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Abstract. The recent pandemic had a major impact on online transac-
tions. With this trend, credit card fraud increased. For the solution to
this problem the authors explore existing solutions and propose an opti-
mized solution. The solution is based on an extreme gradient boosting
algorithm (XGBoost) and a teaching-learning-based-optimization algo-
rithm. The dataset optimizes the hyperparameters of the XGBoost which
is utilized as the main driver for the solution. The evaluation was per-
formed among other similar techniques that have solved this problem suc-
cessfully in the past. Standard performance metrics were applied which
are accuracy, recall, precision, Matthews correlation coefficient, and area
under the curve. The result of this research presents a dominant solu-
tion that was proposed and successfully outperformed all other compared
solutions overall.
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1 Introduction

E-commerce as well as online transactions have flourished during the COVID-19
global pandemic. On the other hand, most industries that do not rely on internet
shopping suffered during the pandemic and hence have turned to e-commerce
to mitigate the newly emerged situation [1]. This market has been expanding
rapidly before the pandemic, but not as much. Furthermore, this trend is still on
the rise even though the pandemic is on its decline. These predictions are also
in the higher margins for credit card fraud, as the projections look grim for the
future. The criminal attack of stealing one’s credentials is considered a fraud of
identity theft. The perpetrator requires private information on the user obtained
by malicious attempts. It is only logical that as the usage of credit cards is on
the rise for an extensive period of time, the crimes related to this subject also
rise. Therefore, a security system that can detect and prevent such attempts is
paramount.
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This research introduces a hybrid security system based on extreme gradient
boosting (XGBoost) that is capable of detecting malicious activity with trans-
actions performed by credit cards. The method was tested on a public dataset
that is built from real-world data of credit card transactions in Europe. To
handle the dataset’s high imbalance, a swarm intelligence algorithm was imple-
mented called teaching-learning-based-optimization algorithm (TLB) [52]. Other
machine learning approaches utilized for comparison in this research are random
forest (RF), decision tree (DT), extra tree (ET), support vector machine (SVM),
and logistic regression (LR). Every approach was tested independently for the
sake of classification and convincingness quality.

Furthermore, the TLB application for controlling highly imbalanced dataset
is explored as a possibility. TLB algorithm has been applied for hyperparameter
optimization of XGBoost. The experimental setup has been applied as in [33]
for the establishment of grounds for comparison. Additionally, the metrics for
comparison that were calculated are the precision, accuracy, recall, Matthews
correlation coefficient (MCC), and the area under the curve (AUC).

The most notable contributions of this work follow:

– Fraudulent credit card transaction scalable detection framework.
– Extreme gradient boosting hyperparameter optimization by teaching-

learning-based-optimization algorithm.
– The increase of performance on the subject dataset with combined XGBoost

and TLB techniques followed by a comparative analysis utilizing the following
metrics: accuracy, precision, recall, AUC, and MCC.

– The confirmation of effectiveness of the proposed framework through testing
on an extremely imbalanced dataset.

The manuscript is organized in the following way: Sect. 2 discusses recent
advancements in the field and machine learning application to the problem.
Section 3 focuses on the TLB metaheuristics. Section 4 describes the configura-
tion of experiments, the suggested framework implementation on the dataset,
as well as the results through comparative analysis. The final Sect. 5 brings this
paper to an end.

2 Literature Review and Background

The structure for machine learning model building for credit card fraud detection
is available in the work of Tanouz et al. [60]. The European cardholders dataset
was utilized for the determination of the chosen methods’ performance. The set
imbalance was tackled by the implementation of an under-sampling approach.
The main measure of performance was the accuracy and random forest and
logistic regression were examined. This has resulted in a 95.16% accuracy of
the logistic regression, while the efficiency of the random forest came slightly
behind with 91.24%. Additionally, the adequacy of the method’s performance
was measured by a confusion matrix regarding the negative and positive classes.
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Propositions of a hybrid method between Adaboost and majority voting are
made by Randhawa et al. [51]. The dataset also included information from
Europe and besides Adaboost the method utilized different machine learning
approaches, like support vector machines. Key measurements of performance
were accuracy and Matthew’s correlation coefficient. The results of the proposed
method were 0.044 for MCC and 99.959% for accuracy.

Parallel investigation of machine learning approaches for the problems of
fraudulent activity detection with credit cards was performed by Rajora et al.
[50] on the European cardholders dataset. Noteworthy utilized methods from the
work are k-nearest neighbors (kNN) and random forest (RF). The performance
was measured by accuracy and area under the curve. The conclusion was that the
kNN obtained 93.2% accuracy and AUC of 0.93, while the RF obtained 94.9%
accuracy and AUC of 0.94. The imbalance of the dataset was not explored in
this work.

The dataset used in this research has been put together by a collection of
European cardholders’ September 2013 transactions. The dataset is available
openly on Kaggle. The dataset characteristics include 30 attributes alongside
time and amount for 284807 transactions. Valid transactions include 99.828% of
the dataset, while the 0.172% are false.

2.1 Extreme Gradient Boosting Algorithm

Regularization terms and second-order derivatives are utilized by XGBoost and
introduced to the model of the random forest. The mentioned modifications
have been performed due to performance-wise improvements. Consequentially,
the XGBoost is an algorithm utilized for the solution of highly complex problems.
The objective function optimization is performed by an additive training method
of XGBoost. Optimization of each step is performed by considering the previous
step’s outcome. XGboost t-th objective function equation:

Foi =
∑n

k=1 l
(

yk, ŷ
i−1
k

+ fi (xk)
)

+ R( fi) + const (1)

where the term loss of the t-th round is represented as l, the constants term as
const, and regularization term R calculated by Eq. (2).
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where the increase in customization parameters γ and λ has a positive influence
on the tree’s simplicity.

The overfitting is addressed by the second-order Taylor expansion application
to Eq. (1):
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The Eq. (3 is a combination of Eq. 2, Eq. 4 and Eq. 5 which form the next
equations:
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where the loss function score is denoted as Fo∗, while the solution of weights is
w∗

j .

2.2 Metaheuristics Optimization

The algorithms from the field of swarm intelligence (SI) are nature inspired by
the collective behavior of animals. This translates well to algorithms that have
proven excellent optimizers for NP-hard problems. The potential for hybridiza-
tion should never be overlooked with these solutions as they further push their
final potential with said process. The standard swarm algorithms are particle
swarm optimization (PSO) [48], ABC [37], elephant herding optimization (EHO)
[61], firefly algorithm (FA) [64], and whale optimization algorithm (WOA) [47].
Some of the more novel algorithms are and harris hawk optimization (HHO) [32],
salp swarm algorithm (SSA) [40], grasshopper optimization algorithm (GOA)
[43], and monarch butterfly optimization (MBO) [62].

Phenomena like mutation, crossover, selection, and reproduction that are
observable principles of evolution are applied with evolutionary algorithms (EA).
The paradigms for evolutionary calculation are genetic programming, evolution-
ary strategies, genetic algorithms, and evolutionary programming.

On the other hand, artificial immune systems (AIS) are applied in theoretical
immunology and have some similarities to the EA. Antibodies are considered
candidate solutions, and their growth depends on the cloning, mutation, and
selection operators. The memory cells store good solutions and antigens serve as
an objective function. Most of the AIS-based metaheuristics rely on the basis of
clonal selection alike clonal selection algorithm [31], B-Cell algorithm, and arti-
ficial immune network [30] used for optimizing (opt-AINET) [28], and negative
selection algorithms.

As the diversity of metaheuristic algorithms rises, many different phenomena
have been exploited and the social behaviors were not skipped. Principles like
teaching and followers for the said teacher otherwise regarded as the learners
(e.g. TLB), and social networks [59] are exploited in this sub-field. The main
inspiration for these algorithms are social interactions. These can be very com-
plex and once more the principles translate well to algorithms that are capable
of NP-hard solving.

The informatics field has benefited from the all of the above algorithm types
as the improvements to real-world problems can be seen in practice some of
which are: medical diagnosis applications [16,22,26,36,49,58], wireless sensor
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network optimizations [6,11,14,55,67,77], stock price predictions [18], as well
as intrusion detection [2,34,45,65,66,70,74,76] and plant classifying task [19],
cloud computing scheduling, edge and fog computing [4,7,17,25,54,69], fea-
ture selection [10,21,24,35,38,56,71], dropout regularization [13], COVID-19
detection and fake news detection [27,68,72,73,75], tuning artificial neural net-
works [5,8,9,12,15,20,53,57], text clustering [23], cryptocurrency price predic-
tion as well [46], and list goes on.

3 Teaching-Learning-Based-Optimization Algorithm

The TLB is split into two learning phases which are the teacher and the
learner phase. For the duration G population PG is described as PG =

[X1,G, X2,G, ..., XNp,G]. The Np shows the size of the population, while the vector
of the i-th individual is Xi,G. Every Xi,G(i = 1, 2, ..., Np) vector possess dimensions
D of subjects that are defined by Xi,G = [x1i,G, x2i,G, ..., xDi,G]

T .
During the teacher phase, the individual with the best fitness is chosen for

the teacher Xt,G for the current generation G. According to the teacher phase
law, all individuals learn from the teacher which is represented as a vector as
Vi,G = [v1i,G, v2i,G, ..., vDi,G]

T calculated by the following equation:

Vi,G = Xi,G + ri(Xt,G − TFMG) (8)

where the mean vector of all individuals is represented as i = 1, 2, ..., Np and
MG, ri ∈ (0, 1) represents a random value, while the learning weight is TF =

round[1 + rand(0, 1)2 − 1]. The generation G increases by one upon completion
of the teacher phase and PG+1 population gets formed with new individuals
Xi,G+1(i = 1, 2, ..., Np). The evaluation of the Vi,G and Xi,G fitness values can
update the individual of generation G + 1 by the following equation:

Xi,G+1 =

{
Xi,G, i f f (Xi,G) ≤ f (Vi,G),

Vi,G, otherwise
(9)

where the fitness function is F(·).
The learner phase differentiates from the teaching phase as the indi-

viduals mutually teach other. The vector for the learner phase is Ui,G =

[u1i,G, u2i,G, ..., uDi,G]
T obtained from Eq. 10.

Ui,G =

{
Xm,G,+rm(Xm,G − Xn,G), i f f (Xm,G) < f (Xn,G),

Xm,G,+rm(Xm,G + Xn,G), otherwise
(10)

in which the random value rm is between 0 and 1, and Xm,G and Xn,G represent
randomly selected units of the current population while the m � n.

After the learner phase finishes, the generation G is incremented while the
new population PG + 1 is formed with use of Xi,G+1(i = 1, 2, ..., Np) individuals.
The fitness values of Vi,G and Xi,G are evaluated at the generation G + 1 can be
updated by the following equation:
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Xi,G+1 =

{
Xi,G, i f f (Xi,G ≤ f (Ui,G)),

Ui,G, otherwise
(11)

The TLB pseudocode is provided in Algorithm 1. Firstly, the population is
initialized, which includes bounds setting and terminal condition setting beside
the generation of the population. Afterward, the algorithm switches between
the phases for each iteration until the condition for termination is met (eq.
G ≥ GMAX or FesMAX).

Algorithm 1. Psuedocode for the TLB algoriithm
Initialize population;
Setting the population bounds;
Randomly generate an initial population P0;
G = 0, Fes = 0;
while G < GMAX | |Fes < FesMAX do;
Teacher phase
for (i = 1; i ≤ Np; i + +);
Select the teacher Xt,G and calculate the mean vector MG ;
Implement the teacher learning law according to Eq. 8;
Check the bounds;
Update the population according to Eq. 9;

end for;
G + +, Fes = Fes + Np;
Learner phase
for (i = 1; i ≤ Np; i + +);
Randomly select two individuals Xm,G and Xn,G where � m � n;
Implement the learner learning law according to Eq. 10;
Check the bounds;
Update the population according to Eq. 11;

end for;
G + +, Fes = Fes + Np;

4 Experiments

4.1 Dataset and Experimental Setup

The dataset used for model evaluation is a synthetic credit card dataset obtain-
able from [3]. The dataset is described in Table 1.

The optimization task for the subject dataset is binary to its entries being
labeled as 0 or 1, which represent the legitimate fraudulent data respectively.
For this case the main validating metrics of performance are precision (PR),
accuracy (AC), and recall (RC), calculated by the next equations:

AC =
TN + TP

TP + TN + FN + FP
(12)
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Table 1. Description of the dataset key features

Properties Class

User, Card, Year, Is fraud

Month, Day, Time,

Amount, Use Chip,

Merchant Name, Merchant City,

Merchant State, Zip,

MCC, Errors

Fig. 1. Class distribution and scatter plot of the observed dataset

PR =
TP

TP + FP
(13)

RC =
TP

TP + FN
(14)

for which the negative and positives that are true are marked with TN and TP,
respectively. The false negatives and positives are respectively FN and FP.

Due to high disproportions with the used dataset (shown on Fig. 1), addi-
tional metrics are required. Confusion matrix (CM), the area under the curve
(AUC) [44], and the MCC [29] are applied to the comparison process.

The classification quality is measured by the utilization of the MCC for the
range of values [−1, 1] for which higher values are better. The same range and
value ranking is applied to the AUC measurement as well which is used to test the
quality and reliability of the model [44]. The CM is used for observed classifier
error highlighting [39].

MCC =
(TN × TP) − (FN × FP)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(15)

For all the implemented metaheuristics eight independent runs of 15 itera-
tions and 6 individual solutions in the populace were performed, and the follow-
ing six hyperparameters have been optimized by each approach for the XGBoost
model:

– learning rate (η), boundaries: [0.1, 0.9], type: continuous,
– min child weight, boundaries: [1, 10], type: continuous,
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– subsample, boundaries: [0.01, 1],type: continuous,
– collsample bytree, boundaries: [0.01, 1], type: continuous,
– max depth, boundaries: [3, 10], type: integer and
– γ, boundaries: [0, 0.5], type: continuous.

L = 6 is the provided length of the vector of the solution. The boundaries
selection was empirical. Only the XGBoost hyperparameters were subjected to
tuning by TLB, feature selection was not employed in these experiments. The
approach was given the name XGBoost-TLB.

4.2 Experimental Findings

The capabilities of the XGBoost-TLB model have been put into test vs five
other superior metaheuristic methods, namely FA [63], ABC [37], HHO [32],
WOA [41] and GWO [42], that were verified in equal simulation conditions,
with equal number of individuals and iterations, utilizing default metaheuristics’
parameters setup. Table 2 gives overview of the simulation outcomes with respect
to the achieved error rate over eight runs. The presented XGBoost-TLB method
shared the first place with XGBoost-ABC model for all important metrics.

Table 3 brings forward the detailed simulation outcomes on the observed
frauds dataset, where it is possible to note that the XGBoost-ILB achieved the

Table 2. Overall Metric

Method Best Worst Mean Median Std Var

XGBoost-TLB 4.39E-04 4.74E-04 4.52E-04 4.48E-04 1.46E-05 2.12E-10

XGBoost-FA 4.56E-04 5.09E-04 4.78E-04 4.74E-04 1.91E-05 3.66E-10

XGBoost-ABC 4.39E-04 4.74E-04 4.52E-04 4.48E-04 1.46E-05 2.12E-10

XGBoost-HHO 4.56E-04 4.92E-04 4.78E-04 4.83E-04 1.46E-05 2.12E-10

XGBoost-WOA 4.74E-04 4.74E-04 4.74E-04 4.74E-04 0 0

XGBoost-GWO 4.56E-04 4.92E-04 4.74E-04 4.74E-04 1.24E-05 1.54E-10

Table 3. Detailed Metric

XGB-TLB XGB-FA XGB-ABC XGB-HHO XGB-WOA XGB-GWO

Accuracy (%) 99.9561 99.9544 99.9561 99.9544 99.9526 99.9544

Precision 0 0.999613 0.999578 0.999578 0.999578 0.999578 0.999596

Precision 1 0.962025 0.973684 0.986667 0.973684 0.961039 0.961538

M.Avg. Precision 0.999549 0.999534 0.999556 0.999534 0.999512 0.999530

Recall 0 0.999947 0.999965 0.999982 0.999965 0.999947 0.999947

Recall 1 0.775510 0.755102 0.755102 0.755102 0.755102 0.765306

M.Avg. Recall 0.999561 0.999544 0.999561 0.999544 0.999526 0.999544

F1-score 0 0.999780 0.999771 0.999780 0.999771 0.999763 0.999771

F1-score 1 0.858757 0.850575 0.855491 0.850575 0.845714 0.852273

M.Avg. F1-score 0.999538 0.999515 0.999532 0.999515 0.999498 0.999518
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highest accuracy of 99.9561%. XGBoost-ABC also obtained the same accuracy,
however, XGBoost-TLB outperformed all other methods when other indicators
are observed (the best score is bolded in each row).

Graphical representation of the supremacy of the XGBoost-TLB method
against other contending models is depicted on Fig. 2, that gives insight into
the convergence diagrams and box plot graphics of the error rate and the obj.
function, for all six employed algorithms. It must be noted that the converging
speed of the TLB algorithm surpasses significantly other methods.

To provide more insight into the results achieved by XGBoost-IMVO, Figs. 3,
and 4 depict precision-recall (PR) and receiver under operating characteristics

Fig. 2. Convergence and box plot graphics for all contenders

Fig. 3. PR and ROC curves of the proposed XGBoost-TLB model, and confusion
matrix over the credit card dataset
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Fig. 4. The XGBoost-TLB one versus rest (OvR) ROC

(ROC), confusion matrix on utilized dataset, and one versus rest (OvR) ROC
curves.

5 Conclusion

The focus of this work was on social-inspired metaheuristic algorithms applied to
credit card fraud detection problem. The algorithm was compared to other high-
end solutions and after a comparative analysis was determined the best solution.
The main goal was the improvement of classification accuracy. This was achieved
by a hybrid solution between XGBoost and TLB, of which the latter optimized
the first. By observing the results there is no doubt that the TLB solution
is dominant along with other XGBoost combinations with metaheuristics. The
TLB can be further optimized and improved which the authors leave for future
research.
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