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Abstract. To solve the problem that the single dynamic heterogeneous network 
embedding method (DyHATR) cannot capture the node features accurately and 
adequately, which leads to the low efficiency of the final link prediction. This 
paper proposes to solve this problem by using the DyHATR based on the Skip-
gram method (DyHATR-Skip): (1) Generating word embedding by using the 
Skip-gram model in Word2vec; (2) Fusing the generated word embedding with 
the node embedding generated by DyHATR for splicing fusion, which is named 
as DyHATR-Skip. The method generates new node embedding by DyHATR and 
Skip-gram models. The experimental results show that the DyHATR-Skip 
method proposed in this paper performs better than the single DyHATR method. 
In the DyHATR-Skip method, AUROC improves 0.07, 0.01, 0.05 and AUPRC 
improves 0.07, 0.01, 0.03 on Twitter, Math-Overflow and EComm datasets re-
spectively. Therefore, the DyHATR-Skip method proposed in this paper can cap-
ture node features and generate node embedding more fully and accurately com-
pared to single network embedding methods and has better performance in dy-
namic link prediction. But since words and vectors are one-to-one in Word2vec, 
DyHATR-Skip has some limitations for multisense words and complex datasets. 
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1 Introduction 

Existing network embedding methods have made some progress in link prediction. 
Still, they usually deal with static networks (nodes do not change over time) or homo-
geneous networks (there is only one type of node-node relationship or node-node inter-
action in the network)[1]. However, nodes and edges in real-world networks are usually 
heterogeneous and dynamic. The nodes and edges are of multiple types, and the net-
work is constantly being updated as time changes, with different types of nodes and 
edges being added to the network at any time. The network is constantly evolving[2]. 
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2 Related Work 

2.1 Development of network embedding 

The main existing network embedding methods are static homogeneous networks [3,4,5], 
static heterogeneous networks [6,7,8,9], and dynamic homogeneous networks [10,11,12,13]. 
Dynamic network embedding is usually described as a static network snapshot of an 
ordered list [14,15], divided into different snapshots based on a specific time, such as one 
day as a snapshot in the literature. Over time, the dynamic network can predict the next 
linked node in the snapshot by capturing the evolutionary patterns of different snap-
shots. 

At present, dynamic heterogeneous network embedding is less studied. In 2021, Xue 
H proposed the latest dynamic heterogeneous network embedding method (DyHATR), 
but the process cannot accurately capture node features.  

2.2 DyHATR Model 

The DyHATR model proposed by Xue H is a dynamic heterogeneous network embed-
ding method, which uses a hierarchical attention model to acquire the heterogeneity of 
nodes and edges in the network and uses a temporal attention neural network model to 
obtain the evolutionary patterns of snapshots in the network. The specific framework of 
the whole network is shown in Figure 1 below[1]. 

3 Embedding Fusion 

3.1 DyHATR-Skip method 

Through analyzing and studying DyHATR, HErec, and the Skip-gram model in 
Word2vec, proposes an embedding fusion method called DyHATR-Skip through a se-
ries of experiments. DyHATR-Skip distinguishes node and edge heterogeneity by in-
troducing a hierarchical attention model divided into node-level attention and edge-
level attention. Node-level attention is used to learn the neighbor weight of each node, 
and then the important features of these nodes are aggregated into a new node repre-
sentation: 

𝛼i,j
rt  =

𝑒𝑥𝑝(𝜎(ar
T ∙ [Wr ∙ xi|| W

r ∙ xj]))

∑ 𝑒𝑥𝑝(𝜎(ar
T ∙ [Wr ∙ xi|| W

r ∙ xk]))k𝜖Ni
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                    (1) 

fi
rt = 𝜎 (∑ 𝛼ij

rt ∙ Wr

j𝜖Ni
rt

∙ xj)                               (2) 

hi
rt = concat(f 1, f 2, . . . , f k)                                (3) 

In Equation (1), 𝛼i,j
rt represents the weight coefficient of the node pair (i, j) with edge 

type r in the t-th snapshot. In Equation (2), fi
rt represents the final representation of 

node i with edge type r in the t-th snapshot. In Equation (3), f k is the fi
rt shorthand, 
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and k is the number of heads of multi-headed attention, which hi
rt indicates the multi-

headed attention representation of node i with edge type r in the t-th snapshot. 
To achieve and aggregate specific information about each node's different edge types 

and generate the final node representation, DyHATR proposes edge-level attention with 
the following Equation. 

𝛽i
rt =

exp(qT ∙ 𝜎(W ∙ hi
rt + b))

∑ exp(qT ∙ 𝜎(W ∙ hi
rt + b))𝑟∈𝑅

  ℎ𝑖
𝑡 = ∑ 𝛽i

rt ∙

𝑅

𝑟=1

hi
rt                          (4) 

In Equation (4), the previous three formulas are summarized, and the specific edges are 
embedded in the set to acquire the final representation of node i in the t-th snapshot. 

DyHATR-Skip uses a time-level self-attentive model to further capture the evolu-
tionary patterns on the dynamic network, rather than splicing all feature vectors to-
gether as a final embedding to predict dynamic links. The temporal attention model can 
be defined as: 

𝑍𝑖 = Γ𝑖 − 𝑉𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑆𝑖𝑊𝑞)(𝑆𝑖𝑊𝑘)𝑇

√𝐷′
+ 𝑀) − (𝑆𝑖𝑊𝑣)               (5)

 

where Γi ∈ RT×T is the importance matrix; M ∈ RT×T denotes the mask matrix. 

 

Fig. 1. Model structure of DyHATR-Skip 

3.2 Loss function 

DyHATR-Skip uses the embedding fusion method to fuse DyHATR and Skip-gram, so 
the loss function is set as the sum of the two. The loss function formula of DyHATR-
Skip is defined as: 

L = L(𝑧𝑢
𝑇) + τ = ∑ −log (𝜎(< 𝑧𝑢

𝑇 , 𝑧𝑣
𝑇 >))𝑣∈𝑁𝑇(𝑢) − 𝑄 ∙ 𝐸𝑣𝑛~𝑝𝑛(𝑣)

log(𝜎(<

−𝑧𝑢
𝑇 , 𝑧𝑣

𝑇 >)) + 𝜆 ∙ 𝐿𝑝 + ∑ ∑ ∑ 𝐿𝑢(𝑧) ∙ log[𝜎(𝑣(𝑤)𝑇𝜃𝑧)] +𝑧𝜖{𝑢}∪𝑁𝐸𝐺(𝑢)𝑢𝜖𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑤)𝑤𝜖𝐶

(1 − 𝐿𝑢(𝑧)) ∙ log[1 − 𝜎(𝑣(𝑤)𝑇𝜃𝑧)]                                                                                   (6)  
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Where σ is the activation function (such as the sigmoid function); <> is the inner prod-
uct operation. 𝑁𝑇(𝑢) is the last t snapshots when node u has a fixed length of randomly 
walking neighbors; Pn (v) denotes the negative sampling distribution; Q denotes the 
number of negative samples; Lp is the penalty term of the loss function to avoid over-
fitting, such as L2 regularization; λ is the hyperparameter controlling the penalty func-
tion; C is the dataset; Context(w) denotes the context of word w; NEG(u) denotes the 
negative sample subset of u; Lu(z) is the label of the word u, which is 1 when u = z and 
0 otherwise; v(w) denotes the word vector of word w; θz indicates an auxiliary vector 
corresponding to word z, which is the parameter to be trained. 

4 Experiment 

4.1 Experimental environment and datasets 

The experiment in this paper was carried out in three real datasets under the Linux 
server Ubuntu 18.04. The experimental environment is a server with a GPU of Nvidia 
Geforce RTX 2080 and a CPU of 6× Xeon E5-2678 v3. The experimental platform is 
a professional version of PyCharm with Python version 3.6, Tensorflow 2.2, CUDA 
10.1, and Cudn 7.6.5. The information on datasets is shown in Table 1. 

Table 1. Information on the three datasets 

Datasets Nodes Edges Node Types Edge Types Snapshots 
Twitter 100000 63410 1 3 7 

Math-Overflow 24818 506550 1 3 11 
EComm 37724 91033 2 4 11 

4.2 Analysis of experimental results 

The experimental results of DyHATR-Skip and DeepWalk, GraphSAGE, GAT, and 
other methods on three real datasets are shown in Figure 2. From Figure 2, it can be 
seen that DyHATR-Skip achieves the best AUROC and AUPRC on the three different 
datasets.DyHATR-Skip achieves the highest AUROC and AUPRC on the Math-Over-
flow dataset with 0.7638 and 0.8060, respectively. For Twitter, DyHATR-Skip has a 
7% improvement in AUROC over the second highest DyHATR-TLSTM (0.660); for 
EComm, DyHATR-Skip also has a better performance on AUROC than DyHATR- 
TLSTM (0.696) by nearly 5%, again having better performance than other algorithms.  
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Fig. 2. Experimental results of dynamic linking of individual models on the EComm dataset 

5 Conclusion 

In recent years, network embedding methods have made significant progress and have 
been widely used in various fields. However, most of the existing network embedding 
methods are aimed at static or homogeneous networks and rarely can handle dynamic 
heterogeneous networks until DyHATR, which can handle both dynamic and hetero-
geneous. But, the drawback of DyHATR is the low AUROC metric, while DyHATR-
Skip improves the AUROC and AUPRC of DyHATR by fusing DyHATR and Skip-
gram. It is demonstrated experimentally with three real datasets that the DyHATR-Skip 
method achieves a significant improvement compared to DyHATR.  
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