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Abstract. The fusion of images in the transform domain using convolutional neu-
ral networks method can improve the fusion effect, but if the training sample set 
input to the CNN model is not selected properly, the fused image will show 
"pseudo-edge", "artificial texture" and other phenomena. In this paper, we pro-
pose a CNN image fusion algorithm based on Brushlet energy, which performs 
non-down sampling contour wave transform on the original image to obtain high 
and low frequency coefficient maps, uses Brushlet to bilayer decompose the co-
efficient maps to obtain complex coefficients, obtains the coefficient map chunk 
energy values by real and imaginary energy solving method, and uses them as 
the input sample set of CNN model for processing, the CNN model The output 
is the final decision map for fusion, which can be applied to each high and low 
frequency coefficient map of NSCT to achieve more accurate image fusion. The 
experimental results show that the method proposed in this paper has some im-
provement over other algorithms in both subjective human eye perception effect 
and quantitative objective evaluation index. 

Keywords: image fusion; brushlet complex energy; convolutional neural net-
work 

1 Introduction 

Due to the limited focusing ability of imaging devices such as digital cameras, the same 
scene is often photographed with only one focus, i.e., at the focal point, the image qual-
ity is good, while in other unfocused areas there is a blurring phenomenon, so to com-
plete a clear image, it is necessary to focus different areas of the same scene several 
times to process them separately and use image fusion technology [1] to fuse each of 
the acquired, with images with different focusing areas are fused and processed to ob-
tain a clear image, which can be provided to the human eye for better perception and 
understanding, and to computers for various analysis and processing. Currently, there 
are numerous applications of digital image fusion techniques in the fields of medical 
images [2-3], remote sensing images [4-6], and infrared and visible images [7-9]. 
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Image fusion techniques can be broadly classified into three levels, pixel-level, fea-
ture-level, and decision-level, according to the different fusion information selection, 
among which pixel-level based fusion techniques are more widely used because they 
take into account the integrity of information and are especially well characterized for 
image texture and detail parts [10-11]. Currently, the pixel-level fusion techniques can 
be subdivided into two schemes: fusion in the null domain and fusion in the transform 
domain. Among them, fusion in the null domain is mostly achieved by choosing fusion 
algorithms such as calculating the energy of the region for weighting or parametric min-
imization; while the key to achieving fusion in the transform domain is the image multi-
scale geometric transformation method. 

For example, paper [12] proposed to achieve image fusion in the contourlet domain, 
using the Contourlet Transform (CT) that can separate the image into multiple high and 
low frequency components, which can better distinguish the details and energy concen-
trated parts of the image. But the fusion has certain "artifacts" phenomenon due to the 
lack of translation invariance of CT. The paper [13] proposed an image fusion algorithm 
based on Non-Subsampled Contourlet Transform (NSCT) and Pulse-Coupled Neural 
Network (PCNN), which can better achieve image fusion, but the complexity of the al-
gorithm is high, and there is a certain misclassification region. The image fusion algo-
rithm based on Shearlet transform (ST) and PCNN proposed in the literature [14] has 
the phenomenon of "artificial texture" when using PCNN due to the spectral overlap in 
the ST segmentation process. In the Brushlet domain [15], the fusion effect is effectively 
improved by calculating the complex energy, taking into account the texture continuity 
of the image, but some image data are discarded in the low-frequency region, so the 
fusion rules for the low-frequency part can be improved. 

In the past few years, deep learning has penetrated various fields of image processing 
[16-18], all of which have achieved good research results, and within the field of image 
fusion, CNN-based image fusion algorithms are widely mentioned. Among them, the 
paper [19] used CNN to directly perform feature extraction and discriminative classifi-
cation of null domain pixels, ignoring the information of high and low frequencies, so 
the fusion effect was not satisfactory, and an improved algorithm was proposed in the 
paper [20], which used a CNN model to simultaneously generate horizontal activity 
measurements and corresponding fusion rules, by the laws of human eye vision, which 
effectively improved the fusion performance in both subjective and objective evaluation. 
However, the high complexity of CNN and insufficient samples are also one of the fac-
tors that affect the fusion effect. 

To address the above shortcomings, a CNN image fusion algorithm based on Brushlet 
energy is proposed in this paper. After the image is decomposed by NSCT, the image is 
further decomposed on each high and low frequency coefficient map using Brushlet to 
get the corresponding complex coefficients and decomposed into 16*16 sub-blocks, and 
the energy is solved for the sub-blocks to get each energy block, which is input to the 
CNN model for training, and the output decision map is obtained, based on which the 
fusion of source images can be completed in each high and low frequency region, and 
then the final fused image is obtained by inversion of NSCT. The final fused image is 
then obtained by inversion of NSCT. The advantages of this method are mainly reflected 
in the following three aspects. 

515A Multi-Focus Image Fusion Method Based on Brushlet and CNN 



(1) The high and low frequency coefficient maps of the source image obtained 
by NSCT decomposition are free of spectral overlap, which can effectively characterize 
the detailed information in the source image and ensure the accuracy of sub-block energy 
calculation. 

(2) The high-frequency directional coefficient map and low-frequency coeffi-
cient map of the NSCT decomposition using Brushlet can achieve a good characteriza-
tion of the energy concentration degree. 

(3) The energy block sample set has good focusing ability after being trained by 
CNN model, so the obtained decision map can achieve accurate segmentation of the 
fusion boundary. 

2 Algorithm Architecture 

2.1 A. Basic principles of NSCT 

NSCT is a modified form of contour wave transform. Compared with CT, NSCT adopts 
Nonsubsampled Laplacian Pyramid (NLP) structure and Nonsubsampled Directional 
Filter Banks (NDFB). Therefore, the high and low frequency coefficient maps obtained 
by decomposing the image using NSCT do not have spectral overlap and have better 
frequency selectivity and regularity than the contour transform. Figure 1 shows the de-
composition framework of NSCT. 

Lowpass 
subbandBandpass 

directional 
subbands

Input   image

 
Fig. 1. Framework diagram of NSCT scale and orientation decomposition 

Brushlet has a multi-layer decomposition result that enables an excellent decomposi-
tion of the frequency domain. the main difference between Brushlet basis and wavelet 
packet is the arbitrary tiling of the time-frequency plane and the perfect localization of 
single frequencies within one coefficient. In addition, the coefficients obtained after the 
image is decomposed by Brushlet are complex-valued functions, and this complex-val-
ued information facilitates the energy characterization. To further elaborate the direction 
selectivity of Brushlet, this paper takes a no-copyright image as an example, as shown 
in Figure 2(a). The one-layer decomposition of Brushlet is to divide the frequency do-
main into four quadrants, and the corresponding direction can be characterized as 𝜋

4
+

𝑘
𝜋

2
, 𝑘 = 0,1,2,3 (Figure 2(b)), and the two-layer decomposition of Brushlet is to further 

decompose the coefficient map corresponding to the four quadrants into 16 coefficients 
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based on the one-layer decomposition (Figure 2(c)), as seen from the figure, the multi-
layer decomposition is the process of completing the refinement of the directional coef-
ficient map of the previous layer, and it is generally appropriate to choose two-layer 
decomposition. 

 
Fig. 2. Brushlet second scale decomposition diagram and related directions example 

Let f represent the coefficient of the Brushlet decomposition, freal represent the real 
part and fimg represent the imaginary part of the complex number, then the energy 
identity is expressed by Ef as equation (1) follows: 

𝐸𝑓 = ∑ ∑ |𝑓(𝑚, 𝑛)|𝑀
𝑚=1

𝑁
𝑛=1 = ∑ ∑ [(𝑓𝑟𝑒𝑎𝑙(𝑚, 𝑛))

2
+ (𝑓𝑖𝑚𝑔(𝑚, 𝑛))

2
]

1

2𝑀
𝑚=1

𝑁
𝑛=1  (1) 

where M and N represent the size of f. 

3 CNN fusion rules based on NSCT domain 

In this paper, two images are selected for fusion, and in practice the fusion mechanism 
for multiple focused images can be arranged two by two and fused sequentially. The 
basic framework of fusion is shown in Figure 3 below. The algorithm in this paper has 
four main parts: NSCT decomposition, Brushlet decomposition, and energy calcula-
tion, CNN training to obtain the decision map, and final fusion. 
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Fig. 3. Fusion framework diagram 

After the NSCT decomposition of the two source images, a low-frequency coefficient 
map and a series of high-frequency directional coefficient maps are obtained. To extract 
the focus region of each coefficient map, Brushlet is selected to further carry out two-
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layer decomposition on the coefficient map, and the complex coefficient map is decom-
posed into 16*16 subblocks, and the energy of these subblocks is calculated by using 
the complex coefficients to determine the set of energy block samples of each coeffi-
cient map, which is input into the CNN model for training to obtain the decision map 
corresponding to all coefficient maps, and then used to achieve fusion in the NSCT 
domain and obtain the fused image by NSCT inverse transform. 

3.1 A. NSCT domain sample set construction 

Let the source image 1IM , 2IM  be implemented by NSCT with multi-scale multi-di-

rectional filtering, which can produce low-frequency coefficient maps j
kC1 j

kC2 , 
where 1,2j J=  characterizes the j-th scale decomposition layer and 1,2k K=  
represents the kth directional coefficient map corresponding to that scale decomposi-
tion layer. A two-level decomposition is performed using j

kC1 , j
kC2  to obtain the co-

efficient matrices of the real and imaginary parts, characterized as j
krealC1 ，

j
kimgC1 , j

krealC2 , j
kimgC2 , respectively. 

Taking j
krealC1 as an example, the 16*16 block region is divided as 

( ) ( ) ( ) 1 , 2 , ,k k k
d d dyBreal yBreal yBreal P  and a total of P sub-blocks are assumed 

to be obtained, and the same principle of sub-block division is used for j
kimgC1 , 

j
krealC2 , j

kimgC2 . The algorithm for solving the energy of the real and imaginary 

parts solves the energy of each block within j
kC1 , j

kC2 , respectively, as shown in equa-
tion (2) 

𝐸𝑘
𝑗(𝑝) = ∑ (𝐶1𝑟𝑒𝑎𝑙𝑘

𝑗(𝑝)(𝑚, 𝑛)2 + 𝐶1𝑖𝑚𝑔𝑘
𝑗(𝑝)(𝑚, 𝑛)2)𝑚∈𝑀,𝑛∈𝑁         (2) 

where M, N is the size of the subregion. 
For all high frequency coefficient maps, the energy values of sub-regions in the 

same direction and at the same position are combined. The calculation is shown in the 
following equation (3): 

𝐸𝑠𝑢𝑚𝑘(𝑝) = ∑ 𝐸𝑘
𝑗(𝑝)𝑗∈𝐽                           (3) 

Let ( ) ( )1
kEsum p and ( ) ( )2

kEsum p come from 1IM and 2IM , respectively. Comparing 
the magnitude of these two energy values can reflect the focused region of the source 
image, i.e., a larger energy value corresponds to the focused region (clear region) and 
a smaller energy value for the unfocused region (blurred region). This is fed into the 
CNN model as a training sample set for optimization. 
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3.2 CNN network structure 

In this paper, the CNN network structure is divided into 5 layers as shown in Figure 4.  

14×1416×16 12×12 4×46×6

14×1416×16 12×12 4×46×6

Input sub-block p1

Input sub-block p2

Convolution kernel 
            3×3

Downsampling kernel
       2×2

Single layer
 perceptron

Fully connected

Convolution kernel 
            3×3

Convolution kernel 
            3×3

Convolution kernel 
            3×3 Downsampling kernel

       2×2

Convolution kernel 
            3×3

Convolution kernel 
            3×3

[2,1] [2,1]

[2048,1]16 Feature Maps 64 Feature Maps32 Feature Maps32 Feature Maps

16 Feature Maps 64 Feature Maps32 Feature Maps32 Feature Maps

 
Fig. 4. Schematic diagram of the CNN network structure used by the algorithm in this paper 

The network consists of an input layer, three convolutional layers, and a maximum 
pooling layer. The sample set first enters the input layer. The second layer is the con-
volutional layer, in which the sample set needs to be convolved with a convolutional 
kernel, and here a convolutional kernel of 3*3 and amplitude 1 is chosen to process the 
sample set, and 16 feature maps are obtained, corresponding to a size of 14*14. The 
third layer is the convolutional layer, and the choice of convolutional kernel is exactly 
the same as the second layer, but the convolution can obtain 32 feature maps of size 
12*12. The fourth layer is the maximum pooling layer, and the kernel is chosen to per-
form the maximum pooling operation with the 32 feature maps obtained in the previous 
layer, where the size of the sampling kernel is chosen to be 2*2, and the magnitude is 
twice that of the convolution kernel, and the output of the pooling operation is still 32 
feature maps, but its corresponding size becomes 6*6. The last layer is the convolution 
layer, and the choice of the convolution kernel is the same as the second and third layers 
The pooling layer is then used to convolve the 32 feature maps into 64 feature maps of 
size 4*4. The 64 feature maps of each branch are then connected to form a feature 
vector F1 of length 2048. The fully connected operation is then used to obtain F2 of 
length 2. The Softmax function is called again to calculate and finally obtain a feature 
vector F3 of size [2, 1], F3 Each element value of the vector corresponds to the proba-
bility of each class. 
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3.3 CNN training model 

As the sample data is input to the CNN training model, it is set to the activation regions 
RA and RB, and the parameters are optimized by using two propagation stages (forward 
and inverse) of the convolutional neural network. forward propagation in the convolu-
tional layer can be described by equation (4). Where the i-th input feature map is de-
noted by Xi, Kij is the convolutional kernel corresponding to the i, j output feature maps, 
and bj is the bias value for the j-th output feature map. n, f represent the number of input 
feature maps and Relu activation function. 

𝑋𝑗
𝑙 = 𝑓(∑ 𝑋𝑖

𝑙−1𝑛
𝑖=1 × 𝐾𝑖𝑗

𝑙 + 𝑏𝑗
𝑙)                          (4) 

The maximum pooling layer has the same number of input and output feature maps for 
forward propagation, but the size is reduced, and the output map corresponds to a mul-
tiplicative bias β and an additive bias b, as shown in equation (5), where down() repre-
sents the down sampling operator. 

𝑋𝑗
𝑙 = 𝑓(𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑋𝑖
𝑙−1) + 𝑏𝑗

𝑙)                         (5) 

The difference between the CNN prediction and the true value can be measured by 
introducing a squared error loss function, and the difference can be further reduced by 
iterative training, which is the purpose of training. There are N labeled samples {z1, y1}, 
{z2, y2}, … {zn, yn} with the "one-of-c" labeling format. The expression of the squared 
error cost function En of zn is shown in equation (6) for each independent sample zn with 
a total of c classes. Where 𝑡𝑘𝑛 and 𝑦𝑘𝑛characterize the predicted and true probability 
values of the nth sample belonging to the k-th class. 

𝐸𝑛 =
1

2
∑ (𝑡𝑘

𝑛 − 𝑦𝑘
𝑛)2𝑐

𝑘=1                          (6) 

The error of the full sample training set is the superposition of each sample error, as 
shown in (7) 

𝐸𝑁 = ∑ 𝐸𝑛𝑁
𝑛=1 =

1

2
∑ ∑ (𝑡𝑘

𝑛 − 𝑦𝑘
𝑛)2𝑐

𝑘=1
𝑁
𝑛=1                  (7) 

All the parameters to be optimized form a vector group, denoted by W, and W* repre-
sents its optimal parameters, and if we want to obtain W*, we just need to minimize 
EN. As shown in equation (8) 

𝑊∗ = argmin
𝑊

𝐸𝑁                    (8) 

Considering the existence of a large number of parameters in EN, the optimal solution 
will form an NP-hard problem, so the gradient descent method is chosen to perform 
two derivations in the specific solution to complete the parameter optimization, as 
shown in equation (9). The output is the optimization result. 

𝑊(𝑘) = 𝑊(𝑘−1) − 𝛼
𝜕𝐸𝑁

𝜕𝑊
|𝑊−𝑊(𝑘)                        (9) 
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According to the optimization results of CNN output for the fusion of NSCT high-
frequency layers, the coefficient map of the same direction, the low-frequency coeffi-
cient map of NSCT is also fused in the same way, and the fusion effect is finally ob-
tained. 

4 Results and discussion 

To verify the effectiveness of the algorithm in image fusion, the natural images 
Clock1/2, Bird1/2, Fighter1/2, and medical images CT&MIR were selected as the sim-
ulation test images. The simulation was done on a PC with Win10 flagship operating 
system, 16.00 GB of memory, 2.61 GHz CPU, and the fused images were aligned. The 
experimental software environment is MATLAB 2016a. The selection of suitable ob-
jective evaluation criteria can effectively verify the merits of the image fusion algo-
rithm, and in this paper, two evaluation criteria, "mutual information MI" [21] and QAB/F 
[22], are chosen to verify the effectiveness of the algorithm. MI is a qualitative measure 
of the amount of information contained in the original image. The QAB/F is a measure 
of how much information is contained in the fused image from the significant edges of 
the image. To effectively test whether the algorithm in this paper can improve the fusion 
effect in image fusion, we have compared with the algorithms proposed in paper [13], 
paper [19], and paper [20] with respect to MI and QAB/F. Table 1 lists the objective 
criteria obtained by the different fusion algorithms. 

Table 1. Values of the fusion evaluation indexes in the different methods 

Images Fusion methods 
Criteria Paper [13] Paper [19] Paper [20] This 

Clock1/2 MI 6.6298 7.1031 7.4120 8.4013 
QAB/F 0.6900 0.7204 0.7301 0.7502 

Bird1/2 MI 5.6002 6.1925 6.3497 7.5107 
QAB/F 0.5597 0.6142 0.6407 0.7109 

Fighter1/2 MI 6.9489 7.0078 7.4204 7.5621 
QAB/F 0.6699 0.6930 0.7746 0.8124 

CT&MIR MI 3.0109 4.0362 4.2007 4.3648 
QAB/F 0.6075 0.6285 0.6769 0.7375 

As seen from Table 1, under the measurement of mutual information, this paper's 
algorithm in Clock1/2, Bird1/2, Fighter1/2, and CT&MIR are better than those of the 
other three methods. Among them, the MI value of Clock1/2 fusion reaches 8.4013, 
which indicates that the algorithm in this paper has a better fusion effect for the images 
with clearer fused edges. On top, the fusion index of the algorithm in this paper is above 
0.7 for each image, among which the fusion index reaches 0.8124 for the Fighter1/2 
image, which indicates that the fused image contains more information about the orig-
inal image edges and has a better degree of detail retention. Therefore, the fusion 
method proposed in this paper can guarantee the amount of information while preserv-
ing the details and texture structure of the original image to a greater extent, which 
meets the requirement of high clarity of the fused image. 

521A Multi-Focus Image Fusion Method Based on Brushlet and CNN 



In this paper, three types of multifocal images (size and 256 gray levels) are selected 
for testing. One of the fusion results using the source image clock is shown in Figure 
5. 

 
Row 1 from left to right: Clock A, Clock B 

Row 2 (Fusion image): Reference [13], [19], [20], and this paper 
Row 3 (Difference image with the original image): Reference [13], [19], [20], and this paper 

Fig. 5. Alarm clock image fusion effect diagram 

This paper also applies the proposed method to medical image fusion. CT images show 
the structure of bone and MRI images show areas of soft tissue. In clinical applications, 
physicians need to see the location of bones and tissues to determine pathology and aid 
in diagnosis. Therefore, a hybrid image, which includes as much CT and MRI infor-
mation as possible, is usually required in practice. The fusion results are shown in Fig-
ure 6. 
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Row 1 from left to right: CT, MRI 

Row 2 (Fusion image): Reference [13], [19], [20], and this paper 
Row 3 (Difference image with the original image): Reference [13], [19], [20], and this paper 

Fig. 6. Medical image fusion rendering diagram 

In Figure 5, the visual inspection of the fused images from the fusion method of the 
paper [13] is not satisfactory. The reason for this is that the differences between the 
multifocal images are small and there are often transition regions due to pixel blurring. 
Using only regional features as a fusion strategy, the selection of coefficients is not 
accurate. The paper [19] uses CNN for feature extraction and discriminative classifica-
tion of null domain pixels directly, ignoring the information of high and low frequen-
cies, so the fusion effect is not satisfactory. The paper [20] uses CNN model to simul-
taneously generate horizontal activity measurements and corresponding fusion rules, 
which is consistent with the laws of human eye vision and has fusion performance in 
subjective and objective evaluation, but CNN compound samples are insufficient to 
exist pseudo-edge phenomenon. The algorithm proposed in this paper can accurately 
segment the boundary and outperforms other fusion methods in terms of visual effect. 

From Figure 6, the fused image of paper [13] is relatively blurred and artificial tex-
ture exists; the fused image of paper [19] produces a pseudo-edge blending phenome-
non. And the fusion image constructed by the method of paper [20] is not accurate 
enough due to the loss of some details of the CT image. The algorithm in this paper can 
fully fuse the effective information of two medical images, so the fusion effect is better 
than other methods. 
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5 Conclusion 

In this paper, a new scheme of joint Brushlet energy and CNN model training is pro-
posed. The novelty of this method is that the complex coefficients obtained by Brushlet 
decomposition can accurately characterize the energy of coefficient sub-blocks, which 
are used as the input sample set of CNN model, and after training by CNN model, they 
have good classification ability and can obtain accurate decision maps for fusing high 
and low frequency coefficient maps. The experimental results show that the method in 
this paper has certain advantages over other algorithms, both in terms of subjective 
human eye perception effect and quantitative objective evaluation index. 

The CNN model used in this paper is an unsupervised learning fusion network, 
which does not need to construct a huge label training set, but only needs to use Brushlet 
chunking energy to construct training samples, so the network can not only be used for 
fusion of natural and medical images but also can be extended to the fusion of infrared 
and visible images, the fusion of remote sensing images, etc. The fused images can be 
further applied to target detection, tracking, etc.  

Due to the training method of CNN model used in this paper, the complexity of the 
algorithm is high. Future work considers the Fast RCNN model to improve the conver-
gence speed and reduce the complexity of the algorithm. In addition, the mapping rela-
tionship between the source image pair and the fused image can be further explored, 
and there is still room for improvement of the algorithm in this paper by optimizing the 
network structure and loss function, etc. 
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