
A Study of Dynamic Heterogeneous Network Prediction
based on DyHATR-Skip Embedding Fusion

Zhaoke Li1, Shuwei Xu2*, Gaofei Si2 and Jingyun Zhang2

1Henan University School of Software, Kaifeng, Henan, China
2Henan University School of Software, Kaifeng, Henan, China

ke@henu.edu.cn;

*Corresponding author: xsw@henu.edu.cn;

1095738316@qq.com; zjingy599@163.com

Abstract. To solve the problem that the single dynamic heterogeneous network
embedding method (DyHATR) cannot capture the node features accurately and
adequately, which leads to the low efficiency of the final link prediction. This
paper proposes to solve this problem by using the DyHATR based on the Skip-
gram method (DyHATR-Skip): (1) Generating word embedding by using the
Skip-gram model in Word2vec; (2) Fusing the generated word embedding with
the node embedding generated by DyHATR for splicing fusion, which is named
as DyHATR-Skip. The method generates new node embedding by DyHATR and
Skip-gram models. The experimental results show that the DyHATR-Skip
method proposed in this paper performs better than the single DyHATR method.
In the DyHATR-Skip method, AUROC improves 0.07, 0.01, 0.05 and AUPRC
improves 0.07, 0.01, 0.03 on Twitter, Math-Overflow and EComm datasets re-
spectively. Therefore, the DyHATR-Skip method proposed in this paper can cap-
ture node features and generate node embedding more fully and accurately com-
pared to single network embedding methods and has better performance in dy-
namic link prediction. But since words and vectors are one-to-one in Word2vec,
DyHATR-Skip has some limitations for multisense words and complex datasets.

Keywords: Dynamic heterogeneous networks; DyHATR model; Skip-gram
model; Embedding fusion

1 Introduction

Existing network embedding methods have made some progress in link prediction.
Still, they usually deal with static networks (nodes do not change over time) or homo-
geneous networks (there is only one type of node-node relationship or node-node inter-
action in the network)[1]. However, nodes and edges in real-world networks are usually
heterogeneous and dynamic. The nodes and edges are of multiple types, and the net-
work is constantly being updated as time changes, with different types of nodes and
edges being added to the network at any time. The network is constantly evolving[2].

© The Author(s) 2022
H. Wu et al. (Eds.): CSIEDE 2022, ACSR 103, pp. 749–754, 2022.
https://doi.org/10.2991/978-94-6463-108-1_83

mailto:ke@henu.edu.cn;
file:///D:/下载/基于DyHATR-Skip嵌入融合的动态异质网络预测研究5%20en-US.edited%20(1).edited%20-%20副本.docx%23keyfrom=E2Ctranslation
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-108-1_83&domain=pdf
https://doi.org/10.2991/978-94-6463-108-1_83

2 Related Work

2.1 Development of network embedding

The main existing network embedding methods are static homogeneous networks [3,4,5],
static heterogeneous networks [6,7,8,9], and dynamic homogeneous networks [10,11,12,13].
Dynamic network embedding is usually described as a static network snapshot of an
ordered list [14,15], divided into different snapshots based on a specific time, such as one
day as a snapshot in the literature. Over time, the dynamic network can predict the next
linked node in the snapshot by capturing the evolutionary patterns of different snap-
shots.

At present, dynamic heterogeneous network embedding is less studied. In 2021, Xue
H proposed the latest dynamic heterogeneous network embedding method (DyHATR),
but the process cannot accurately capture node features.

2.2 DyHATR Model

The DyHATR model proposed by Xue H is a dynamic heterogeneous network embed-
ding method, which uses a hierarchical attention model to acquire the heterogeneity of
nodes and edges in the network and uses a temporal attention neural network model to
obtain the evolutionary patterns of snapshots in the network. The specific framework of
the whole network is shown in Figure 1 below[1].

3 Embedding Fusion

3.1 DyHATR-Skip method

Through analyzing and studying DyHATR, HErec, and the Skip-gram model in
Word2vec, proposes an embedding fusion method called DyHATR-Skip through a se-
ries of experiments. DyHATR-Skip distinguishes node and edge heterogeneity by in-
troducing a hierarchical attention model divided into node-level attention and edge-
level attention. Node-level attention is used to learn the neighbor weight of each node,
and then the important features of these nodes are aggregated into a new node repre-
sentation:

𝛼i,j
rt =

𝑒𝑥𝑝(𝜎(ar
T ∙ [Wr ∙ xi|| W

r ∙ xj]))

∑ 𝑒𝑥𝑝(𝜎(ar
T ∙ [Wr ∙ xi|| W

r ∙ xk]))k𝜖Ni
rt

 (1)

fi
rt = 𝜎 (∑ 𝛼ij

rt ∙ Wr

j𝜖Ni
rt

∙ xj) (2)

hi
rt = concat(f 1, f 2, . . . , f k) (3)

In Equation (1), 𝛼i,j
rt represents the weight coefficient of the node pair (i, j) with edge

type r in the t-th snapshot. In Equation (2), fi
rt represents the final representation of

node i with edge type r in the t-th snapshot. In Equation (3), f k is the fi
rt shorthand,

750 Z. Li et al.

and k is the number of heads of multi-headed attention, which hi
rt indicates the multi-

headed attention representation of node i with edge type r in the t-th snapshot.
To achieve and aggregate specific information about each node's different edge types

and generate the final node representation, DyHATR proposes edge-level attention with
the following Equation.

𝛽i
rt =

exp(qT ∙ 𝜎(W ∙ hi
rt + b))

∑ exp(qT ∙ 𝜎(W ∙ hi
rt + b))𝑟∈𝑅

 ℎ𝑖
𝑡 = ∑ 𝛽i

rt ∙

𝑅

𝑟=1

hi
rt (4)

In Equation (4), the previous three formulas are summarized, and the specific edges are
embedded in the set to acquire the final representation of node i in the t-th snapshot.

DyHATR-Skip uses a time-level self-attentive model to further capture the evolu-
tionary patterns on the dynamic network, rather than splicing all feature vectors to-
gether as a final embedding to predict dynamic links. The temporal attention model can
be defined as:

𝑍𝑖 = Γ𝑖 − 𝑉𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑆𝑖𝑊𝑞)(𝑆𝑖𝑊𝑘)𝑇

√𝐷′
+ 𝑀) − (𝑆𝑖𝑊𝑣) (5)

where Γi ∈ RT×T is the importance matrix; M ∈ RT×T denotes the mask matrix.

Fig. 1. Model structure of DyHATR-Skip

3.2 Loss function

DyHATR-Skip uses the embedding fusion method to fuse DyHATR and Skip-gram, so
the loss function is set as the sum of the two. The loss function formula of DyHATR-
Skip is defined as:

L = L(𝑧𝑢
𝑇) + τ = ∑ −log (𝜎(< 𝑧𝑢

𝑇 , 𝑧𝑣
𝑇 >))𝑣∈𝑁𝑇(𝑢) − 𝑄 ∙ 𝐸𝑣𝑛~𝑝𝑛(𝑣)

log(𝜎(<

−𝑧𝑢
𝑇 , 𝑧𝑣

𝑇 >)) + 𝜆 ∙ 𝐿𝑝 + ∑ ∑ ∑ 𝐿𝑢(𝑧) ∙ log[𝜎(𝑣(𝑤)𝑇𝜃𝑧)] +𝑧𝜖{𝑢}∪𝑁𝐸𝐺(𝑢)𝑢𝜖𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑤)𝑤𝜖𝐶

(1 − 𝐿𝑢(𝑧)) ∙ log[1 − 𝜎(𝑣(𝑤)𝑇𝜃𝑧)] (6)

751A Study of Dynamic Heterogeneous Network Prediction

Where σ is the activation function (such as the sigmoid function); <> is the inner prod-
uct operation. 𝑁𝑇(𝑢) is the last t snapshots when node u has a fixed length of randomly
walking neighbors; Pn (v) denotes the negative sampling distribution; Q denotes the
number of negative samples; Lp is the penalty term of the loss function to avoid over-
fitting, such as L2 regularization; λ is the hyperparameter controlling the penalty func-
tion; C is the dataset; Context(w) denotes the context of word w; NEG(u) denotes the
negative sample subset of u; Lu(z) is the label of the word u, which is 1 when u = z and
0 otherwise; v(w) denotes the word vector of word w; θz indicates an auxiliary vector
corresponding to word z, which is the parameter to be trained.

4 Experiment

4.1 Experimental environment and datasets

The experiment in this paper was carried out in three real datasets under the Linux
server Ubuntu 18.04. The experimental environment is a server with a GPU of Nvidia
Geforce RTX 2080 and a CPU of 6× Xeon E5-2678 v3. The experimental platform is
a professional version of PyCharm with Python version 3.6, Tensorflow 2.2, CUDA
10.1, and Cudn 7.6.5. The information on datasets is shown in Table 1.

Table 1. Information on the three datasets

Datasets Nodes Edges Node Types Edge Types Snapshots
Twitter 100000 63410 1 3 7

Math-Overflow 24818 506550 1 3 11
EComm 37724 91033 2 4 11

4.2 Analysis of experimental results

The experimental results of DyHATR-Skip and DeepWalk, GraphSAGE, GAT, and
other methods on three real datasets are shown in Figure 2. From Figure 2, it can be
seen that DyHATR-Skip achieves the best AUROC and AUPRC on the three different
datasets.DyHATR-Skip achieves the highest AUROC and AUPRC on the Math-Over-
flow dataset with 0.7638 and 0.8060, respectively. For Twitter, DyHATR-Skip has a
7% improvement in AUROC over the second highest DyHATR-TLSTM (0.660); for
EComm, DyHATR-Skip also has a better performance on AUROC than DyHATR-
TLSTM (0.696) by nearly 5%, again having better performance than other algorithms.

752 Z. Li et al.

Fig. 2. Experimental results of dynamic linking of individual models on the EComm dataset

5 Conclusion

In recent years, network embedding methods have made significant progress and have
been widely used in various fields. However, most of the existing network embedding
methods are aimed at static or homogeneous networks and rarely can handle dynamic
heterogeneous networks until DyHATR, which can handle both dynamic and hetero-
geneous. But, the drawback of DyHATR is the low AUROC metric, while DyHATR-
Skip improves the AUROC and AUPRC of DyHATR by fusing DyHATR and Skip-
gram. It is demonstrated experimentally with three real datasets that the DyHATR-Skip
method achieves a significant improvement compared to DyHATR.

Acknowledgments

This study was funded by Engineering Ethics, a quality course of Henan Province Post-
graduate Quality Improvement Project in 2022 (Project Approval No.: YJS2022KC29).

References

1. Xue H, Yang L, Jiang W, et al. Modeling dynamic heterogeneous network for link prediction
using hierarchical attention with temporal rnn [J]. arXiv preprint arXiv:2004.01024, 2020.

0
.5
6
4

0
.5
6
2

0
.6
3
5

0
.6
4
2

0
.6

0
.5
9

0
.5
9
4

0
.5
8
7

0
.5
9
9

0
.5
8
8

0
.6
4
8

0
.6
4
2

0
.6
1
4

0
.5
9
9

0
.6
1
4

0
.6
8
8

0
.5
0
3

0
.5
0
9

0
.5
0
3

0
.5
0
1

0
.5
1
2

0
.5
1
3

0
.6
6
8

0
.6
8
5

0
.6
6
6

0
.6
8
3

0
.5
4
7

0
.6
2
6

0
.6
9

0
.7
3
8

0
.6
9
6

0
.7
3
4

0
.7
4
0
4

0
.7
6
4
2

A UROC AUPRC

DeepWalk GraphSAGE-mean GraphSAGE-meanpool

GraphSAGE-maxpool GraphSAGE-LSTM GAT

metapath2vec DynamicTriad dyngraph2vec-AE

dyngraph2vec-AERNN DySAT metapath2vec-GRU

metapath2vec-LSTM DHNE DyHATR-TGRU

DyHATR-TLSTM DyHATR-Skip

753A Study of Dynamic Heterogeneous Network Prediction

2. Shi C, Hu B, Zhao W X, et al. Heterogeneous information network embedding for recom-
mendation [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2): 357-
370.

3. Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deep walk: Online learning of social
representations. in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 701-710).

4. Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for net-
works. in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864).

5. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015, May). Line: Large-scale
information network embedding. in Proceedings of the 24th international conference on
world wide web (pp. 1067-1077).

6. Dong, Y., Chawla, N. V., & Swami, A. (2017, August). metapath2vec: Scalable representa-
tion learning for heterogeneous networks. in Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data mining (pp. 135-144).

7. Zhang, H., Qiu, L., Yi, L., & Song, Y. (2018, July). Scalable Multiplex Network Embedding.
in IJCAI (Vol. 18, pp. 3082-3088).

8. Xue, H., Peng, J., Li, J., & Shang, X. (2019, November). Integrating multi-network topology
via deep semi-supervised node embedding. in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (pp. 2117-2120).

9. Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., & Tang, J. (2019, July). Representation
learning for attributed multiplex heterogeneous network. in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1358-
1368).

10. Goyal, P., Kamra, N., He, X., & Liu, Y. (2018). Dynam: Deep embedding method for dy-
namic graphs. arXiv preprint arXiv:1805.11273.

11. Goyal, P., Chhetri, S. R., & Canedo, A. (2020). dyngraph2vec: Capturing network dynamics
using dynamic graph representation learning. Knowledge-Based Systems, 187, 104816.

12. Zhou, L., Yang, Y., Ren, X., Wu, F., & Zhuang, Y. (2018, April). Dynamic network embed-
ding by modeling triadic closure process. in Proceedings of the AAAI Conference on Arti-
ficial Intelligence (Vol. 32, No. 1).

13. Sankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2018). Dynamic graph representation
learning via self-attention networks. arXiv preprint arXiv:1812.09430.

14. Singer, U., Guy, I., & Radinsky, K. (2019). Node embedding over temporal graphs. arXiv
preprint arXiv:1903.08889.

15. Chen, J., Zhang, J., Xu, X., Fu, C., Zhang, D., Zhang, Q., & Xuan, Q. (2019). E-lstm-d: A
deep learning framework for dynamic network link prediction. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included
in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

754 Z. Li et al.

http://creativecommons.org/licenses/by-nc/4.0/

