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Abstract. With the progression of technology, there are more ways to produce 

complex and spiral data without signs. For the development of Artificial intelli-

gence, machine learning is generated to help humans with human training or 

without. In this paper, based on the characteristics and properties of unsuper-

vised algorithms, first, we are going to identify and classify methods of unsu-

pervised dig data analysis into clustering and dimensionality reduction, and then 

systematically conclude the clustering algorithms (K-means, Hierarchical clus-

tering, GMM, and DBSCAN) and dimensionality reduction algorithm (PCA, 

LLE, and MDS). Then, we will discuss some of those applications. Eventually, 

we will conclude and imagine the future development of big data analysis. 

Keywords: Unsupervised Machine Learning, Big Data, Clustering algorithms, 

Dimensionality reduction algorithms, Applications 

1 Introduction 

Progression of world Internet technology does change our world, and the change also 

occurs in information formation and complexity of data. Due to the sheer amount of 

data which is various in type and size, some new big data analysis approaches ap-

peared. One is machine learning which can help humans to deal with those data by 

using computers. In this paper, we will focus on an unsupervised machine learning 

algorithm that is the subpart of machine learning. 

Unsupervised learning [1] has been widely used in big data analysis. No specific 

objective, training data without labels, and hard to determine goodness of outcome 

after learning are three common differences from supervised learning [2]. Thus, for 

mass and unlabeled data, unsupervised learning can be used to find potential and hid-

den patterns of structures within data, and it categorizes data into different clusters or 

low dimensions. 

There are several examples of unsupervised learning algorithms. Clustering algo-

rithms include K-means [3], Hierarchical Clustering [4], GMM (Gaussian Mixture 

Models) [5], and DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise) [6]. Dimensionality reduction [7] algorithms include PCA (Principle compo-
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nent analysis) [8], LEE (Locally Linear Embedding) [9], and MDS (Multidimensional 

Scaling) [10]. These two classifications are common categories. 

Clustering algorithms and Dimension reduction algorithms are an important part of 

unsupervised big data analysis. The content in this paper includes the analysis of algo-

rithms in the context of big data. Then, we will conclude those methods, and we will 

look ahead about its applications. 

2 Clustering 

Clustering [11] has been used for probing data analysis, and it is used for unsuper-

vised machine learning. Clustering algorithms commonly divide a clump of data into 

different categories or clumps with the same features within and different features 

between. 

2.1 K-means 

K-means [3] is the most common way for clustering due to its properties: easy to 

understanding and short coding. 

2.1.1 K-means algorithm.  

K-means algorithm [12] is easy to understand. The objection of K-means is to di-

vide a given group of data into K groups, and then it will give each sample the corre-

sponding center. There are 4 steps. 

• Pre-process data (To standardize the data and remove then outliers). 

• Randomly select K centers. 

𝜇1, 𝜇2, … , 𝜇𝑘 (1) 

• Defining the loss function. 

𝐽(𝑐, 𝜇) = min∑𝑖=1
𝑛  ∥∥𝑥𝑖 − 𝜇𝑐𝑖∥∥

2
 (2) 

• For t=0, 1, 2, ... is the number of iterative steps, repeat the following process to 

know the convergence of the function: in Equation (2). Here are two steps. 

For each sample xi, it is assigned to the nearest center. 

𝑐𝑖
t < −arg⁡𝑚𝑖𝑛

𝑘
 ∥∥𝑥𝑖 − 𝜇𝑘

𝑖 ∥∥
2
  (3) 

For each class center K, the center of the class is recalculated. 

𝜇𝑘
(𝑡+1)

< −arg⁡𝑚𝑖𝑛
𝜇
 ∑  𝑏
𝑖:𝑐𝑖

𝑡=𝑘
∥∥𝑥𝑖 − 𝜇∥∥

2
 (4) 
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2.1.2 Advantages and disadvantages of K-means Clustering. 

• Advantages 

─ K-means is easy and high efficiency. 

─ This algorithm is easy to understand and implement. 

• Disadvantages 

─ It is necessary to determine the number of clusters manually in advance. 

─ It is sensitive to the setting of the initial value, and the result of the algorithm is 

related to the selection of the initial value. 

─ It is not resistant to noise and abnormal data. If an outlier has a large value, it can 

seriously affect the data distribution. 

─ The problem of data distribution clustering with non-convex shapes cannot be 

solved. 

─ Non-spherical clusters cannot be identified. 

2.1.3 Applications of K-means.  

K-means had been used to analyze the regional energy consumption of different 

industries to improve regional energy efficiency [13]. Another application of K-means 

was in Amazon Web Services Lambada Function. In this paper, they presented a nov-

el application in cloud computing which finds that, if K-means was used in unsuper-

vised machine learning in cloud computing, there was a negligible latency within 

mobile applications and Lambada function [14]. 

Additionally, K-means was applied in the classification of personality. For that 

purpose, the accuracy rate was justified by using this algorithm, and, finally, they 

found 16 types of personality [15]. 

2.2 Hierarchical Clustering 

Hierarchical clustering has been used [4]. We do not have to set the fixed K value 

which is the number of clusters. It can bend closed points or clusters into a new clus-

ter. Finally, it will form a tree diagram that shows relations. There are two types of 

Hierarchical Clustering algorithms [4]. 

2.2.1 Hierarchical Clustering algorithms.  

• Divisive method 
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Fig. 1. The Hierarchy(down) 

This algorithm is to divide a cluster into some points or smaller clusters just as Fig-

ure.1. Here are 4 steps. 

─ First, put raw data into the first clump C, and it will form the topmost part of the 

hierarchies. 

─ Second, using K-means to divide clump C into K clumps(groups) 

Ci, i = 1, 2, ...., k, and to form a new layer. 

─ Repeating the second step until every clump cannot be divided or end standards are 

satisfied. 

• Agglomerative method 

This algorithm is to combine small data fragments into a big cluster. To be more spe-

cific. The merging algorithm of hierarchical clustering determines the similarity be-

tween data points of each category and all data points by calculating the distance be-

tween them. The smaller the distance between them, the higher the similarity. Thus, 

the two nearest data points or categories are combined to generate a tree diagram. 

Here are two steps. 

─ Finding two points that have the shortest distance, and forming a new clump. 

─ Repeating the step above until there is only one clump remaining. 

2.2.2 Distance calculation algorithms.  

(Assuming clusters Ci, and Cj) 

• Single-link 

D(𝐶𝑖, 𝐶𝑗) = 𝑚𝑖𝑛
𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

 𝑑(𝑥, 𝑦) (5) 

• Complete-link 

D(𝐶𝑖, 𝐶𝑗) = 𝑚𝑎𝑥
𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

 𝑑(𝑥, 𝑦) (6) 

• UPGMA 

Unsupervised Learning Algorithms in Big Data: An Overview             913



D(𝐶𝑖, 𝐶𝑗) =
1

|Ci||𝐶𝑗|
∑∑  𝑥∈Ci,y∈𝐶𝑗

𝑑(𝑥, 𝑦) (7) 

2.2.3 Advantages and disadvantages of Hierarchical Clustering.  

• Advantages 

─ The similarity of distance and rules is easy to define with few restrictions. 

─ There is no need to specify the clustering number in advance. 

─ Hierarchical relationships of classes can be found 

─ Odd shapes can be clustered. 

• Disadvantages 

─ High computational complexity. 

─ Singular values can also have a great influence. 

─ Algorithms are likely to cluster into chains. 

2.2.4 Applications of Hierarchical Clustering.  

Hierarchical Clustering had been used to determine meaningful tourism by detect-

ing geo-localized data from 1505 users in the Zeeland app [16]. Another application 

of Hierarchical Clustering was to evaluate students’ academic performance in differ-

ent subjects and compared those students’ scores data with a big data set [17]. 

In addition, Hierarchical clustering had been used to multi-parametric for prostate 

cancer to differentiate tumor and normal tissue and the result showed that the accura-

cy of differentiating reaches clinical standards [18]. 

2.3 GMM 

The Gaussian Mixed Model [5] means to the linear combination of several Gaussian 

distribution functions like Figure.2. In GMM, the learning process is to train several 

probability distributions. The so-called mixed Gaussian model is to estimate the prob-

ability density distribution of samples, and the estimated model is the weighted sum 

of several Gaussian models (The number of models is established before training). 

Each Gaussian model represents a class (a Cluster) of data. By projecting the data in 

the sample onto several Gaussian models, the probabilities of each class can be ob-

tained. Then we can choose the class with the highest probability to decide the result. 
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Fig. 2. Combination of two Gaussian Distributions 

2.3.1 GMM algorithm: GMM probability density function.  

( )
K

1 1

p( ) ( ) ( ) N x ,
K

k k k
k k

x p k p x k k 
= =

=  =  ∣ ∣  (8) 

𝑁(𝑥 ∣ 𝜇𝑘, ∑  𝑘 ) is called the kth component. 

1

1
K

i
i


=

 =  (9) 

and µk is the mixture coefficient actually. The µk is the weight of each component: 

𝑁(𝑥 ∣ 𝜇𝑘, ∑ 𝑘 ) (10) 

This function (9) can be explained: assuming there is a set of data X = {X1, X2, ..., Xn}, 

and Xi are formed by Gaussian distribution (there are K Gaussian distribution genera-

tors) with unknown generator and unknown proportion πk of each generator in a mix-

ture model. 

Because we do not know⁡𝜋k, 𝜇𝑘, ∑  𝑘 , so we need to estimate these parameters at 

first. The maximum likelihood method is to maximize the probability value of the 

sample point on the estimated probability density function. In order to prevent the 

overflow phenomenon in the calculation process, we can take the logarithm of the 

objective function to calculate: 

( )
1

max log
N

i
i

p x
=

  (11) 

so the maximum logarithmic likelihood function is: 

Unsupervised Learning Algorithms in Big Data: An Overview             915



( )
1 1

max log ,
N K

k i k k
i k

N x  
= =

 
  

 
∣  (12) 

The most common algorithm that we use to estimate parameters in the Gaussian 

mixed model is EM. 

EM algorithm. EM algorithm [19] has two steps. The first step, assuming we 

know the value of each parameter in each Gaussian model (initialize it or use the pre-

vious iteration result), is to estimate the weight of each Gaussian model. The second 

step is to ensure the parameters in the Gaussian model based on the estimated weight. 

Then, the algorithm will repeat two steps until the parameters reach stable and reach 

the “end value” (the optimal value). 

• The first step, for the ith sample Xi, the probability generated by the kth model is: 

( )

( )
1

,
( )

,

k i k k

i K

j i j j
j

N x
w k

N x

  

  
=

=



∣

∣
 (13) 

We use the maximum likelihood estimation (MLE) to estimate the parameters in Kth 

Gaussian model. 

1

1
( )

N

k i i
i

w k x
N


=

= 
 (14) 

( )( )
1

1
( )

N
T

k i i k i k
i

w k x x
N

  
=

=  − −
(15) 

1

( )
N

k i
i

N w k
=

= 
 (16) 

Repeating the above two steps until the function converges. Here is the general con-

verging process Figure.3. 
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Fig. 3. GMM data processing 

2.3.2 Advantages and disadvantages of GMM.  

• Advantages 

─ GMM is the fastest mixture model algorithm. 

─ Mathematical properties and computation performance is excellent. 

─ GMM can simulate the distribution of any variable in the model and it is easy to 

extend to unsupervised learning. 

• Disadvantages 

─ EM converges well but doesn’t promise to find the global maximum value, even 

though it may reach the local maximum value. Solution: do iteration with different 

initialized parameters and keep the best performance. 

─ GMM performs unsatisfactorily at high-dimensional data. Especially, it is hard to 

estimate covariance by insufficient samples. 

─ GMM performs unsatisfactorily at high-dimensional data. Especially, it is hard to 

estimate covariance by insufficient samples. 

2.3.3 Applications of GMM.  

GMM was used for data analysis. It was used in the unsupervised adaptation of the 

Brain-Computer interface [20], and the result showed that there was a lower error rate 

compared with the other two unsupervised methods. Another application [21] was to 

identify hydrological characteristics and features in the Southern Ocean such as tem-

perature and salinity of the ocean, and, finally, get temperature profiles classification 

and current circulation without geographical data: latitude or longitude. 

2.4 DBSCAN 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is one of the 

earliest (1996) algorithms. The main thought of DBSCAN is to measure the density of 
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the space. As long as the density of points in a region is greater than a certain thresh-

old value, it is added to a similar cluster. It can be used to find out oddly-shaped clus-

ters as Figure.4, and we do not have to ensure the number of clusters previously. 

Thus, it is an efficient way to deal with large scale of data sets. 

 
(a) K-means clustering 

 
(b) DBSCAN clustering 

Fig. 4. Comparing of 2 types of clustering 

2.4.1 DBSCAN model.  

We should know the following definitions and mathematics symbols: Neighbor-

hood, density, and three different kinds of points in this model (assuming our sample 

set is D = (x1, x2, ..., xm)) 

• ∈ (neighborhood) 

For 𝑥𝑗 ∈ 𝐷,𝑁𝜀(𝑥𝑗) = {𝑥𝑖 ∈ 𝐷 ∣  distance (𝑥𝑖 , 𝑥𝑗) ≤}.  

The number of subsets is recorded as 
( )jN x
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• Core objects 

For a randomly sample in jx D
, if |𝑁𝜀(𝑥𝑖)| ≥ MinPts  (MinPts is the minimum 

number of samples in subset Nε(xj ) ), xj is a core object. 

• Directly density-reachable 

If xi is in the neighborhood   of xj and xj is the core object, we call xi directly densi-

ty-reachable from xj . 

• Density-reachable 

For xi and xj, if there is sample sequence p1, p2, ..., pT, and it satisfies p1 = xi, pT = xj, 

and pt + 1 is directly density-reachable from pt, xj is density-reachable from xi. Se-

quence p1, p2, ..., pT − 1 are all core objects. 

• Density-connected 

For xi and xj, if there is a core object xk that lets xi and xj density-reachable from xk, so 

we call xi and xj are density-connected. 

• Core point 

Assuming  𝑥 ∈ 𝑋, if 𝜌(𝑥) ≥ 𝑀, (Minimum number of points required to form a clus-

ter), we call x the core point of X. The set of all the core points is called Xc, and 

   represents the set of all the non-core points as Figure.5. 

• Border point 

If𝑥 ∈ 𝑋𝑛𝑐, and ∃𝑦 ∈ 𝑋 satisfy 𝑦 ∈ 𝑁∈(𝑥) ∩ 𝑋𝑐 , it means there is a core point in x   

neighborhood so x is called the boundary point of X. We call the set of all border 

points Xbd as Figure5. 

 

Fig. 5. DBSCAN Points 

• Noise point 

If 𝑥 ∈ 𝑋noi , 𝑋noi = 𝑋 ∖ (𝑋𝑐 ∪ 𝑋𝑏𝑑).Thus, x points are noise points as Figure5. 
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2.4.2 DBSCAN algorithm.  

The main thought of the DBSCAN algorithm is: Starting from a selected core 

point, the region expands to the region of reachable density continuously, so as to 

obtain a maximized region containing core points and boundary points. The objection 

of this algorithm is to divide a set of data into K clusters and noise points. (Assuming 

that a set of data is X = x(1), x(2), ...., x(N) ) Thus, we introduce a cluster to sign a set of 

data. 

𝑚𝑖 = {
𝑗(𝑗 > 0)[1]

−1[2]
  (17) 

For the equation [1], it will be used when x(i) belongs to the Jth cluster. 

For the equation [2], it will be used when x(i) is noise point. 

Thus, the outcome will be a signed array, mi, i = 1, 2, ..., N. 

Process of DBSCAN algorithm 

Here is the conclusion of the DBSCAN algorithm. 

Input: Sample set x1, x2, ..., xm, neighborhood parameters 
( , )MinPts

and sample 

distance measurement    method. 

Output: A clump C partition 

• 1) Initializing the core object set Ω = ϕ, clump numbers k=0, and cluster partition 

C = Φ. Also, we have to initialize the collection of unaccessed samples Γ = D.  

• 2) For j = 1, 2, ..., m, finding all core objects by following steps  

─ By using distance measurement method, we can find subsample set
( )jN x

 of 

jx
.  

─ If the number of samples in subset satisfies 

( )jN x
≥ MinPts, we combine jx

into the core sample set: Ω = Ω ∪ { jx
 }. 

• 3) If the core sample set Ω = ϕ, algorithm ending. Else, the algorithm continues. 

• 4) In core object set Ω, we randomly chose a core object ‘o’ and initialize the array 

of clump core objects 
Ω { }cur o=

 . In addition, we have to initialize serial num-

bers k = k + 1 and the current clump sample sets
{ }kC o=

.Then, we upload the 

unassessed sample sets
Γ Γ ( )o= −

. 

• 5) If 
Ω { }cur o=

, we upload Clump C partition 
 1 2, , , kC C C C= 

. And the 

core sample set 
Ω Ω kC= −

. Then, the algorithm goes step3. Else, we only have 

to upload core object set
 1 2, , , kC C C C= 

. 
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• 6) We pick up an object o from the array Ωcur of core object and find out all subsets 

of objects 
( )N o


by using neighborhood distance threshold ε. We let 

( )Δ ΓN o=  
and upload current sample set 

Δk kC C= 
, unacessed sam-

ple sets Γ = Γ − Δ, and 
Ω Ω (Δ Ω)cur cur o=  − 

.Then, the algorithm goes to 

step5. 

Output: A clump C partition C = C1, C2, . . . , Ck. 

2.4.3 Advantages and disadvantages of DBSCAN.  

• Advantages 

─ Dense data sets of any shape can be clustered 

─ Outliers can be found while clustering, and are not sensitive to outliers in the data 

set. It is resistant to the outliers 

─ There is no bias in the clustering results. In contrast, the initial value of k-means 

clustering algorithm has a great influence on the clustering results. 

• Disadvantages 

─ If the density of sample sets is not uniform and the clustering spacing difference is 

large, the clustering quality is poor. 

─ If the sample set is large, the clustering convergence time is long. 

─ It is very complicated to adjust the parameters, and the parameters have a great 

influence on the results. 

2.4.4nApplications of DBSCAN.  

DBSCA has been used for classification of Internet traffic, and DBSCAN algorithm 

demonstrates a better effectiveness and efficiency in processing large data set [22]. 

Another application is to use DBSCAN with Noise algorithm to differentiate normal 

and anomalous weather data though utilizing weather variables [23]. 

In addition, DBSCAN has been used for agriculture development. In this paper 

[24], DBSCAN is one of algorithms to obtain the optimal environmental conditions 

for growing of wheat to reach the highest productivity. 

3 Dimensionalit reduction 

Dimensionality reduction [7] has been used in various field of research or studying in 

dig data. Dimensionality reduction in machine learning refers to the use of a mapping 

method to map data points from a high-dimensional space to a low-dimensional 

space. At present, most dimensionality reduction algorithms deal with data expressed 

by vectors, and some algorithms deal with data expressed by higher- order tensors. 

The reason why the data representation after dimensionality reduction is used is that 

Unsupervised Learning Algorithms in Big Data: An Overview             921



the original high- dimensional space contains redundant information and noise infor-

mation, which causes errors in practical applications such as image recognition and 

reduces accuracy. By reducing the dimension, we hope to reduce the error caused by 

redundant information and improve the accuracy of identification (or other applica-

tions). Or we hope to find the intrinsic structural features of data by dimensionality 

reduction algorithm. I will discuss PCA, LLE, and MDS and conclude their algo-

rithms and applications on big data. 

• Functions of dimensionality reduction 

─ Reduce the complexity of time and space 

─ It saves the cost of extracting unnecessary features 

─ Removing the noise from the data sets. 

─ Simpler models have stronger robustness on small data sets. 

─ When the data can be interpreted with fewer features, we can better interpret the 

data. 

─ Data visualization 

• The purpose of dimensionality reduction 

It is used for feature selection and feature extraction. 

─ Feature selection: select important feature subsets and delete other features; 

─ Feature extraction: fewer new features formed from the original features. 

• Methods of dimensionality reduction as shown in Figure.6. 

3.1 PCA 

PCA (principle component analysis) [8] is widely used in data dimensionality reduc-

tion algorithms and unsupervised machine learning. The main idea of PCA is to map 

the N-dimensional features to the K-dimension, which is reconstructed based on the 

original N-dimensional features. PCA is to find a set of mutually orthogonal coordi-

nate axes sequentially from the original space. The selection of the new coordinate 

axes is closely related to the data itself. Among them, the first new coordinate axis is 

selected in the direction of the largest variance in the original data, the second new 

coordinate axis is selected in the plane orthogonal to the first coordinate axis to make 

the largest variance, and the third axis is selected in the plane orthogonal to the first 

and second axes to make the largest variance. And so on, we get n of these axes. With 

the new axes obtained in this way, we find that most of the variance is contained in 

the first k axes, and the variance contained in the latter axis is almost zero. Thus, we 

can ignore the rest of the axes, leaving only the first k axes that contain most of the 

variance. This is equivalent to retaining only the dimension features containing most 

of the variance while ignoring the feature dimensions containing almost zero vari-

ance. Thus, dimension reduction is carried out on the data features. 
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3.1.1 PCA algorithms.  

There are two main types of PCA algorithms. 

• First, the PCA algorithm is based on the eigenvalue to decompose the covariance 

matrixes. 

Input: data set 
 1 2 3, , , , nX x x x x= 

 which needs to be reduced to k dimensions. 

─ De-averaging (i.e., decentralization), i.e. subtracting the average value of each 

feature. 

─ Calculate the covariance matrix. 

Note: Dividing or not dividing the sample number n or n-1 here actually has no ef-

fect on the feature vector obtained. 

─ Find the eigenvalues and eigenvects of the covariance matrix by the eigenvalue 

decomposition method. 

─ Sort the eigenvalues from large to small, and select the largest k among them. Then 

the corresponding K feature vectors are used as row vectors respectively to form 

the feature vector matrix P. 

─ Transform the data into a new space constructed by K feature vectors, that is, 

Y=PX. 

• Secondly, PCA is based on SVD to decompose the covariance matrixes 

Input: data set 
 1 2 3, , , , nX x x x x= 

.  which needs to be reduced to k dimensions. 

─ De-averaging, that is, subtracting the average value of each feature. 

─ Calculate the covariance matrix. 

─ Calculate the eigenvalues and eigenvectors of the covariance matrix by SVD. 

─ Sort the eigenvalues from large to small, and select the largest k among them. Then 

the corresponding K eigenvectors are used as column vectors respectively to form 

the eigenvector matrix. 

─ Transform the data into a new space constructed by K feature vectors. 

In PCA dimensionality reduction, we need to find the maximum k eigenvectors of 

the sample covariance matrix

1 TXX
n , and then use the matrix composed of the max-

imum K eigenvectors to do low-dimensional projection dimensionality reduction. It 

can be seen that in this process, the covariance matrix 

1 TXX
n needs to be worked 

out first. When the sample number is large and the sample feature number is large, the 

calculation is still large. 
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Fig. 6. Dimensionality reduction methods 

3.1.2 Advantages and disadvantages of PCA.  

• Advantages 

─ Data sets are easy to use. 

─ Algorithm calculation process is time-saving. 

─ It can remove noise points. 

─ It is easy to understand the outcome by visualization of outcomes. 

─ There is not any limitations on parameters. 

• Disadvantages 

─ There are some limitations on eigenvalue decomposition. 

─ In the case of non-Gaussian distribution, the principal element obtained by the 

PCA method may not be optimal. 

3.1.3 Applications of PC. 

PCA was used to determine 123 imperative genes for COVID-19 progression in-

cluding immune-related genes. The result was from comparing RNA expression pro-

files of 16 COVID-19 patients and 18 healthy control subjects from 60683 candidate 

probes [25]. Another application was that, in this paper [26], PCA was applied to 

consider and divide agricultural data for the purpose of determining optimal parame-

ters to augment crop yield. 

In addition, PCA was employed to develop the desired recognition system by using 

images of 10000 people from assorted racial origins and age range from 18 to 60 

years old. The accuracies of face recognition were found very precise. 
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3.2 LLE 

LLE [9] has been widely used in unsupervised machine learning in big data analysis. 

Its feature is non-linear, and it is one of the classical algorithms in manifold learning 

[27]. It tends to keep the partial characters in a sample so it is an important algorithm 

for image recognition and high-dimension data visualization and etc. 

3.2.1 LEE conclusive algorithm.  

As is shown in Figure 7, there are three main steps. 

 

Fig. 7. LLE algorithm process 

The first step is the process of k-nearest neighbor, this process uses the same method 

as the KNN algorithm [28] to find the nearest neighbor. 

• The second step is to find the linear relationship of K neighbors of each sample in 

the neighborhood and get the weight coefficient W of the linear relationship as- 

summing we have m numbers of samples with n dimension x1, x2, ..., xm. 

• The third step is to use weight coefficients to reconstruct sample data in low di-

mensions. 

The specific processes are as follows: 

Input: sample set 
 1 2, , , mD x x x= 

 the nearest neighbor k, dimension number 

d being reduced Output: low dimensional sample set matrix D′ 

─ For i 1 to m, calculating k nearest neighbors with xi, (xi1, xi2, ..., xik), by measuring 

euclidean metric. 
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─ For i 1 to m, obtaining the local covariance matrix 
( )( )

T

i i j i jZ x x x x= − −
, 

and obtaining the corresponding weight coefficient vector: 

𝑊𝑖 =
𝑍𝑖
−11𝑘

1𝑘
𝑇𝑍𝑖

−11𝑘
   (18) 

─ The weight coefficient matrix W is composed of the weight coefficient vector-Wi 

and the calculation matrix M = (I − W) (I − W )T 

─ Calculate the first d+1 eigenvalues of the matrix M, and calculate the eigenvectors 

corresponding to the d+1 eigenvalues
 1 2 d 1, ,y y y +

.  

─ The matrix spanned from the second feature vector to the d+1 feature vector is the 

output low-dimensional sample set matrix
 2 3 d 1, ,D y y y +

 = 
.  

3.2.2 Advantages and disadvantages.  

• Advantages 

─ You can learn locally linear low-dimensional manifolds of any dimension 

─ The algorithm means sparse matrix eigen decomposition, with relatively small 

computational complexity so it is easy to implement. 

• Disadvantages 

─ The manifold learned by the algorithm can only be unclosed and the sample set is 

dense and uniform. 

─ The algorithm is sensitive to the selection of the nearest neighbor sample number, 

and different nearest-neighbor numbers have a great influence on the final dimen-

sionality reduction result. 

3.2.3 Applications of LLE.  

LLE implemented dimensionality in hyperspectral images which was favorable for 

hyperspectral data classification [29] The image contained a spectrum with hundreds 

of dimensions that embodied many data. Also, for increasing feature selection effi-

ciency and effectiveness [30], LLE was employed to strengthen teh relationship be-

tween UFS (unsupervised feature selection) [31] and the feature sub-space. 

In addition, LLE improved the use of brain MRI to predict Alzheimer’s disease 

(AD). They used LLe to decrease dimensions of multiple MRI data of regional brain 

volume and cortical thickness, and the LLE showed that it was an efficacious way 

through testing 413 individuals who had AD [32]. 
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3.3 MDS 

MDS (Multidimensional Scaling) [10] is one of the classical method of manifold 

learning in unsupervised machine learn- ing. MDS is a visualization method to dis-

play high dimensional multivariate data in low-dimensional space. The method looks 

similar to plotting with principal component scores or plotting with scores of two 

linear discriminants. The basic goal of multidimensional scaling is to “fit” the original 

data into a low-dimensional coordinate system so it can minimize any deformation 

caused by dimensionality reduction. In addition, there are commonly three kinds of 

MDS including Classical MDS, Metric MDS, and Non-metric MDS as shown in Fig-

ure 8. 

 

Fig. 8. Types of MDS 

3.3.1 MDS conclusive algorithm.  

Here are the algorithm steps below [10]. 

• Based on original data and Euclidean Distance to calculate distance matrix D = 

{dij}m×m. 

• Obtaining four intermediate variables. 

2 2 2

1 2 3 4
1 1

, , ,
m m

ij ij ij
i j

T d T d T d T
= =

= =  =  = 2

1 1

m m

ij
i j

d
= =

  (19) 

• Getting elements from matrix B by using function. 

𝑏𝑖𝑗 = −
1

2
𝑇1 +

1

𝑚
𝑇2 +

1

𝑚
𝑇3 −

1

2𝑚2 𝑇4  (20) 

• Obtaining B by using Eigendecomposition. 

𝐵 = 𝑈𝛬𝑈𝑇 = (𝛬
1

2𝑈𝑇)
𝑇

(𝛬
1

2𝑈𝑇) (21) 

• By the magnitude of the eigenvalues, obtaining Λd′, Ud′. 
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• The final MDS solution is 

1

2Λ T

d dZ U =
.  

3.3.2 Advantages and disadvantages of MDS.  

• Advantages 

─ No prior knowledge is required and the calculation is simple. 

─ The relative relationship of data in the original space is retained, and the visualiza-

tion effect is better. 

• Disadvantages 

─ If the user has some prior knowledge of the observed object and has mastered some 

characteristics of the data, but cannot intervene in the processing process through 

parameterization or other methods, the expected effect may not be achieved. 

─ It is believed that all dimensions have the same contribution to the goal, but in fact, 

some dimensions have little impact on the goal, while others have a relatively large 

impact on the goal. 

3.3.3 Applications of MDS:  

MDS was used to visualize geological features of differences and similarities in 16 

fluvial and 5 aeolian sand samples. MDS successfully gained geological insights from 

big data [33]. 

In addition, an algorithm based on MDS was employed and it was called nMDS 

[34]. It measured the dissimilarity of the gene activities in the transcriptional response 

of cell-cycle-synchronized human fibroblasts to serum. They produced a circular 

comparative pattern of genes that was clear-cut. The large-scale data were from Mi-

croarray experiments [35]. 

4 Conclusion 

Unsupervised machine learning techniques have drawn re- markable attention from 

data science to gain imperative infor- mation from large-scale data. Many algorithms 

were applied in different fields of study and research, and these algorithms have had 

varying degrees of success. This paper provides an overview of unsupervised machine 

learning algorithms with those advantages and disadvantages. The applications of 

each algorithm are discussed. 
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