed orthogonal model based on tensor sparse decomposition for 
analyzing multi-subject fMRI data adds stronger constraints on the three dimensions of 
the tensor. Our proposed orthogonal model based on tensor sparse decomposition for 
analyzing multi-subject fMRI data adds stronger constraints on tensor dimensions. Our 
model reduces linear correlation and crosstalk between components by adding or-
thogonality constraints to the activation regions. Then, group sparsity is added to the 
subject matrix to preserve important and common components across subjects. Final-
ly, 1L regularization term is enhanced at the activated time to eliminate redundant time 
points of components and extract the activated components in time. 
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In summary, there are three contributions in this paper. First, we consider the mul-
ti-way nature of fMRI in the data and adopt the tensor analysis method. Secondly, we 
add orthogonality and two kinds of sparse terms based on CPD, which improves the 
robustness of model assumptions and prevents overfitting. Finally, our model outper-
forms other models in terms of TCs and SMs accuracy and computational speed, in-
dicating that our decomposition improves the accuracy of tensor decomposition and 
effectively express multi-subject fMRI data. 

4 Conclusion 

In this paper, we propose an orthogonal analysis model based on sparse tensor de-
composition to identify activation regions and activation times using multi-subject 
fMRI data. In particularly, the fMRI data of multiple subjects is regarded as a tensor of 
subject by space by time, which is decomposed founding on CPD and the crosstalk 
between components is reduced by orthogonality. Moreover, combining different 
sparse terms on cornerstone of orthogonality extracts activated components across 
subjects and activated components at a certain time point, which further improves 
model accuracy and prevents model overfitting. We verify the performance of our 
algorithm on simulated data and compare it with five other models. The experimental 
results show that our model can simply and effectively express multi-subject fMRI 
data. While ensuring high accuracy, the proposed model improves the calculation speed 
of matrix-based methods for both individual and group-level analysis, which further 
demonstrates that our model is helpful for explaining and optimizing population fMRI 
studies. 
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