
Moth-Flame Optimization and Ant Nesting
Algorithm: A Systematic Evaluation

Hanan K. AbdulKarim1(B) and Tarik A. Rashid2

1 Software Engineering Department, College of Engineering, Salahaddin University - Erbil,
Erbil, Iraq

hanan.abdulkarim@su.edu.krd
2 Computer Science and Engineering Department, University of Kurdistan Hewler, Erbil, Iraq

Abstract. In this paper, some swarm metaheuristic algorithms are analyzed to
show the performance of algorithms. Swarm Intelligence algorithms are more
trapping in local optima because of low exploration. The Moth-Flame Optimiza-
tion algorithm is a widely applied metaheuristic algorithm. Nevertheless, the Ant
Nesting Algorithm is another recent powerful algorithm. Both algorithms are the-
oretically and practically studied and applied to a simple optimization problem
with a simple objective function. All steps of the algorithms are implemented and
discussed providing results to show and compare the exploration and exploita-
tion performance between both algorithms. A simple comparison between both
algorithms is conducted using the same sample of data, and it is concluded that
convergence within cycles of implementation shows that Ant Nesting Algorithm
is fast converged but it might get stuck in local optima because of low explo-
ration. Additionally, the merits of the Ant Nesting Algorithm show the algorithm
will stuck in local optima when solving highly complex problems or if the initial
population can’t be explored efficiently. Moth-Flame Optimization also may have
exploration problems when the size of flames during cycles is decreased.

Keywords: Metaheuristics · Moth-Flame Optimization · Ant Nesting Algorithm

1 Introduction

Optimization is everywhere, the way of finding the best solution among many good
solutions. There are many optimization algorithms to solve the problems. Metaheuristic
algorithms are most used to solve complex and large multimodal problems. A multi-
modal problem needs a global search to find the best solution overall search space. The
metaheuristic algorithm is higher level than the heuristic, it works better than the heuris-
tic. Metaheuristic algorithms use randomness and local search. Randomization gives a
good way to escape from local search to search in global search space, therefore all
metaheuristics are suitable for global searching space [1]. Major components of meta-
heuristic algorithms are intensification and diversification, search during a local search
by selecting the best solution will converge the algorithm to the optimal solution, which
increases intensification, while using randomization will lead to the diverging algorithm
from local optima and search the space globally, which increase diversification [1].

© The Author(s) 2023
N. Bacanin and H. Shaker (Eds.): ICIITB 2022, ACSR 104, pp. 139–152, 2023.
https://doi.org/10.2991/978-94-6463-110-4_11

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-110-4_11&domain=pdf
https://doi.org/10.2991/978-94-6463-110-4_11

140 H. K. AbdulKarim and T. A. Rashid

Many creatures’ behaviors inspired by optimization algorithms almost are meta-
heuristic because their behaviors are stochastics. Ant Colony Optimization algorithm
(ACO) [2] works on the ants finding a path to the food sources, Ant Nesting Algorithm
(ANA)mimics ants choosing a place to build a nest [3], Bat Algorithm (BA) [4] works on
how bat hunts food, Artificial Bee Colony (ABC) [5] finds food sources, Particle Swarm
Optimization (PSO) [6] mimics swarm of bird’s behavior, Moth-Flame Optimization
algorithm (MFO) [7] represents the moths flying around lights. All the above algorithms
work depend on creatures’ changing position. Many metaheuristic algorithms suffer
from low exploration and many of them improved by applying levy flight to add more
randomness within the algorithm like ACO improvedwith levy flight in [8, 9], BA in [10,
11], ABC for multi-objective improved by levy flight in [12] and also ABC improved by
Bayesian estimation in [13], exploration of PSO improved by levy flight also [14, 15],
and in recent researches, MFO also improved by adding more randomness, for example,
add levy flight in [16, 17]. However, some algorithms had fast convergence to the best
solutions while leading to local optima.

Recently many problems were solved by metaheuristic algorithms like some detec-
tion problems in [18–21], swarm intelligence used to solve classification problems in
[22–24], modified optimization algorithms used in prediction [25], workflow schedul-
ing problems in a cloud-edge environment enhanced by some swarm algorithm in [26],
metaheuristic and swarm-based algorithm are used to solve deep learning and wireless
device problems respectively in [27, 28].

The objective of this paper is to study and implement bothMFO andANAwith a sim-
ple optimizationproblem, implementationof algorithmswithin simple objective function
supposed and steps are written in detail to show the algorithms running result, and some
comparisons for both algorithms with the same initial population and parameters are
conducted.

The following section of the paper includes a background of algorithms MFO and
ANA asmethodology in Sect. 2, implementation of case study in Sect. 3, then discussion
and conclusion are provided in the last section.

2 Methodology

2.1 MFO

MFO is explained in this section depending on [7]. Two components are described here:

2.1.1 Moths

The candidate solutions are assumed to be moths representing the positions in search,
depending on the dimension of the problems the dimension could be 1D, 2D,3D… etc.
and represented as follows:

M(i,j), is matrix used to store moth solutions where i = 1,2, …,n, and j = 1,2,…,d.

Moth-Flame Optimization and Ant Nesting Algorithm 141

n is the number of moths and number of solutions at the same time, and d is the
number of dimensions of search space. The population of the moth is:

M =
⎡
⎢⎣

m11 m12 · · · m1d
...

. . .
...

mn1 mn2 · · · mnd

⎤
⎥⎦ (1)

Each solution in the moth has an optimization function as an objective and it stores
as a vector of n solutions for n moths, OM is a vector used to store the fitness of
corresponding moths where i = 1,2,…,n, represented as follows:

OM =

⎡
⎢⎢⎢⎢⎢⎣

om1

om2

.

.

omn

⎤
⎥⎥⎥⎥⎥⎦

(2)

The n is equal to the number of moths, which is equal to the number of solutions.

2.1.2 Flames

There are also a set of flames that represents the best solution of moths found so far, the
flames are represented by matrix F(i,j), which is a matrix used to store moth solutions
where i = 1,2, …,n, and j = 1,2,…,d. n is the number of moths and number of solutions
at the same time, and d is the number of dimensions of search space. The flame’s
representations are similar to the moth as follows:

F =
⎡
⎢⎣

f11 f12 · · · f1d
...

. . .
...

fn1 fn2 · · · fnd

⎤
⎥⎦ (3)

Each solution in the moth has an optimization function as an objective and it stores
as a vector of n solutions for n moths, OF, is a vector used to store the fitness of
corresponding flames where i = 1,2,…,n, represented as follows:

OF =

⎡
⎢⎢⎢⎢⎢⎣

of1
of2
.

.

ofn

⎤
⎥⎥⎥⎥⎥⎦

(4)

The n is equal to the number of the moths at the start of the run, but later n will be
calculated depending on the formula.

flame no = round (N − c ∗ N − 1

T
) (5)

142 H. K. AbdulKarim and T. A. Rashid

where N is the maximum number of flames, c is the current number of an iteration, and
T is the maximum number of iterations. Both moths and flames are solutions, but the
difference is the way the modifications are in each iteration. Moths search around the
space, while flames are the best solution for moths (local best).

Initial Solutions
The initial solution of moths and fitness of moths are generated using the following

statements in algorithm 1:

Moths are generated randomly using LB and UB, which are lower and upper bounds
respectively, the bounds are two vectors of decisions:

UB = [ub1, ub2, , ubn]; LB = [lb1, lb2, , lbn]

During the algorithm, running moth searches the space depending on flames, which
is the best solution of previous iterations. The update mechanism of moths depends on
formula (6), whereMi is moth andFi is flame, S

(
Mi, Fj

)
represents spiral function using

formula (7) to find updated solution depending on the distance between flame and moth
using formula (8)::

M(i, j) = S(Mi, Fj) (6)

S
(
Mi, Fj

) = Di.e
bt cos(2π t) + Fj) (7)

Di is the distance calculated as:

Di = ∣∣Fj − Mi
∣∣ (8)

In the formula (7) t is a random number in the range [–1,1], and b is the constant
value b = 1 in [2]. The flowchart of MFO is shown in Fig. 1.

2.2 ANA

The algorithm steps show ants building their nests [2]. The important part of the algo-
rithm is working ants, which search for a suitable place and build the nest for deposition.
The algorithm starts with a random solution representing ants Xi(i = 1,2,3,…..n), each
worker ant i try to find a better position than the current position, for these, it is working
iteratively, in each iteration it finds the deposition rate change and adds to current depo-
sition of positions to find a new position, the new position of a worker ant is changed
depending formula (9):

Xt+1,i = Xt,i + �Xt+1,i (9)

Moth-Flame Optimization and Ant Nesting Algorithm 143

where t represents the current iteration, i current worker ant and X is a solution in
the algorithm (which is deposition position), and �Xt+1,i can be calculated using the
following formulas:

�Xt+1,i = dw × (Xt,ibest − Xt,i) (10)

If the current ant is equal to local best, then formula (11) is used to calculate�Xt+1,i,
otherwise if the current solution is equal to the previous solution, then formula (12)
is used to calculate �Xt+1,i. Where dw is deposition weight can be calculated using
formula (13).

�Xt+1,i = r × Xt,i (11)

�Xt+1,i = r × (
Xt,ibest − Xt,i

)
(12)

dw = r × (
T

Tprevious
) (13)

where r is a random number in the range [–1, 1], T is the tendency rate that can be cal-
culated using the Pythagorean theorem, and formulas (14) and (15) are used to calculate
T and T previous simultaneously:

T =
√(

Xt,ibest − Xt,i
)2 − (

Xt,ibestfitness − Xt,ifitness
)2 (14)

Tprevoiuos

=
√(

Xt,ibest − Xt,iprevious
)2 − (

Xt,ibestfitness − Xt,ipreviousfitness
)2 (15)

A simple representation of algorithm steps is represented as a flowchart in Fig. 2.

3 Case Study

Optimization problems are either maximization or minimization, in this work, a min-
imization problem is considered, which f (x) = ∑D

i=1 x2i , where D = 2, which is the
dimension of a problem for the current example, and x in the range [−100, 100], two
iterations considered, N = 3 is the population size, the step implementation for both
MFO and ANA algorithms are shown in the following sections:

3.1 MFO Implementation Steps

Apply MFO for the study case for two iterations as supposed above, finally result for
iterations are explained as follows:

Initialize parameters: b = 1, r = 0.3 (randomly generated during algorithm running).

144 H. K. AbdulKarim and T. A. Rashid

Fig. 1. Moth-Flame Optimization Flowchart

Initial solutions randomly generate as shown in Table 1:

– Iteration 1:

For this example, there is no flame number calculation because from the beginning
supposed the flame number = 3, if generate the flame number using the formula (5).

flameno = round
(
3 − 1 ∗ 3−1

2

) = 1, the result is just one flame and every moth
should update its position depending on this solution.

Generate flames by sortingmoths of the initial solution because it is the first iteration,
the result of flames is shown in Table 2.

Moth-Flame Optimization and Ant Nesting Algorithm 145

Fig. 2. Simple Ant Nesting Algorithm Flowchart

Table 1. Moths during the first iteration

Moth X1 X2 F(x) Rank

1 -2 3 13 3

2 -1 0 1 1

3 1 1 2 2

146 H. K. AbdulKarim and T. A. Rashid

Table 2. Flames during the first iteration

Flame X1 X2 F(x)

1 -1 0 1

2 1 1 2

3 -2 3 13

Table 3. Moths generated for the next iteration

Moth X1 X2 F(x) Rank

1 -0.5 -1.5 2.5 2

2 1 1.5 3.3 1

3 -3.5 4 28.5 3

Calculate movementM(i, j) depending on formula (6), calculate the distance of each
moth with the corresponding flame using formula (8), then apply formula (7) to find

S
(
Mi, Fj

) = Di. e
bt cos(2π t) + Fj

Di is the distance calculated as:

Di = ∣∣Fj − Mi
∣∣

Moth1 D1, 1 = |(−1, 0) − (−2, 3)| = (1,−3)

S(M1,F1) = (1,−3) *e∧(0.3) * cos(2 ∗ π ∗ 0.3) + (−1, 0) = (−0.5, − 1.5)

Moth2 D2, 2 = |(1, 1) − (−1, 0)| = (2, 1)

S(M1,F1) = (2, 1) *e∧(0.3) * cos(2 ∗ π ∗ 0.3) + (−1, 0) = (1, 1.5)

Moth 3 D3, 1 = |(−2, 3) − (1, 1)| = (−3, 2)

S(M1,F1) = (−3, 2) ∗ e∧(0.3) * cos(2 ∗ π ∗ 0.3) + (−1, 0) = (−3.5, 4)

Calculate fitness for generate moth and the result are shown in Table 3 as new moths
and their fitness:

– Iteration 2:

Moths generated in Table 3 are used for this iteration, and the number of flames is
also 3. Generate flames by sorting moths of the current iteration in Table 3 and previous
iteration flame in Table 2 (where it is a moth of the first iteration after sorting) because

Moth-Flame Optimization and Ant Nesting Algorithm 147

Table 4. Flames generated for the second iteration

Flame X1 X2 F(x)

1 -1 0 1

2 1 1 2

3 -0.5 -1.5 2.5

Table 5. Moths generated for the new iteration

Moth X1 X2 F(x) Rank

1 -1.3 0.8 2.1 2

2 1 0.7 1.5 1

3 1.3 -2.8 9.3 3

it is not the first iteration, the result of flames for the current iteration is shown in Table
4.

The same first iteration calculates movement M(i, j) depending on formula (6), cal-
culating the distance of each moth with the corresponding flame using formula (8), then
calculating the moths’ new position depending on formula (7), the distance and result
for each moth, is generated after changing its position is represented below D1..3 are
distances, and moth1..3 are positions of moths:

D1 = (-0.5, 1.5)
D2= (0, -0.5)
D3= (3.5, -2.5)
Moth 1 = (-1.3, 0.8)
Moth2 = (1, 0.7)
Moth 3 = (2.3, -2.8)

The result of moths generated in iteration 2, which will be used for the next iteration
shown in Table 5.

The best solution for two iterations is flame 1 from the last iteration, which is:
M (−1, 0)andf (x) = 1.

3.2 ANA Implementation Steps

Appling ANA for the study case for two iterations as assumed above finally results for
iterations are explained as follows:

At the beginning,wegenerate the initial solution as population (worker ant), the result
of population is shown in Table 6, which assumes the same initial solution generated for
MFO in Table 1:

For the first iteration, the previous population is also the current population, which
is shown in Table 6.

148 H. K. AbdulKarim and T. A. Rashid

Table 6. Initial worker Ants generated randomly

Ant X1 X2 F(x) note

1 -2 3 13

2 -1 0 1 Local Best

3 1 1 2

– Iteration 1:

For each ant, find the local best ant, which is the local best solution for the current
iteration, and generate random r = 0.3 (suppose it is generated randomly for every ant).

Ant 1,1 = (-2,3), which represents the first iteration, the first ant, and it is equal to
the previous solution depending on algorithm steps, then formula (12) will be used to
generate ants step size and generate ant 1 for iteration 2 depending formula (9) for next
iteration:

�X2,1 = r × (X1,1best - X1,1)
�X = 0.3((−1, 0) − (−2, 3)) = (0.3, − 0.9)
X2,1 = Ant 1,1 + � Ant 2,1
X 2, 1 = (−2, 3) + (0.3,−0.9) = (−1.7, 2.1)(newsolution)

F(X 2, 1) = 7.3

F(X 2,1) is better than F(X1,1) then the solution of Ant 2,1 will be accepted for the
next iteration.

Ant 1,2= (-1,0)which represents the first iteration, the second ant, and it is equal to
a local best solution then formula (11) will be used to generate step size, which is used
to generate ant 2 for iteration 2 using formula (9), r = 0.3 (randomly):

�X1,2 = r × X1,2
�X = 0.3∗(−1, 0) = (− 0.3, 0).
X2,2 = (−1,0) + (−0.3,0) = (−1.3,0)(new solution)

F(X 2, 2) = 1.69

F(Ant 2,2) is not better than F(Ant 1,2) then the solution of Ant 2,2 will not be
accepted for the next iteration.

Ant 1, 3 = (1,1), which represents the first iteration, the third ant, and it is equal to
the previous solution depending on algorithm steps, then formula (12) will be used to
generate ants step size and generate ant 1 for iteration 2 depending on formula (9) for
next iteration, suppose r = 0.3 (randomly):

�X2,3 = r × (X1,3best -X1,3).
�X = 0.3∗((−1, 0) − (1, 1)) = (− 0.6, − 0.3).
X2,3 = (1,1) + (−.06, − 0.3) = (0.4, 0.7) (new solution)

F(X 2, 2) = 0.65

Moth-Flame Optimization and Ant Nesting Algorithm 149

Table 7. Ants generated for the second iteration

Ant X1 X2 F(x) note

1 -1.7 2.1 7.3

2 -1 0 1

3 0.4 0.7 0.65 Local Best

F(X 2,3) is better than F(X 1,3) then the solution of X2,3 will be accepted for the
next iteration. In iteration 1, all solutions will be accepted as a new solution for the next
iteration, except, the solution for ant 2, because it is worse than the previous ant, the
result of the ants is shown in Table 7:

– Iteration 2:

In the second iteration, Table 6, shows the previous ants andTable 7 shows the current
ants.

For each ant generate new random r = 0.3 (supposed randomly for each ant):
Ant 1,1 = (-1.7, 2.1), which is representing the second iteration, the first ant, and

it is neither local best nor equal to the previous solution depending on algorithm steps,
then Eqs. (14) , (15), (13) , (10), respectively, will be used to generate ants step size and
to generate ant 1 for next iteration, formula (9) will be used:

Tx1 = 8.75, Tprevx1 = 14.8, Dwx1 = 0.17
�x1 = 0.17 *(0.4 + 1.7)) = 0.35 (step change for parameter x1)
Tx2 = 5.25, Tprevx2 = 10.05, Dwx2 = 0.15
�x2 = 0.15 *(0.7 – 2.1) = -0.21 (step change for parameter x2)
�X 3,1 = (0.35, -0.21)
X3,1 = (-1.7, 2.1) + (0.35, -0.21) = (0.4, 1.89) (new solution)
F(X3,1) = 3.73 will accepted solution for next iteration

Ant 2, 2 = (-1,0), which represents the second iteration, the second ant, and is equal
to the previous solution depending on algorithm steps, then formula (12) will be used to
generate ants step size and generate ant 1 for iteration 2 depending formula (9) for next
iteration, suppose r = 0.3 (randomly):

�X2,3 = r
(
X1,3best − X1,3

)

�X = 0.3∗((0.4, 0.7) − (−1, 0)) = (0.42, 0.21)

X 3, 2 = (−1, 0) + (0.42, 0.21) = (− 0.58, 0.21)

F(X3, 2) = 0.38will accepted solution for next iteration.

150 H. K. AbdulKarim and T. A. Rashid

Table 8. Final population

Ant X1 X2 F(x) note

1 0.4 1.89 3.73

2 0.58 0.21 0.38 Local Best

3 0.4 0.7 0.65

Ant 2,3 = (0.4,0.7), which represents the second iteration, the third ant, and it is
equal to the local best solution, then formula (11) will be used to generate step size
which is used and generate ant 2 for iteration 2 using formula (9), r = 0.3 (randomly):

�X1,2 = r × X1,2

�X = 0.3∗(0.4, 0.7) = (0.12, 0.21)

X 3, 3 = (0.4, 0.7) + (0.12, 0.21) = (0.52, 0.91)

F(X3, 3) = 1.09will not accepted solution for the next iteration.

The result of worker ants is represented in Table 8 as the final population and the
local best is the global best which ant 2 with positons values X1 = −0.58, X2= 0.21 and
f(x) = 0.38.

4 Conclusion

Metaheuristic algorithms are working on randomness, which gives a global search in
the space search. Both MFO and ANA working on changing their position depending
on the step size with the current position. Both algorithms have some randomness for
changing positions but most part updating positions depends on a local best solution,
which leads to fast convergence but low exploration. The results of implementation steps
show that ANA is faster converge than MFO but it may stuck in the local solution if the
initial solution is bad or complex problems are given because step size depends on the
current position or some formulas for the local best solution when a new ant position
is worse than the current ant, then ant will not change its current position, this is low
exploration. The mplementation steps of MFO shows that when flame numbers decrease
along the iteration, the rest moths will update their location depending on a single flame,
this also may lead to the stuck algorithm in the local optima. In the algorithm of MFO
flames of next iteration is generated from current and previous iteration moths while
may some time global best is in old flame and the solution will lost during change then
flame elements also effect with low explotation mechanism.

Limitation of the MFO low exploration and flame element decision during itrations,
while ANA has fast convergence and low explorations depending on position change,
and has problems with some complex problems.

For future work apply some mechanism to improve exploration for both MFO and
ANA and compare the results again, then apply in different domain of problems like
solving binary and discrete problems to show the performance of both algorithms.

Moth-Flame Optimization and Ant Nesting Algorithm 151

References

1. Xin-She Yang ,Nature-Inspired Metaheuristic Algorithms, 2nd Edition; Publisher: Luniver
Press; (2010).

2. M. Dorigo, Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di
Milano, Italy (1992).

3. Hama Rashid, D.N.; Rashid, T.A.; Mirjalili, S. ANA: Ant Nesting Algorithm for Optimizing
Real-World Problems. Mathematics 9, 3111, 2021.

4. Yang,XS,ANewMetaheuristicBat-InspiredAlgorithm. In:González, J.R., Pelta,D.A., Cruz,
C., Terrazas, G., Krasnogor, N. (eds) Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg
(2010).

5. Dervis Karaboga, Artificial bee colony algorithm. Scholarpedia, 5(3):6915, (2010).
6. Kennedy, J.; Eberhart, R, “Particle Swarm Optimization”. Proceedings of IEEE International

Conference on Neural Networks. Vol. IV. pp. 1942–1948, . (1995).
7. Seyedali Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic

paradigm, Knowledge-Based Systems, Volume 89, Pages 228-249, (2015).
8. Y. Liu and B. Cao, “A Novel Ant Colony Optimization AlgorithmWith Levy Flight,” in IEEE

Access, vol. 8, pp. 67205-67213, 2020.
9. Liu, Y., Cao, B. & Li, H. Improving ant colony optimization algorithm with epsilon greedy

and Levy flight. Complex Intell. Syst. 7, 1711–1722 (2021).
10. Shekhawat, S., Saxena, A., Kumar, R., Singh, V.P. Levy Flight Opposition Embedded BAT

Algorithm for Model Order Reduction. In: Dey, N., Rajinikanth, V. (eds) Applications of
Bat Algorithm and its Variants. Springer Tracts in Nature-Inspired Computing. Springer,
Singapore, (2021).

11. Mridul Chawla&ManojDuhan , Levy Flights inMetaheuristicsOptimizationAlgorithms –A
Review, Applied Artificial Intelligence, 32:9-10, 802-821 , (2018)

12. M. Yahya, M.P. Saka, Construction site layout planning using multi-objective artificial bee
colony algorithm with Levy flights, Automation in Construction, Volume 38, Pages 14-29,
(2014).

13. Wang, C., Shang, P. & Shen, P. An improved artificial bee colony algorithm based onBayesian
estimation. Complex Intell. Syst. (2022).

14. R. Jensi, G. Wiselin Jiji, An enhanced particle swarm optimization with levy flight for global
optimization, Applied Soft Computing, Volume 43, Pages 248–261, (2016).

15. Hüseyin Haklı, Harun Uğuz, A novel particle swarm optimization algorithm with Levy flight,
Applied Soft Computing, Volume 23, Pages 333-345, (2014).

16. bhishek Sharma, Abhinav Sharma, Moshe Averbukh, Shailendra Rajput, Vibhu Jately,
Sushabhan Choudhury, Brian Azzopardi, Improved moth flame optimization algorithm based
on opposition-based learning and Lévy flight distribution for parameter estimation of solar
module, Energy Reports, Volume 8, Pages 6576–6592, (2022).

17. Oheil Mohseni, Alan C. Brent, Daniel Burmester, Will N. Browne, Lévy-flight moth-flame
optimisation algorithm-based micro-grid equipment sizing: An integrated investment and
operational planning approach, Energy and AI, Volume 3, 100047, (2021).

18. D. Jovanovic,M.Antonijevic,M. Stankovic,M. Zivkovic,M. Tanaskovic, N. Bacanin, Tuning
Machine Learning Models Using a Group Search Firefly Algorithm for Credit Card Fraud
Detection, Mathematics, Volume 10, No. 13, pp. 1 – 30, (2022)

19. Zivkovic, M. et al. , Novel Harris Hawks Optimization and Deep Neural Network App-
roach for Intrusion Detection , Proceedings of International Joint Conference on Advances in
Computational Intelligence, Algorithms for Intelligent Systems, Springer, Singapore (2022)

152 H. K. AbdulKarim and T. A. Rashid

20. Zivkovic, M. et al. Novel Chaotic Best Firefly Algorithm: COVID-19 Fake News Detection
Application. Advances in Swarm Intelligence. Studies in Computational Intelligence, vol
1054. Springer, Cham. (2023).

21. Prakash, S. et al. Hybrid GLFIL Enhancement and Encoder Animal Migration Classification
for Breast Cancer Detection, COMPUTER SYSTEMS SCIENCE AND ENGINEERING,
Vol. 41, No. 2, pp. 735 - 749, 2022

22. Salb, M. et al. Training Logistic Regression Model by Enhanced Moth Flame Optimizer
for Spam Email Classification. In: Smys, S., Lafata, P., Palanisamy, R., Kamel, K.A. (eds)
Computer Networks and Inventive Communication Technologies. Lecture Notes on Data
Engineering and Communications Technologies, vol 141. Springer, Singapore, (2023).

23. Bacanin, N. et al. A Novel Multiswarm Firefly Algorithm: An Application for Plant Classi-
fication. In: Kahraman, C., Tolga, A.C., Cevik Onar, S., Cebi, S., Oztaysi, B., Sari, I.U. (eds)
Intelligent and Fuzzy Systems. INFUS 2022. Lecture Notes in Networks and Systems, vol
504. Springer, Cham. (2022).

24. Budimirovic , N. et al. COVID-19 Severity Prediction Using Enhanced Whale with Salp
SwarmFeatureClassification,CMC-Computers,Materials&Continua,Vol. 72,No. 1, p. 1685
- 1698, Feb, (2022).

25. Bacanin,N. et al. Training aMultilayer Perception forModeling Stock Price Index Predictions
Using Modified Whale Optimization Algorithm. In: Smys, S., Tavares, J.M.R.S., Balas, V.E.
(eds) Computational Vision and Bio-Inspired Computing. Advances in Intelligent Systems
and Computing, vol 1420. Springer, Singapore.

26. Bacanin, N., Zivkovic, M., Bezdan, T. et al. Modified firefly algorithm for workflow
scheduling in cloud-edge environment. Neural Comput & Applic 34, 9043–9068 (2022).

27. Bacanin, N., Antonijevic, M., Bezdan, T. et al. Energy efficient offloading mechanism using
particle swarm optimization in 5G enabled edge nodes. Cluster Comput (2022).

28. Bacanin, N., Zivkovic, M., Al-Turjman, F. et al. Hybridized sine cosine algorithm with
convolutional neural networks dropout regularization application. Sci Rep 12, 6302 (2022).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Moth-Flame Optimization and Ant Nesting Algorithm: A Systematic Evaluation
	1 Introduction
	2 Methodology
	2.1 MFO
	2.2 ANA

	3 Case Study
	3.1 MFO Implementation Steps
	3.2 ANA Implementation Steps

	4 Conclusion
	References

