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Abstract. Digital twin (DT) of large-scale transportation infrastructure plays an 
important role in the development of intelligent transportation system (ITS), 
and has become the current research hotspot of ITS. Traditional data fusion has 
done a lot for intelligent transportation infrastructure. However, it still exists 
many shortcomings. This paper aims at establishing a multi-source and multi-
dimensional data fusion model of magnetic levitation track based on digital 
twin. We proposed a data fusion method that can fuse 2D image data and 3D 
LIDAR point clouds data together, by using Context Capture and Cloud Com-
pare software. This method combines data advantages so that we can optimize 
the expression of fine particle accuracy. Firstly, we made the aerial triangula-
tion for the image data that was collected with drone, and then reconstructed the 
dense point clouds and generated the colorful point clouds; next, we fused the 
colorful point clouds with the LIDAR point clouds data that has been data pro-
cessed; and finally, we generated the model and accomplished the fusion pro-
cess of magnetic levitation track model. We compared the digital twin model 
with the benchmark model from macroscopic to microscopic perspective, the 
verification results indicated that the error of track flatness is about one centi-
meter, and the mean distance between the two models is about 0.124 meters, so 
the digital twin data fusion model fits well. 
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1 Introduction 

In recent years, big data, Internet, artificial intelligence (AI) and other new technolo-
gies make a deep integration with the transportation industry could be an important 
trend to accelerate the integration and development of physical transportation infra-
structure and cyberspace networks. 
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The Internet of Things (IOT), 5G, Building Information Model (BIM), Bei Dou 
Navigation Satellite System (BDS) and other new technologies have put forward new 
and higher requirements for the innovative development of railroads in the age of intel-
ligent, which have attracted the attention of governments, railroad transportation enter-
prises and related research institutions around the world. Magnetic levitation as a large-
scale transportation infrastructure is responding to the development of the situation by 
embedding AI, multi-source and multi-dimensional data fusion, DT and other technol-
ogies into the physical world of magnetic levitation transportation construction. 

At present, the development and construction [1] of magnetic levitation track trans-
portation has become the research importance of the world, domestic and foreign 
scholars research on the guiding method [2] of magnetic levitation track, track struc-
ture [3-4] and other key technologies [5-7] still maintain a continuous growth trend. In 
the recent five years, some company launched large-scale project for the construction 
of a magnetic levitation track, and made effective progress, such as U.S. HTT compa-
ny in 2018 and China Motor Sifang CoLtd in 2020. However, constructing intelligent 
magnetic levitation track is still in the preliminary development stage, with the promo-
tion of advanced ITS, the construction of intelligent magnetic levitation track has a 
long-term and broad prospect. 

In this paper, we aim at fusing the 2D image data with the 3D point clouds data to 
establish a multi-source and multi-dimensional data fusion of the magnetic levitation 
track model based on DT. We first established a 3D reconstruction model from the 
collected photographic object by using Context Capture software. This reconstruction 
model needs the 2D image data and the position information from oblique photography 
technology of drone. By using Context Capture software, we merged these data into 
aerial triangulation in Fig. 1, and acquired feature points and dense point clouds, then 
the dense point clouds could be reconstructed to obtain the 3D reconstruction model. 
Then, we obtained the multi-dimensional colorful point clouds, which is first generated 
by the 3D reconstruction model.  

 

Fig. 1. The research structure of multi-source and multi-dimensional data fusion model. 

Then the colorful point clouds and the LIDAR point clouds made the data registration 
for the preliminary data fusion. However, the colorful point clouds and LIDAR point 
clouds obtained at this time are both unprocessed point clouds data, so we applied 
Cloud Compare software to crop, filter, segment, and accurately segment the point 
clouds data, and then registered these two data; then we deleted and complemented 
the colorful point clouds and LIDAR point clouds according to their data advantages 
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and disadvantages respectively, the advantage of the part will be complemented, then 
we merged the processed data into a new point clouds in Fig. 1. 

Lastly, we generated the model with the merged point clouds in Fig. 1, and formed 
the multi-source and multi-dimensional data fusion magnetic levitation track model, 
and compared the accuracy of the digital twin model points with the benchmark mod-
el points, and verified the effectiveness of digital twin model from the three aspects, 
they are model performance, magnetic levitation track flatness and model fitting ef-
fect. The final results have shown that the track flatness error of the digital twin mod-
el is about one centimeter, and the fitting mean distance of the two models is 0.124 
meters, so the model fit effect meets the requirements and it was verified valid. All 
above data was collected in the traffic scene of the magnetic levitation test line track 
of Tongji University in Shanghai. 

2 Literature Review 

This section briefly introduces the state-of-the-art research status and directions of 
digital twin and point clouds and image data fusion, and the focus direction of this 
paper. 

2.1 Digital Twin 

Digital Twin (DT) was proposed by Professor Grieves [8] in 2002 for product life-
cycle management. This initial conceptual model included physical products in real 
space, virtual products in virtual space, and data and information connections that 
bridge the two spaces. Subsequent developments in DT theory have also refined and 
supplemented around this basic model. The NASA definition of the DT reflects its 
elements and purpose. The elements of the DT [9] include multi-physics field, multi-
scale, probabilistic system simulations that use optimal simulation of the system, sen-
sor updates, historical information, etc., with the purpose of mirroring the entire life 
cycle of the physical twin. Tao Fei et al [10]. in 2018 elaborated the future research 
scenarios of DT and the current problems to be solved; in 2019, they also proposed 
the five-dimensional model [11] of DT, which adds two aspects of service and twin 
data compared with the previous three-dimensional model of physical entity, virtual 
entity and the connection between these two. In rail transportation direction, Li Feng 
et al [12]. study the BIM-based track transportation operation management system, 
the information sources of DT (including information collection from on-board 
equipment and trackside equipment), elaborate the data processing system, and the 
data transmission channel, system linkage, etc. 

We have compiled the progress of DT development as shown in Fig. 2. 
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Fig. 2. The evolution of digital twin development. 

2.2 Point Clouds and Image Data Fusion 

The extensive research in the fields of Cooperative Vehicle Infrastructure System 
(CVIS), ITS and autonomous driving make the connection between transportation 
infrastructure and the cyberspace gradually deepen. Data only from a single sensor 
makes getting higher accuracy in the data detection and the perception of traffic envi-
ronment more difficult. Therefore, many research scholars have achieved great results 
on object detection as well as traffic environment perception by fusing 3D data from 
LIDAR point clouds with 2D image data. 

Data fusion technology has been developed into several directions, such as the 
widely used field of CVIS, depth completion [13], dynamic target detection [14], 
static road recognition [15-16] (including route recognition and road sign recogni-
tion), etc. Data fusion’s research methods are also in full bloom. Many scholars have 
optimized the deep learning algorithms and modified the algorithm parameters to 
achieve the goal of making the point clouds and image fusion better. Some recently 
proposed algorithms such as Point-Net [17], ResNet [18-19], RetinaNet [20] are op-
timized. In this paper, we analyzed the fusion methods and selected the widely used 
feature-level fusion methods to introduce the current research status of 3D point 
clouds and 2D image data fusion. 

1) Feature-level fusion.  
Eldesokey, A., et al [21]. integrating structural information to study fusion strate-

gies, combining depth and RGB information in a normalized convolutional network 
framework; Schlosser, et al [22]. integrating LIDAR data by sampling to a dense 
depth map on point clouds and extracting three features representing different aspects 
of the 3D scene; C.Y. Wang, et al [23]. extracting image and point clouds data sepa-
rately by Vgg16 network with 3 depth features at different resolutions, and use a 
combination of feature concatenation and 1×1 convolution to achieve the fusion of the 
same resolution features of both data. The data fusion methods used in this paper are 
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essentially a feature-level fusion method, in which the dense point clouds presented 
after the aerial triangulation processing of image data is matched according to the 
image features. Data complementation is the process of feature filtering by cloud 
compare software based on the feature advantages and disadvantages of the point 
clouds and image data. There are also various fusion methods such as multi-level 
fusion [24-25], signal-level fusion [26-27] and result-level fusion [28-29]. 

Nowadays, LIDAR point clouds and image data fusion methods have been very ef-
fective in many fields, and the data fusion quality of physical components is very 
high, and the expression of high-precision information is very effective. However, the 
data fusion of LIDAR point clouds and image data has not yet achieved typical appli-
cation results in the micro-expression of major infrastructure and the expression of 
fine particle accuracy. In this paper, we adopt the method of LIDAR point clouds and 
image data fusion to explore and research the large-scale infrastructure transportation 
facilities with prominent geometric characteristics, such as magnetic levitation, and 
we are devoted to make some exploratory progress in the field of digital twins for 
related fields, such as urban construction, land resources and other infrastructure re-
searches. 

3 Point Clouds and Image Data Fusion Methods 

3.1 Point Clouds and Image Data Characteristics 

In this paper, we acquired the 2D image data from the Mini-Scan quadcopter drone 
with WIC-61MP cameras, using the oblique photography method, and obtained the 
3D point clouds data by LIDAR from the zeb horizon model of GEO SLAM compa-
ny, and the collection object is the whole route of the magnetic levitation track, where 
at Tongji University, Shanghai, in China. 

Two-dimensional image is a flat image that does not contain depth information. 
Two-dimensional means left, right, top and bottom four directions, there is no front 
and back, only area and no volume. The method of acquiring 2D image data comes 
from camera, and the method of oblique photography is currently extensively used to 
acquire image data in the field of real-world modeling. The oblique photography 
technique is realized by aerial survey system, which consists of different types of 
drones and sensors [30]. Based on the advantages of the aerial survey system, we 
could obtain comprehensive information on the location and attitude of surface fea-
tures. Therefore, we are aware that the quality of vertical and oblique photography 
image data is relatively high, and in the magnetic levitation track image data of this 
paper, the data quality of both above the track surface and side of the track are great, 
but below the track is low, that is because the angle of oblique photography could not 
completely capture that. 

The LIDAR system scans the surface of the magnetic levitation track to obtain the 
3D coordinates of the reflected points, and each reflected point is distributed in 3D 
space, called scanning points. Since the point clouds data are collected on the road 
surface with handheld LIDAR in this paper, the quality of point clouds data below 
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and beside the magnetic levitation track are higher, while the data on the upper sur-
face of the track are of lower quality. The graphical explanation is depicted in Fig. 3. 

 
Fig. 3. Point clouds and image data characteristics. The yellow curves mark the data ad-

vantages. 

3.2 Image Data to Generation Color Point Clouds 

1) Feature-level fusion. 
We firstly input the 2D image data and its position coordinates from the oblique 

photography into the Context Capture software, and the position coordinates infor-
mation include the latitude, longitude and altitude at the time of photography. After 
adding parameters such as sensor size and focal length, we performed the aerial trian-
gulation (AT) process. The AT could get the dense point clouds linked by the feature 
points information through the operations of image component, positioning mode and 
control task. However, the process of AT has a high failure rate, we have done this 
step many times, analyzing and modifying the parameters, and finally we got a suc-
cessful dense point clouds by matching feature points. Fig. 4a shows the simulated 
feature point coordinates of the failed AT case; while Fig. 4b shows the successful (of 
this paper) case, it can be seen that the coordinates of the model feature points are in 
line with the overall trend of the track, and the initial trend of the model is better.  

              
(a)                                         (b)                                   (c) 

Fig. 4. Example of a figure caption. Feature points coordinates. (Top view (XY plane), side 
view (ZY plane) and front view (XZ plane) of computed photo positions (black dots). Blue 

ellipses in Figure 2c show the position uncertainty). 

2) Dense Point Clouds.  
After AT, we acquired the model with dense point clouds, and the contours and 

features of the physical objects are clearly reflected, so that the shape of the digital 
twin model can be understood initially, we could judge if the model fusion method is 
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correct quickly. Fig. 5 shows the collective state presented by the dense point clouds 
of the oblique photography image data, from the top view and the front view respec-
tively, and we could roughly see a preliminary formed track at higher level. 

  
(a)                                       (b) 

 
(c)                                         (d) 

Fig. 5. Three-dimensional reconstruction process of magnetic levitation track. (a) top view of 
dense point clouds; (b) front view of dense point clouds, we can see the initial shape of the 

track at higher level; (c) top view of 3D model; (d) colorful point clouds figure. 

3) Three-Dimensional Reconstruction and Generate Color Point Clouds.  
We adopt the method of adaptive block-cutting and set the filling holes, colors, 

textures and so on, to reconstruct the 3D track model as shown in Fig. 5c, these opera-
tions are all handled by the Context Capture software, and then we generated colorful 
point clouds from the reconstructed 3D model as shown in Fig. 5d. These colorful 
point clouds reserve the color characteristics of the image data, so we obtained the 
first apart of multi-source and dimensional data preparation. 

  
(a)                                    (b) 
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(c)                                     (d) 

  
(e)                                      (f) 

Fig. 6. Three-dimensional reconstruction process of magnetic levitation track. (a) top view of 
dense point clouds; (b) front view of dense point clouds, we can see the initial shape of the 

track at higher level; (c) top view of 3D model; (d) colorful point clouds figure. 

3.3 Point Clouds Data Processing 

The point clouds data processing above both colorful point clouds and LIDAR point 
clouds process. These two kinds of point clouds data processing are carried out in 
parallel and use similar methods, so this paper only introduces the steps of LIDAR 
point clouds data processing. The main functions include crop, segmentation, accu-
rately segment and data filter. 

1) Data Segmentation.  
We firstly cropped point clouds data as shown in Fig. 6a, this step could get the 

part of point clouds data that we want to fuse, and they were extracted from the whole 
scanned magnetic levitation track point clouds data; according to the characteristics of 
track model above, we then segmented other point clouds on both sides of the track, 
such as arch bridges, rivers and other long-distance obstacles as shown in Fig. 6b; 
lastly, we accurately segmented obstacles around the track that are more difficult to 
separate, such as shrubs, street lights, etc. as shown in Fig. 6c. And this step requires 
certain technical skills, such as contouring segmentation from the side of the track, 
accurately segmentation from the lateral direction of the track, and other methods of 
operation. 
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2) Data Filtering.  
We filtered the data obtained from accurately segmentation as shown in Fig. 6d, 

and applying bilateral filter, cloth simulation filter (CSF) algorithm and gradient filter 
three methods successively, setting the maximum number of iterations, grid sizes, 
filter threshold, spatial standard deviation and other physical parameters, by this way, 
we have achieved multi-layer filter, and complemented the advantages and disad-
vantages between these algorithms, so the filtering effect could be optimized best. 
Data filtering algorithm and ending condition are as Table 1. 

Table 1. Comparison of Three Data Filtering Methods 

Data Filter 
Algorithm Preparation Algorithm Algorithm and 

Condition 

bilateral filter None Euclidean distance spatial standard 
deviation 

CSF filter 

None Invert point 
clouds, calculate 
the surface dis-

tance 

The maximum num-
ber of iterations 

gradient filter Calculate the 
gradient 

Euclidean distance filter threshold 

3) Data Registration.  
In this paper, we applied the Iterative Closest Point (ICP) algorithm to register the 

colorful point clouds and LIDAR point clouds after the data processing above. We 
obtained the first set of colorful point clouds P = {p1, p2...pn}, and the second set of 
LIDAR point clouds Q = {q1, q2...qn}, where the coordinates of P and Q correspond to 
the pre and post movement coordinate systems, respectively. Without error, the con-
version formula for converting P coordinates to Q coordinates as (1): 
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while the above feature matching algorithm does not always hold, due to the incon-
sistency of the total number of these two kinds of point clouds, so the minimization 
objective function is set as (2): 
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where the solution of R and t can be solved by Singular Value Decomposition or other 
methods. 
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4) Data Complementation.  
After registering these two kinds of point clouds, we can clearly understand the ad-

vantages and disadvantages of their respective data. According to the above, the 
LIDAR point clouds data are of higher data quality below and on the side of the track, 
while above the track is of lower quality, due to the equipment collection or other 
reasons. Therefore, according to this data feature, we complemented the colorful point 
clouds and LIDAR point clouds data to get the final two groups of point clouds data, 
and finally merged these two as shown in Fig. 6e and Fig. 6f, the above are the pro-
cess of point clouds data processing. 

3.4 Data Fusion Model of Digital Twin 

The digital twin model is a virtual model of the physical track through digital model-
ing. The virtual model can simulate the shape of the track in the real environment in 
all directions, and can also be derived to develop a real-time sensing and feedback 
process. We calculated the normal vectors of the merged colorful and LIDAR point 
clouds, and adjusted the orientation of the point clouds normal by using the least 
squares fitting plane algorithm and the least-cost spanning tree, and then we per-
formed poisson surface reconstruction to generate the model, but the model is not 
optimistic enough at this point, which is due to the default parameters of the system 
and the target model requirements. The larger the octree depth parameter (also the 
deeper the depth), the better the result, but it also requires more running time and 
memory. We set octree depth equals 12 as the optimal state value. Due to the error 
when calculating the normal vectors, the boundary will bulge when the model is gen-
erated, so we set the boundary to dirichlet mode instead of the system default free. 
Finally, we obtained the digital twin model of magnetic levitation track in Fig. 7. 

 
Fig. 7. Digital twin model of magnetic levitation track 
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4 Implementation 

In this chapter, we briefly analyzed the digital twin model accuracy, and then evaluat-
ed the quality of the model from three aspects. They are model performance, magnetic 
levitation track flatness and model fitting effect. 

4.1 Model Performance 

Last chapter, we have shown the shape of the digital twin model of the magnetic levi-
tation track. From a macro point of view, the entire track is in a good shape and the 
overall trend is smooth enough. Fig. 8a shows the top view direction above the track.  

From a mesoscopic point of view, the digital twin model presents the texture in-
formation of the track surface, rail joints, etc., which is very similar to the real-world 
track shape. In addition, we also introduced a bottom view of this track, a partial front 
view of this track as shown in Fig. 8b. 

  
(a)                                          (b) 

Fig. 8. The shape of the digital twin model 

4.2 Magnetic Levitation Track Flatness 

To explore the digital twin magnetic levitation track flatness, we firstly selected sev-
eral points randomly on the surface of the track and selected three points with the 
larger spacing of them p1 (x1, y1, z1), p2 (x2, y2, z2), and p3 (x3, y3, z3) as shown in Fig. 
9. 

 
Fig. 9. The shape of the digital twin model 

We calculated the normal vector composed of three points as (3): 
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Then substituted one of the three coordinates to solve the unknown d as (4): 

 1110d zcybxa −−−=  (4) 

And solved the plane equation consisting of these three points as (5): 

 0ax =+++ dczby  (5) 

Next, we calculated the distance from the remaining points to this plane as (6): 
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The mean distance from each point to this plane is 0.013 meters and the standard devi-
ation is equal to 0.025. We could be aware that the distance between the points and the 
plane is very small, and the distribution of the points is relatively uniform, so it can be 
interpreted that the points on the surface of the digital twin track almost on the same 
plane, the flatness above the track is excellent, and the error can reach centimeter-level 
accuracy. 

4.3 Model Fitting Effect 

From a microscopic point of view, we selected a real 3D model of magnetic levitation 
track as the evaluation reference object. This model was made by 3DSMAX software, 
and it used the image data to be the texture map, and used the coordinates of the track 
to be standard reference points, then generated this model (to distinguish it from the 
digital twin model described above, we call this model made with 3DSMAX software 
as the benchmark model) as shown in Fig. 10a. We exported the benchmark model 
file as an obj format file, and loaded it into the cloud compare software, preprocessed 
the model to keep the track part only, and adjusted the benchmark model and the digi-
tal twin model to the same size, finally registered them, so that the two track surfaces 
are on the same level for accurate analysis, the benchmark model has been tinted to 
green in Fig. 10b. 

  
(a)                                         (b) 

Fig. 10. a: Benchmark model; b: The registration of benchmark model and digital twin model. 
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We calculated the mean distance and standard deviation between the benchmark 
model and the digital twin model, by setting the parameter of the maximum distance 
as an independent variable and applying unsigned distance option. The calculated 
mean distance is 0.124 meters and the standard deviation is 0.120, which meet the 
fitting requirements. Therefore, these are able to prove the mean distance between the 
two is enough small, and the fitting effect of the digital twin model is very good. 

We added the scalar field (SF) to the digital twin model, and finally formed the mi-
cro-fitting results of each part of the digital twin model. From the top view, we can 
see the fitting effect of the track surface is very good as shown in Fig. 11a, while in 
the front view the effect below the track is relatively poor as shown in Fig. 11b, it 
may be caused by too many data obstacles, and the image data forms some errors 
when modeling. Finally, we synchronized the probability distribution map of the SF, 
and found that the fitting effect of the data meets the requirements except for a small 
part of the model, which SF is yellow-green and has some error as shown in Fig. 12. 
Therefore, we can conclude that from the microscopic level, the digital twin model 
has a great fitting effect. 

  
(a)                                        (b) 

Fig. 11. Digital twin model with the calculated SF 

 
Fig. 12. SF points distribution 

5 Conclusions 

We have proposed a method for the data fusion of 2D image data with 3D LIDAR 
point clouds data, and established a magnetic levitation track transportation data fu-
sion model by using Context Capture and Cloud Compare software, and all above 
background is based on digital twin technology. Our specific contributions are as 
follows: 
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• We applied two levels of high-precision micro-expression and large-scale transpor-
tation infrastructure macro-expression to express the digital twin of magnetic levi-
tation track transportation. 

• We fused the multi-source and multi-dimensional data in feature-level fusion 
method, and converted the 2D image data into colorful point clouds data and 3D 
LIDAR point clouds data fusion as a new breakthrough. 

• Our method has indicated the digital twin data fusion model fits well, by compar-
ing with the benchmark model. And our model has proven the effectiveness from a 
macroscopic to microscopic perspective, and the model error is compressed to 
about one centimeter. 

Although we have fitted the data fusion model well in this paper, the development of 
the two software of Content Capture and Cloud Compare is not enough, and it faces 
the problem of deeper study and optimization of algorithms. In the future, our re-
search will be based on the state-of-the-art background of data fusion, such as apply-
ing point cloud library for analysis, and will expand more algorithms to reach a higher 
level of data fusion network. 
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