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Abstract. This paper describes the workflow and results for Particle Size Distri-
bution (PSD) analysis using UAV photogrammetry for waste rockfill materials.
A methodology for digital detection and statistical measurement of PSD derived
from UAV-SfM photogrammetry is presented. The comparative results between
field and digital measurements indicate that the average deviation, and standard
deviation between the manually and digitally particle size vary between 12.3 mm
and 49.9 mm for the field measurements and 16.9 mm and 52.5 mm for UAV
in the different materials. PSD estimated using conventional and image process-
ing shows a 4 mm an average difference between the measurements showing the
potential use of the UAV technology and image processing to estimate PSD, lead-
ing to implement as standard practice aerial photogrammetry as an alternative to
conventional sieve analysis for PSD estimation.
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1 Introduction

Mining process requires the proper disposal of different types of waste material from
which requires a deep understanding of the ground behavior through a rigorous geotech-
nical characterization to manage the risk. Accordingly, the particle size distribution
(PSD) is fundamental for geotechnical design and construction, since PSD can affect
the performance of granularmaterials, including their strength and load-bearing capacity
[1].

PSD in waste dump plays a crucial role in multiple levels. For instance, the com-
paction of the rockfill can be affected by its PSD. For construction quality control, it is
usually required that the rockfill PSD meets the design criteria [2]. Due to widely use of
rock fills and waste dump for dam construction has driven new interest to investigate the
physical and mechanical properties of rockfill material. In most cases, triaxial testing
on the prototype rockfill using conventional laboratory equipment is unattainable as the
sizes of aggregates used in the field are usually too large [3].
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This in turn emphasizes the need to develop appropriate methods to determine the
PSD at real scale [4]. Traditionally, the particle size distribution for engineeringmaterials
is determined through physical sieve analysis using a series of screens with squared
mesh [5]. For rockfill material there are no other accurate methodologies to establish
PSD except visual rock gradation analyses relying heavily on the visual examination and
engineer’s experience for quality control during construction [6]. This method usually
involves sieving of the finer fraction (i.e., up to 60mm) and physical measurements
of coarser rocks using measuring tapes or other visual aids and it is expensive and
time-consuming and not feasible for routine quality control purpose [7].

Commonly a full-scale gradation test on a rockfill and waste dump sample would
require widely field work from engineers and field technician [8]. Machinery and safe
handling procedures are also required for particle sizes more than 200 mm (i.e., heavier
particles) [9]. Thereby, there is a strongmotivation to establish a safer, faster, and simpler
approach to assess the size distribution of rockfill material on a routine considering the
actual development in computer and technologies [10].

With recent development in computation technology, image processing can be
employed to determine the PSD of rockfill and waste dump materials [11]. Similar
to conventional visual assessment, the image analysis technique allows researchers and
engineers to inspect and measure visible particles within a digital photograph using
computer algorithms [12]. This presents an optimization in rockfill and waste dumps for
geotechnical characterization optimizing the time consumed to collect data and dedicate
time to engineering analysis [13]. The availability of the UAV (Unmanned Aerial Vehi-
cle) technology and the advances in computer image processing has opened the door
to a new era with several possibilities to determine PSD using aerial photogrammetry,
which has been used in topographical surveys and geological mapping for five years
[14]. It is also an alternative to conventional sieve analysis for PSD estimation. Based
on the forementioned background, this paper explores the use of UAV photogrammetry
to determine the PSD, focusing on the workflow, results, and validation.

2 Case Studies

A total of five waste dumps were analyzed to validate the proposed methodology. The
five waste dumps (Fig. 1) analyzed are described as follows:

• WD-1: Carbonaceous-Sediment mudstone with high Potential Acid Generator (PAG).
The medium materials of WD-1 are minor boulders (PSD less than 1000 mm)

• WD-2: Limestone with low to medium physical alteration due to the tropical con-
ditions. The PSD includes medium size boulders (Less than 200 mm), gravel and
sand

• WD-3: Carbonaceous-Sediment mudstone with high Potential Acid Generator (PAG).
The Medium materials of WD-3 are minor boulders (PSD less than 500 mm)

• WD-4: Volcanoclastic material and PAG material. Coarse and rocky material with
low content of fines

• WD-5: Volcanoclastic material and PAG material. The material is coarse and rocky
with low content of fines
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Fig. 1. Orthorectified viewof the 5waste dumps (3Dviewgenerated fromUAVphotogrammetry).

3 Method

3.1 Sieve Analysis for PSD

Mechanical sieving is the most commonly used method to determine the particle size
distribution of rock and soils [15]. Basically, the sieving operation attempts to divide
a sample of aggregate into fractions, each consisting of particles within specific size
limits [16]. Before the sieving starts, the sieves are stacked up with the smallest one at
the bottom and the largest one at the top (Fig. 2).

3.2 PSD Using UAV

For processing a UAV high-resolution image was acquired. The images were analyzed
using Fragmenter from 3GSM [17]. A classic field survey with a metric tape was per-
formed to validate particle size from the image processing (Fig. 3). Fifty (50) rocks
boulders were sampled (10 samples per waste dump) and measured for the validation
process.

Workflow showed in the Fig. 4 consists of four steps: (Step 1) 3D model reconstruc-
tion using UAV digital photogrammetry, (Step 2) selection and discretization of the area
to be analyzed, (Step 3) automatic characterization of PSD, and (Step 4) PSD plots and
grain size analysis.
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Fig. 2. Conventional sieve analysis for PSD

Fig. 3. Particle size using manual and image processing. (a) Manual measures using metric-tape
for particle size. (b) Particle size using image processing.

3.3 3D Point Cloud and Model Reconstruction

The red/green/blue (RGB) images taken with a UAV are used as input for the recon-
struction of the 3D model as a point cloud employing Structure from Motion (SfM),
a photogrammetry technique that uses computer algorithms to extract key points in
overlapping images taken from multiple view angles to create 3D models [18].

From a collection of 2D images obtained frommultiple positions and/or angles, SfM
processing reconstructs a 3D structure of a stationary scene via motion estimation of the
camera corresponding to each image [19]. To promote the application, an easily acces-
sible software, Fragmenter (available at https://3gsm.at/produkte/bmx-fragmenter/) was
employed in this study according to the workflow showed in the Fig. 4.

For the field image acquisition, a quadcopter platform, DJI Mavic Pro quadrotor
drone, equippedwith an 1/2.3′′ (CMOS), Effective pixels:12.35M (Total pixels:12.71M)
was employed for photogrammetric survey [20]. Field works were performed in three
steps: (1) flight mission designed, (2) ground control points (GCPs) placement and
acquisition, and (3) flight operation and aerial images collection.

https://3gsm.at/produkte/bmx-fragmenter/
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Fig. 4. Workflow for PSD using UAV photogrammetry

4 Discussion

4.1 Validating Particle Size Through Digital Analysis and Metric Tape Field
Measures

In order to validate the PSD from the UAV, 50 individual samples, 10 per waste dumps
(refer to Table 1). Were selected to compare the digital analysis and field measure-
ments using metric tape to measure the individual diameter in the selected samples. PSD
variation between UAV estimation and field metric tape:

• WD-1, the average deviation and standard deviation between the manually and digi-
tally particle size are 12.3 mm and 16.9 mm with a difference between mean values
of 14 mm.

• WD-2, the average deviation and standard deviation are 43.3 mm and 42.4 mm with
a difference between mean values of 1 mm.

• WD-3, they are 21.7 mm and 14.2 mm with a difference between mean values of
6 mm.

• WD-4, they are 49.9 mm and 52.5 mm with a difference between mean values of
3 mm.

• WD-5, they are 41.0 mm and 39.1 mm with a difference between mean values of
6 mm.
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Table 1. Comparison of the results between digital analysis and field tape measurements for
particle size.

Site Method Number of data sets Mean value (mm) Std Error (%)

WD-1 Field 10 232 16.9 5.3

UAV 218 12.3 3.9

WD-2 Field 10 241 43.3 13.7

UAV 240 42.4 13.4

WD-3 Field 10 205 21.7 6.9

UAV 199 14.2 4.5

WD-4 Field 10 217 49.9 15.8

UAV 220 52.5 16.6

WD-5 Field 10 248 41.0 13.0

UAV 242 39.1 12.4

A deviation ratio (DR, Eq. 1) is defined to validate the error between digital analysis
results and field tape manual measurements. The average DR values for the five cases
studies are (Fig. 5):

• WD-1 = 6.9%,
• WD-2 = 5.3%,
• WD-3 = 5.7%,
• WD-4 = 4.4%
• WD-5 = 4.7%,

DR = �|PS|
PSTape

(1)

4.2 PSD Using UAV

The SfM technique, applied to the selected waste dumps, returned scattered point clouds
between 201,225 points and 502,594 points, respectively [21]. The optimization of the
cloud, by reporting the GCP field arrangement, allowed the minimization of the repro-
jection error and the generation of several dense point clouds made up of about 190 mln
points and 450 mln points for all the sites respectively. Mapping involved the acquisition
of multiples photos aiming to collect and determine the geometric details of the rock fill
and waste dump particles [22].
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Fig. 5. Variation between digital analysis and field tape measurements

Fig. 6. Location and orientation of photographs relative to point cloud.

A total of 3855 images were taken and analyzed including rockfill materials with
particle sizes ranging from sand and gravel to boulder sizes of up to 1000 mm. The
images have been taken from an average distance of 30 m-120 m from the waste dumps
and rockfill slope surface, yielding an estimated Ground Sample Distance of about 1 cm.
ShapeMetrix UAV software has been used to georeferenced andmanage the point clouds
and to quantify the PSD features [23]. Figure 6 shows the photographs orientation and
Fig. 7 the waste dump 3D model.

The PSD data assessed from the 5 waste dumps is showed in Fig. 8. The subdivision
of each subarea allows to have multiples curves for the PSD per waste dump. Since
multiple sources of data can increase the confidence in the model, a bigger dataset for
PSD and high accuracy in the results will be achieved [24].
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Fig. 7. Waste dump 3D model comprising > 7 million points and > 2.6 million mesh elements

Fig. 8. PSD curve.

5 Conclusions

The comparative results between field and digital measurements indicate that the average
deviations, and standard deviations between the manually and digitally particle size vary
between 12.3 mm and 49.9 mm for field measurements and 16.9 mm and 52.5 mm for
UAVwith an average difference between the mean values of 4 mm. These well-matched
results indicate that the UAV-SfM photogrammetry based digital analysis can effectively
identify and characterize the PSD for rock fills andwaste dumps. Comparedwith the field
measurements that are strongly restricted by measurement environments, the developed
digital method is flexible, and the achieved results are reproducible.

The digital analysis also shows some shortcomings, for example, it inevitably to not
captures very fines material. To date, remote sensing techniques and the related digital
analysis should be regarded as a complement to manual survey but not a replacement.
This study attempts to introduce the low-cost and lightweight UAV photogrammetry
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technique into the waste dump characterization, the development of which in the future
may become an important part in the next-generation field survey methods.
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