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Abstract. Rainfall hugely impacts every aspect of human life, such as transporta-
tion, agriculture, water management, and so on. It also is a grave cause of several
natural calamities, like landslides, floods, and drought, which pose a serious threat
to the well-being of individuals. These concerns have necessitated the need for
devising an effective technique to predict rainfall, which enables the undertaking
of effective preventive measures. Several works have focused on developing effi-
cient rainfall forecasting techniques; however, the uncertain nature of rainfall and
the lack of rainfall data limit their effectiveness. This paper proposes an efficient
rainfall prediction strategy using an optimizedDeepLearning approach.Here, pre-
diction is carried out using a Deep Long Short Term Memory network based on
the time series data of the rainfall. Further, the prediction efficiency is enhanced
by the utilization of the Circle Inspired Optimization Algorithm for the weight
optimization of the Deep Long Short Term Memory. Experimental results show
that the devised Circle Inspired Optimization Algorithm-Deep Long Short Term
Memory reveals enhanced performance by attaining a minimal value of Relative
Absolute Error at 0.023Mean Square Error of 0.151, and RootMean Square Error
of 0.389.

Keywords: Rainfall prediction · time-series data · Deep Learning · Technical
indicators · optimization

1 Introduction

Rainfall is the most dominant meteorological factor in the various facets of day-to-
day life. Rainfall can cause several noteworthy socio-economic effects ranging from
interruptions in transport services to the destruction of infrastructure in case of floods.
Extreme events, like floods, are the result of changes in climatic conditions, which
are prone to happen more commonly, and these events will cause numerous natural

© The Author(s) 2023
N. Bacanin and H. Shaker (Eds.): ICIITB 2022, ACSR 104, pp. 235–249, 2023.
https://doi.org/10.2991/978-94-6463-110-4_17

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-110-4_17&domain=pdf
https://doi.org/10.2991/978-94-6463-110-4_17


236 P. Vijaya et al.

calamities in the forthcoming years [1]. Further, the variation in weather can cause
a potential surge in air pollution during summer and winter [2]. The increase in air
pollution levels can lead to severe health issues, like asthma and other lung diseases
[3, 4]. Moreover, it is an essential factor in agriculture, thus impacting the economic
condition of any country. In addition, it is a crucial factor impacting various fields,
such as hospitality [5, 6], forestry, electricity generation, and so on. Rainfall prediction
has to be accomplished in advance to enable effective harvesting of rainwater in the
event of water shortage. Further, it is highly crucial in handling natural calamities, like
avalanches, mass movements, floods, and landslides. The aftermath of natural disasters
occurring due to rainfall has an enduring impact on the culture of any region and hence,
effective rainfall prediction can aid in taking preventive actions against natural calamities
and alleviating them [7, 8].

Practically, rainfall prediction is regarded as one of the highly difficult tasks and
has been carried out globally by multiple researchers. A major aspect restricting the
effectiveness of rainfall prediction is mainly the uncertain and chaotic aspect of rainfall
[9]. The majority of the hydrological processes normally depict a higher degree of
spatial and temporal variance that causes non-stationaries in the observed hydrological
information [10]. Accurate rainfall prediction offers an exact approximation of the risks
associated and helps in realizing efficient mitigation strategies [11]. The challenges
in rainfall forecasting are mainly due to the rainfall’s seasonal nature and measure.
Normally, rainfall prediction is executed using two strategies: dynamic and empirical
schemes. The dynamic techniques utilize statistical aswell as physicalmodels to forecast
seasonal rainfall, while the empirical schemes utilize the relation among the historical
information.Artificial NeuralNetworks (ANN) and regressionmodels use the concept of
the empirical scheme in forecasting [12]. Furthermore, Deep learning (DL) schemes and
optimization algorithms, like Firefly Algorithm [13–16], Multi-Swarm Algorithm [17],
particle swarmoptimization [18], sine cosine algorithm [19],Moth FlameOptimizer [20]
have shown promising results for solving complicated issues with less computational
complexities and hence used in dealing with hydrological variable prediction at different
spatial and temporal scales [21].

This paper devises an effective rainfall prediction technique based on the input time
series data of rainfall. Further, the technique utilizes several technical indicators to iden-
tify the most relevant information in the input data. From these features, Tanimoto and
Dice similarity are employed to determine the prominent features, which are provided to
the Deep Long Short Term Memory (Deep LSTM) for prediction. The weight parame-
ters of the Deep LSTM are adapted based on the Circle Inspired Optimization Algorithm
(CIOA).

The key contribution of this work is as follows,

• DevisedCIOA-DeepLSTMfor rainfall prediction:Here, rainfall prediction is carried
out using the Deep LSTM based on the optimal technical indicators acquired from the
input time series data. Moreover, the CIOA is utilized to enhance prediction efficiency
by optimizing the weight parameters of the Deep LSTM.
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The organization of the rest of the work is as follows: Sect. 2 presents the existing
rainfall prediction strategies, Sect. 3 details the current work, with the experimental
outcomes portrayed in Sect. 4, and the conclusion is elaborated on in Sect. 5.

2 Motivation

Rainfall prediction techniques have been addressed for a long time, and numerous works
have been proposed to carry out the task of rainfall prediction. The time-series data
utilized in the forecasting process makes it highly difficult in estimating the rainfall.
Here, some of the prevailing works in rainfall prediction are briefed with their merits
and issue that encouraged the formulation of the current work.

2.1 Literature Review

Among various studies that have focused on developing effective rainfall prediction
techniques, a few are briefed in this section. Dr.S. Soundararajan, et al. [8] developed a
Deep Convolutional Neural Network (Deep CNN) for predicting rainfall by considering
the variation in the atmosphere and environmental factors, like humidity, temperature,
and precipitation. This technique allowed the identification of variation/anomalies in the
time-series data but the approach was not evaluated in comparison to other techniques.
R. Venkatesh, et al. [12] proposed a Generative Adversarial Network (GAN) to forecast
rainfall based on the rainfall information in India. This method successfully achieved
high accuracy; however, it required high computational resources. Budiman, H. and
Naparin, H., [22] developed a Backpropagation Neural Network (Backpropagation NN)
for forecasting rainfall. This technique achieved high accuracy with minimal error, but
the high performance achieved was with minimal input data. Chong, K.L. et al. [11]
presented a CNN with Discrete Wavelet Transform (DWT) for predicting the time-
series rainfall data. Though this scheme successfully captured the rainfall data patterns
while forecasting or monthly, it failed to compute the uncertainty individually in various
zones.

2.2 Challenges

The prevailing rainfall prediction schemes endure the following challenges.

• In [12], GAN was employed in forecasting rainfall monthly or daily, the main issue
faced by the approach is that it failed to minimize the computational time endured
during the training stage for satisfying the requirements in real-time scenarios.

• The Backpropagation Neural Network (NN) was proposed in [22] for forecasting
rainfall, this technique though achieved high accuracy and it was unsuccessful in
improving the efficiency of prediction using more input data.

• The main challenge encountered by CNN in [11] was that it did not consider the
utilization of statistical methods, like MannKendall test, and box-cox transformation
to address the issues faced due to the uncertainties, occurring because of variations in
water regimes, temperature, and climate.
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• Most of the prevailing techniques in rainfall prediction cannot identify the non-visible
features in the data and suffer from high computational complexity. Further, the non-
availability of rainfall data affects the performance efficiency.

3 Proposed CIOA-Deep LSTM for Rainfall Prediction

This section presents the devised CIOA-Deep LSTM for rainfall prediction. The devel-
oped CIOA-Deep LSTM is realized using the following phases. The primary step in the
realization of the proposed rainfall prediction technique is the acquisition of input time
series data from the dataset [23]. The accumulated data is then utilized in the extraction of
various technical indicators, like Double Exponential Moving Average (DEMA), Adap-
tive Moving Average (AMA), Triple Exponential Moving Average Oscillator (TRIX),
Moving Average Convergence Divergence (MACD), Money Flow Index (MFI), Price
Channel (PC), Rate of Change (ROCP), and Time Series Forecast (TSF). From the mul-
tiple features determined, the best feature that precisely represents the input data are
selected based on Tanimoto similarity and Dice similarity. Finally, rainfall prediction
is carried out using the Deep LSTM [24], whose weight parameters are adjusted using
CIOA [25]. The structural design of the devised CIOA-Deep LSTM is displayed in
Fig. 1.

3.1 Data Gathering

In this work, rainfall is predicted based on the data containing the regular observations
of the weather from numerous weather stations in Australia, and this time series data is
acquired from a dataset R, which can be represented using the following expression,

R = {R1,R2, ..,Ri, ...,Rr} (1)

Fig. 1. Structural design of the devised CIOA-Deep LSTM for rainfall prediction
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Here, r indicates the overall count of data contained in the dataset, and Ri represents the
ith data that is considered for further processing.

3.2 Extraction of Technical Indicators

Several technical indicators, such as DEMA, AMA, TRIX, MACD, MFI, PC, ROCP,
and TSF are employed in the evaluation of the time-series data utilized in the proposed
rainfall prediction scheme, and these indicators are determined for the input data Ri. The
eight technical indicators utilized are briefed as follows.

i) DEMA: The DEMA indicator aims at providing a smoothed average with minimal
lag in comparison to the straight Exponential Moving Average (EMA) and is computed
based on the expression given below,

DEMA = (2 ∗ EMA(a)) − (EMA(a) of EMA(a)) (2)

Here, a denotes the period.
ii) AMA: The AMA indicator is sensitive to fluctuations in data, and it becomes highly
sensitive in case of data change in a specific direction and is least sensitive in case of
unstable data movements. It is represented by,

AMA = AMA(1) + b ∗ (close − AMA(1)) (3)

Here, close is the value of the rainfall at the period end, smoothing constant b is
given by b = [

(Vi ∗ (fc − sc)) + sc
]
, where Vi indicates the user-defined quantification

of trend strength or volatility, fc and sc denote the fastest and slowest smoothing constant
fc = 2

/
(fn + 1), and sc = 2

/
(sn + 1), where fn signifies the fast period and sn denotes

the slow period.
iii)TRIX: It is used to display the percentage rate change among two triple-smoothed
EMAs and is the momentum indicator that keeps oscillating about zero, and is calculated
using the following formula,

Trix = (EMA3a − EMA3a−1)
/
EMA3a−1 (4)

Here, EMA3a and EMA3a−1 indicates the triple EMA at the current and previous
periods.
iv) MACD:MACD is a technical indicator that gives the difference among two Moving
Averages (MAs) of various lengths, and is expressed as,

MACD = FMA − SMA (5)

Here, SMA is the longer MA and FMA represents the shorter MA.
v) MFI: This parameter utilizes both flow and volume of the rainfall to quantify the
rainfall, and is computed based on the following formula,

MFI = 100 − (
100

/
(1 + RR)

)
(6)

Here, RR is the rainfall ratio.
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vi) PC:The PC shows two bands, such as the upper band indicating themaximal value of
rainfall in the last a periods and the lower band representing the lowest value of rainfall.
vii) ROCP: This indicator is also referred to as the momentum indicator and it is used
to compare the present value of data to the past values and is calculated based on the
following expression,

ROCP = (CR − Rfa) − 1 (7)

Here, CR indicates the current rainfall, and Rfn is the rainfall values a years ago.
viii) TSF: It is also known asmoving linear regression and is used to compute the present
regression value of every bar based on the least square fit technique. TSF is calculated
with the expression below,

y = fx + g (8)

Here, f represents the slope and g is the interception.
All the extracted technical indicators are grouped to form the feature vector, which

is formulated as,

M = {m1,m2, ...,m8} (9)

Here, m1 is the DEMA, m2 represents the AMA indicator, m3 signifies TRIX, m4
denotes MACD, m5 symbolizes MFI, m6 refers to PC, m7 implies ROCP, and m8 char-
acterizes TSF. The feature vector thus produced is forwarded to the feature selection
phase.

3.3 Feature Selection Using Tanimoto and Dice Similarity

The determined feature vector M comprises multiple features, and from these features,
the best feature that precisely represents the input data are selected based on Tanimoto
similarity and Dice similarity. The process of feature selection based on the Tanimoto
similarity and Dice similarity is detailed in the succeeding sections.

Tanimoto Coefficient Similarity
The Tanimoto metric measures the similarity by taking on values between 0 and 1, with
1 being assigned in the case of identical vectors, and 0 being measured for non-identical
vectors. The Tanimoto similarity is computed by,

Mk×u = C · D
‖C‖2 + ‖D‖2 − C · D (10)

where, C and D indicates the candidate and class features, respectively. Once the Tan-
imoto coefficients are computed for all features, the top k valued features with high
values are selected, with k > s, where s × u is the size of the input feature.

Dice Similarity
The optimal features are selected by subjecting the Tanimoto similarity-measured fea-
ture vector Mk×u to the Dice similarity coefficient measurement. The Dice similarity



Feature Selection and Optimization Based Deep Learning 241

is a statistical technique used to quantify the similarity among two feature vectors. It
effectively eliminates the redundant and irrelevant features in the data and is formulated
as.

Mk×l = 2 ∗ (C ∩ D)
/

(|C| + |D|) (11)

Here, l > u, and top valued features are selected after computing the dice similarity of
each feature, and the feature thus selected denoted by B is then employed in the rainfall
prediction.

3.4 Rainfall Prediction Using the Developed CIOA-Deep LSTM

After preparing the rainfall data using the above-detailed techniques, the selected features
B is then given to the Deep LSTM [24] for predicting the rainfall. The weights of the
Deep LSTM are determined using the CIOA [25]. The process of rainfall prediction
using the proposed CIOA-Deep LSTM is elucidated in this section.

Deep LSTM
The Deep-LSTM [24] is comprised of a stack of LSTM units, which capture the non-
linear features of the input data. It also has the ability to achieve enhanced performance
by exploring the various intrinsic features of time series data over a long duration. The
optimal feature vector selectedB is applied to the Deep LSTM for accomplishing rainfall
prediction. The Deep LSTM schemes utilize the concept of memory cells and thereby,
effectively handling the vanishing gradient issue. It comprises few internal contextual
state cells that perform as short-term as well as long-term memory cells, and based on
the state of these cells, the output varies. The Deep LSTM working totally relies on the
memory cells. Consider that a node ct in the Deep LSTM is provided with an input dt
from the input layer and prior hidden states et−1 at a time t. The output of the Deep
LSTM is given by,

et = tanh(zt)�ut (12)

where, zt = ct�ht + zt−1�vt , with zt denoting the internal state at time t, � represents
pointwise linear operator, ht and ut indicate the function of the input and output gates.
The structural design of the Deep LSTM is explicated in Fig. 2.

CIOA for Weight Optimization of the Deep-LSTM
The weight parameters of the Deep-LSTM are adapted based on the CIOA [25], which
is inspired by the commonly utilized properties of the trigonometric circle. The CIOA
uses search agents that define the arc trajectories and are controlled by two distinct
parameters, like the radius of the circumference and the user-determined angle. The
CIOA offers high efficiency and robustness and is effective in addressing problems with
multiple constraints. The algorithmic steps of the CIOA are listed below.

Step i) Initialization: The primary step in the CIOA is the initialization of the search
agents, wherein all the search agents travel along the arc driven by two factors, like the
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Fig. 2. Structural design of Deep LSTM

radius γ computed by the algorithm, and the user-defined angle ϕ. Consider a population
of search agents to be represented as,

C = {C1,C2, ...,Cs, ..,CD} (13)

Here, D denotes the total count of search agents, and every agent Cs is initialized with
a radius given by,

γs = Eγ .s2
/
D, 1 ≤ s ≤ D (14)

Here, Eγ is a constant, formulated asEγ = 1
D

√
ub − lb, ub and lb indicate the maximum

and minimal limits of the variable.
Step ii) Fitness function: The problem is formulated as a minimization issue and so

the fitness parameter considered here is the MSE, which is given by,

MSE = 1

α

α∑

i=1

(
eit − ei∗t

)2
(15)

where, et and e∗
t indicates the actual and the targeted output of the Deep LSTM. The

agents are categorized in ranking based on the achieved solution quality.
Step iii) Upgrade search agents position: The location of the search agents relies

on the categorization executed in the preceding iteration. The search agents are updated
based on the expression given below.

Z2s(q + 1) = Z2s(q) − W1.γs. sin(q.ϕ) + W2.γs. sin((q + 1).ϕ) (16)

Z2s−1(q + 1) = Z2s−1(q) − W3.γs. cos(q.ϕ) + W4.γs. cos((q + 1).ϕ) (17)

wherein, q indicates the present iteration, 2s and 2s − 1 indicate the even and odd
numbers. Wi, i = 1 to 4 are arbitrary numbers following a uniform distribution with
value in range [0, 1]. Once the search agents are updated, the value of the variable Zs
is checked to ensure the lower and upper limits are not exceeded, and if exceeded, the
variable Zs is assigned a value of the agent who has attained the optimal solution.

Step iv) Update radius: When a complete lap is covered by the search agent after s
iterations, the new radius value �γnew is computed using the following expression,

�γnew = �γ 0.99 (18)
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Step v) Update variable range: A variable Gls is used to restrict the agents to the
most hopeful regions in the search space, thus performing an exclusive local search.
The exclusive local search begins at the qth iteration, while the proportion of s to the
total iteration count is higher than Gls. Correspondingly, the lower and upper limits are
computed as,

lb1s = Zsbest − ub − lb

10000
(19)

ub1s = Zsbest + ub − lb

10000
(20)

where, Zsbest indicates the variable that attains the optimal solution in sth dimension.
Step vi) Re-evaluate fitness: After upgrading the location of the agents, the fitness

of the agents is computed with Eq. (15), and the agent with minimal fitness is identified
as the best solution.

Step vii) Terminate: The process is reiteration till the maximal iteration count is
attained. Algorithm 1 depicts the pseudocode of the CIOA.

Thus, by the weight optimization of the Deep LSTM based on the CIOA, the devised
CIOA-Deep LSTM effectively performs rainfall prediction with minimal error.
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4 Results and Discussion

The developed CIOA-Deep LSTM is examined for its efficacy considering various
parameters in comparison to the prevailing rainfall prediction methods, and this is
detailed in this section.

4.1 Experimental Set-Up

The proposed CIOA-Deep LSTM is realized on a PC with Windows 10, 8 GB RAM,
and Intel i5 processor in a Python environment.

4.2 Dataset Description

Theexperimentationof the developedCIOA-LSTMis accomplishedusing theAustralian
weather dataset [23], which comprises nearly 10 years of everyday observations of
weather at different locations all over Australia.

4.3 Evaluation Measures

The efficacy of the proposed prediction model is investigated by considering metrics,
likeMean Square Error (MSE), RootMean Square Error (RMSE), andRelativeAbsolute
Error (RAE).

a) MSE: MSE parameter denotes the mean of the square of the variation between the
targeted and actual output of the Deep LSTM and is computed using Eq. (15).

b) RMSE: This metric is computed by determining the square root of MSE, and is
represented as,

RMSE = √
MSE =

√√√√ 1

α

α∑

i=1

(
eit − ei∗t

)2
(21)

c) RAE: It measures the ratio of residual or mean error to the error generated by the
Deep LSTM, and is quantified by,

RAE =

α∑

i=1

∣∣eit − ei∗t
∣∣

α∑

i=1

∣
∣eit − e

∣
∣

(22)

where, e =
α∑

i=1
eit

4.4 Comparative Techniques

The performance of the presented prediction model is examined considering various
rainfall estimation schemes, like Deep CNN [8], GAN [12], Backpropagation NN [22],
and CNN [11].
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Fig. 3. Assessment considering k-group based on a) RAE, b) MSE, and c) RMSE

4.5 Comparative Assessment

The comparison of the effectiveness of the prediction schemes considering k-group and
learning set based on different parameters is depicted in this section.

Evaluation Based on K-Group
The developedCIOA-DeepLSTM is evaluated considering k-group and this is illustrated
in Fig. 3. Figure 3a) shows the evaluation of the devised CIOA-Deep LSTM based on
RAE. With k-group of 4, the RAE value attained by the rainfall prediction schemes,
like Deep CNN, GAN, Backpropagation NN, CNN, and the presented CIOA-Deep
LSTM is 0.070, 0.066, 0.064, 0.063, and 0.048, correspondingly. In Fig. 4b, the MSE-
oriented assessment of the developed CIOA-Deep LSTM is illustrated. The various
prediction models computed MSE of 0.541for Deep CNN, 0.509 for GAN, 0.386 for
Backpropagation NN, 0.219 for CNN, and 0.153 for the devised CIOA-Deep LSTM,
with k-group of 5. Figure 3c) presents the analysis of the current work based on RMSE.
The value of RMSE attained is 0.734, 0.713, 0.620, 0.467, and 0.391, corresponding to
Deep CNN, GAN, Backpropagation NN, CNN, and the presented CIOA-Deep LSTM,
with k-group of 7.
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Fig. 4. Valuation based on learning set considering a) RAE, b) MSE, and c) RMSE

Assessment Considering Learning Set
Figure 4 displays the examination of the developed CIOA-Deep LSTM considering
different learning sets. Figure 4a) illustrates the RAE-oriented evaluation of the current
work. The RAE value achieved by the devised CIOA-Deep LSTM is 0.024, with 60%
learning set, while the other techniques, such asDeepCNN,GAN,BackpropagationNN,
and CNN attained RAE of 0.045, 0.042, 0.040, and 0.039. In Fig. 4b), the assessment
of the proposed prediction scheme concerning MSE is presented. The techniques, like
Deep CNN, GAN, Backpropagation NN, CNN, and the devised CIOA-Deep LSTM
measured MSE of 0.636, 0.624, 0.612, 0.602, and 0.522, with 70% learning set. The
RMSE-oriented assessment of the current work considering the learning set is portrayed
in Fig. 4c). TheRMSEvalue quantified is 0.794 forDeepCNN, 0.787 forGAN, 0.776 for
Backpropagation NN, 0.730 for CNN, and 0.709 for the current work for 80% learning
set.

4.6 Comparative Discussion

The comparative discussion of the current work is accomplished in this section, in which
the performance of the current work is examined based on various metrics, like RAE,
MSE, and MSE in comparison to the prevailing rainfall forecasting schemes. Table 1
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Table 1. Comparative discussion of the developed CIOA-Deep LSTM for rainfall prediction

Variation Metric Deep CNN GAN Backpropagation
NN

CNN Proposed
CIOA-Deep LSTM

K-group RAE 0.061 0.060 0.055 0.054 0.046

MSE 0.521 0.497 0.375 0.205 0.151

RMSE 0.726 0.703 0.603 0.453 0.389

Learning set RAE 0.042 0.039 0.032 0.031 0.023

MSE 0.621 0.601 0.600 0.513 0.500

RMSE 0.794 0.763 0.762 0.713 0.707

shows the comparison of the presented technique, with values depicted relating to k-
group of 9 and learning set of 90%. The current work is observed to have attained a low
value of RAE at 0.023 MSE of 0.151, and RMSE of 0.389 owing to the utilization of
CIOA-Deep LSTM for predicting rainfall.

5 Conclusion

This work presents the potential of an optimized DL-based model, named CIOA-Deep
LSTM for predicting rainfall based on the time-series rainfall data. DL approaches have
the capability to learn the non-linear features in the time-series information and hence
can be effectively utilized in the process of rainfall prediction. Here, rainfall prediction
is performed by utilizing a Deep LSTM, whose weight parameters are optimized by the
CIOA. The input rainfall data is subjected to the extraction of technical indicators, during
which a total of eight indicators were extracted. The indicators that represent the most
relevant information in the input are selected using Tanimoto and Dice similarity. The
selected features are applied to theDeep LSTM for rainfall prediction, and it is trained by
the designed optimization algorithm. The effectiveness of developed CIOA-Deep LSTM
is examined based on parameters, like RAE, MSE, and RMSE. Experimental results
show that the devised CIOA-Deep LSTM reveals enhanced performance by attaining
a minimal value of RAE at 0.023 MSE of 0.151, and RMSE of 0.389. However, the
performance of the devised approach is evaluated with a single dataset. In the future, the
performance will be evaluated by considering more complex datasets. Also, the efficacy
of the developed technique can be improved by considering hybrid DL approaches to
close the gap between the targeted and attained outputs.
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