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Abstract. The construction of TBM tunnels is associated with high uncertainty
due to the unknown ground conditions surrounding the TBM. Recently, there
have been several attempts to make use of the large amount of TBM data recorded
during construction to predict the ground conditions and automate the tunneling
process. This study presents an implementation of supervised learning models to
the Porto metro dataset (Sousa and Einstein 2012) and showcases an alternative
method of predicting the ground class. The results of several machine learning
(ML) models are reported and compared to each other. These ML models use the
same algorithm but with different sets of input features (i.e., TBM parameters)
to investigate the effect of different TBM parameters on predicting the geology
of the tunnel. The results show that the learned model achieved high accuracy
when predicting ground classes. Also, it indicates that input feature selection
process is a crucial step to build a robust model since it eliminates ambiguous
data thus increasing modeling accuracy while reducing training time. Moreover,
the confusion matrices of different models showed that the rock ground class
had higher scores and consistency under different sets of TBM features. This
suggests that other ground classes need more refinement to attain a better model
performance.
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1 Introduction

The past few years have witnessed an increase in the number of tunnels as well as rapid
development in the field of construction technology, particularlymechanized tunnel con-
struction. Construction with tunnel boring machines (TBMs) is safer and faster when
compared to conventional tunneling methods. Nevertheless, TBM control is a complex
process due to the uncertainties associated with unforeseen geology ahead of the TBM
(Sousa and Einstein 2021). The human operator’s goal is to keep the operational param-
eters within predefined thresholds to achieve an optimal and safe operation. However,
these thresholds are set during the design phase based on the small amount of geologic
data collected during site investigation, which are often different than actual geology.
The human operators rely on their experience and judgement to infer the ground type
based on the readings of the TBM sensors and adjust the operational parameters to meet
the sensed field conditions. The uncertainties associated with the TBM control translates
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into risks that may cause an increase in time, and costs of the projects as well as accidents
(Sousa and Einstein 2021).

In the past decades, researchers have been developing geology prediction models
to assist the operator and to minimize risks during construction. These models can be
broadly classified into probabilistic, and data driven or machine learning (ML) mod-
els. The probabilistic models include Markov Chain models (Chan 1981) and Dynamic
Bayesian models (Sousa and Einstein 2012), among others. ML models can be fur-
ther classified according to how they are learned: supervised, unsupervised, or semi-
supervised learning models (Bishop 2006). Among the most popular ML algorithms are
Artificial Neural Networks (ANN), Random Forests (RN), K-nearest neighbor (KNN)
and Support Vector Machines (SVM) (e.g., Zhang et al. 2020; Shi et al. 2019; Zhao et al.
2019; Hou et al. 2021; Liu et al. 2020; Wu et al. 2021; Yin et al. 2022).

The existing models, both probabilistic and data driven, have several shortcomings
that often do not make them suitable for tunneling automation. One such limitation is
that existing models do not consider all the parameters recorded by the TBM, choosing
the ones to include (i.e., the input features) in the models sometimes in an arbitrary way.
Even though, this simplification may be justifiable at times, it is important to choose
the model parameters in a systematic away and use an adequate input feature selection
method. In this study, we present the development of a supervised learning model to
predict the ground geology for the tunnel of Porto Metro Line C (Sousa and Einstein
2012), which includes a systematic way of choosing model input features. For this, we
considered all the construction parameters recorded by the TBM as input features in the
model to start, and then perform a systematic feature selection to reduce the presence of
irrelevant features in the data and improve model accuracy and decrease learning times.

In addition, we have performed a simple sensitive analysis to investigate the influence
of different TBM parameters in geology prediction. The performance metrics used to
compare the different models in the sensitivity analysis were precision, recall and f1-
score. Finally, the results are discussed to provide insights on how to perform model
feature selection in ground forecast models for TBM construction.

2 Project Description

The data used in this study are from a tunnel built for the Porto metro line C (see
Sousa and Einstein 2012). The project under study is a 2.3 km long from Campanhã to
Trindade (Fig. 1). The tunnel was constructed using EPBM, a type of TBM which uses
the pressurized excavated ground as means of face support. This EPBM could operate
in open and closed modes in mixed ground conditions. The geology at the site of the
Porto Metro tunnel is a highly weathered heterogenous granitic formation. The designer
of the project specified six homogenous geomechanical groups (ground classes) based
on the weathering degrees starting with intact granite as g1 to residual soils as g6. Based
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on the weathering degree, the geomechanical groups from g1 to g4 are rock like while
g5 & g6 are soil like (see Table 1).

3 Data Description and Preparation

The data considered in this study ranges from ring 354 to ring 1611 (corresponding
to station 0 + 656 until 0 + 2418 km, see Fig. 1), each ring is 1.4 m. 182 operation
parameters were recorded by the EPBM, every 10 s. Figure 2 shows an example of a
time series operation parameter of a given ring. To build our models, the time series
data corresponding only to the time when the machine is advanced (i.e., advance rate
is different than zero) was averaged for each ring and for each TBM parameter. The
ground label of each ring was selected based on the location of the cutterhead after
excavating the ring. The ground label is rock if the cutterhead is located in a rock like
material (g1-g4), soils if the cutterhead is in soil like material (g5-g6) and mixed when
the cutterhead is in a combination of soil and rock like materials. The total number of
each ground class is shown in Fig. 3.

It is worth to mention, that the labeling in a EBPM tunnel has always a degree of
uncertainty since the operator is unable to see the face. Face maps are done at certain
locations of the tunnel and the remaining labels are determined based on interpolation
of these face maps and observations by the operator (visual examination of the muck
and by measurements of the weights of the muck). For this case study we had collected
40 face mappings. Figure 4 shows an example of a face mapping at Porto Metro.

Fig. 1. Porto Metro Line C Layout (adapted from Sousa and Einstein 2012)
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Table 1. Porto Metro Line C geology formation geomechanical groups

Geo-mechanical group Weathering Degree GSI

G1 W1 68–85

G2 W2 45–65

G3 W3 30–45

G4 W4 15–30

G5 W5 <20

G6 W6 –

Fig. 2. Example of monitored advance speed time series for a ring. It includes both data from
when the machine is advancing (advance speed nonzero) and idle (advance speed equal to zero)
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Fig. 3. Histogram of the available data labels

4 Feature Selection and Data Preprocessing

Feature selection and data preprocessing are critical steps in developing a machine
learning model. The quality of the model depends mainly on the quality of the fed
data. Feature selection, which consists of selecting the input features or variables of the
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Fig. 4. Example of a face mapping at Porto Metro Line C (private correspondence). The maps
contain information on the weathering degree of the exposed face. The weathering degree can be
directly related to the geomechanical groups (see Table 1)

model, is an important technique in data pre-processing and is becoming an indispensable
component of machine learning. However according tomost existing studies there are no
clear criteria for feature selection of ground prediction models. In this study, all the TBM
parameters were initially considered for the model. Redundant parameters, i.e., highly
correlated parameters, were removed with no loss of information. To do this, the first
step consisted of plotting heatmaps for all parameters. Correlation heatmaps are used to
show the correlation between pairs of variables. The correlation values are represented
by a color scale (as shown in Fig. 5). For our case study, we looked at two cases: 1.
Highly correlated parameters that are measured at different locations of the cutterhead
(earth pressure, foampressure and flow) and 2. Redundant features (parameterswith high
correlation but that were not the same parameter measured at different locations (e.g.,
advance rate and flow of excavated material). In both cases parameters were reduced
to one. For example, for case 1, the earth pressure is measured by seven (7) sensors
at different locations of the cutterhead. Since the heatmaps showed a high correlation
between values measured at different sensors, only values from one sensor were kept
for modelling purposes. For case 2, any parameters with correlation greater than 0.8 or
smaller than−0.8were removed and only onewas selected to represent these parameters.
Sixty-two (62) parameters remained to be included in the model after this process. Once
the input features were selected, the data processing progressed as follows:

Cleaning the data: eighteen (18) data points (rings) with missing labels were removed
from the dataset. They represented only about 1.5% of the size of the dataset and thus
their removal does not to affect the model.
Removing outliers: outliers were removed for each parameter. The upper and lower
bounds were Q1 - 1.5* IQR and Q3 + 1.5*IQR successively where.
Q1: Upper quartile
Q3: Lower Quartile
IQR: Interquartile, i.e., difference between the lower and the upper quartile.
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Fig. 5. Example of a Heatmap. Any correlation between two features above .80 was considered
highly correlated and consequently one of the features was removed. The exception was made for
the case where there were many sensors measuring the same parameter but at different locations
of the cutterhead, like the map represented in the figure. In these cases, only the data of one sensor
was kept.

The missing values were replaced by an average value of the previous and following
rings.
Normalization of the data: all parameters were normalized to an interval between 0 and 1.
Normalization is important and commonly used when the input data has variable scales
as is the case of the TBM data.
Data Splitting: the available data were split into 80% training dataset and 20% as testing
dataset. Both training and testing datasets have equal ground classes proportions.

5 Geology Prediction Model

XGBoost (Extreme Gradient Boosting) is one of the most popular and efficient algo-
rithms used in supervised learning problems. It is an ensemble method based on the
boosting technique (Chen and Guestrin 2016). The basic idea of boosting is to build
multiple weak learners, normally decision trees, in series, to iteratively convert them
into strong ones. Figure 6 is an illustration of how the XGBoost algorithm works.
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Fig. 6. Illustration of the principles of CGBoost (adapted from XG-Boost-FINAL-01 - Flirting
with Models (thinknewfound.com)). The technique uses weak classifiers to iteratively construct
a strong one. A weak learner or weak classifier is a one which performs just barely above chance.
Initial weights are uniformly distributed in the original training set. After the predictions of the
first weak classifier (in the figure XGBoost Classifier 1), more weight is assigned to the weight of
the misclassified datapoints. This is done so that the next weak classifier, XGBoost Classifier 2,
focuses its attention on these data points. Then after the predictions of the second weak classifier
(in the figure XGBoost Classifier 2), more weight is assigned to the weight of the misclassified
datapoints and so forth. The final classifier is a weighted combination of the weak classifiers.

XGBoost algorithm has various hyperparameters that need to be specified. Hyper-
parameters are the parameters that control the learning process, in contrast with other
model parameters they cannot be inferred from data. For example, in neural networks,
a hyperparameter is the size of the neural network. They don’t affect the performance
of the model, but they affect the speed and quality of the learning process, thus their
importance.

Grid search was used to select the hyperparameters to optimize the learning model.
Several values are selected for each hyperparameter, and Grid Search is used to runmod-
els for all different combinations of these hyperparameters. Finally, the hyperparameters
of the model with the highest score are selected to be applied to the test dataset. Table 2
shows the values used for the hyperparameters of the XGboost model.

Four models were developed for this study using XGBoost. The first one was built
using the sixty-two (62) TBMparameters obtained after the heatmaps study. Then feature
importance was determined for all parameters, and features with importance less than
1% are eliminated. To calculate the feature importance, we used XGBoost’s built-in
function, which is computed by the gain, i.e., the relative contribution of a feature to in
the model (for more details on the feature importance algorithm see Hastie et al. 2009).

The forty-two (42) parameters that remained after feature importance were then
used to build a second model (model 2) to observe the effect of the eliminated features
on model performance. The third and fourth models were developed after eliminating
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Table 2. Hyperparameters Selected for XGBoost model

Hyperparameter Value

Eval metric mlogloss

n_estimators 75

Subsample 1

Colsample_bytree 0.4

Learning rate 0.01

Max depth 9

the ground conditioning parameters such as the foam, grout, and bentonite parame-
ters to examine their effect on the model performance. The third (model 3) and fourth
model (model 4) consisted of twenty-eight (28) and thirty-four (34) TBM parameters,
respectively. Model 3 contained no foam parameters and Model 4 contained no grout or
bentonite parameters. We wanted to verify if these conditioning parameters (that are set
by the operator, not a reaction of the ground to the TBM) affected model performance.

Confusion matrices were plotted for the results of the models. A confusion matrix
shows the numbers of correct vs incorrect predicted samples. The metrics used to assess
the models are the precision, the recall, and the f1-score. The f1 score is used to combine
both precision and recall in one metric. The formulas used to calculate each metric are
as follows:

Precision = TP

TP + FP
(1)

Recall = TP

TP + FN
(2)

f 1 score = Precision× Recall

Precision+ Recall
(3)

where,
TP: True Positives
FP: False Positives
FN: False Negatives

6 Results and Discussion

The results of the models’ performance are presented in Table 3 and Table 4, and the
corresponding confusion matrices as shown in Figs. 7, 8, 9, and 10 which show the pre-
dicted label (ground class) versus the true label (ground class). Based on these matrices
the prediction and recall presented in Table 4 were calculated using Eqs. 1 and 2. One
can observe that Model 2 has the best performance overall and across all classes. Model
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Table 3. Number of parameters and f1-score of different models

Metric/Ground Type Model 1 Model 2 Model 3 (No Foam
Parameters)

Model 4 (No
Bentonite/Ground
Parameters)

Number of Parameters 62 44 26 34

Weighted * f1-Score 0.901 0.925 0.865 0.898
*Weighted average of the f1-score of each ground class

Fig. 7. Confusion Matrix of the Model 1.

3 (no foam parameters) performs worse in soil and particularly mixed, when compared
with Model 1 and 2, indicating a strong relation between foam parameters and these
two ground classes. Model 4 (no grout/bentonite parameters) performs slightly better
in classifying Soil and Mixed than Model 3, but worse than Model 1 and 2, indicating
again a strong relationship between the grout conditioning parameters and the ground
classes. Overall, the predictions of ground class Rock seem to be less affected in the
sensitivity analysis. This is confirmed by the precision values reported in Table 4. Table
3 shows the weighted f1-score for the four models to compare the overall performance
of the models. The results show that the second model (i.e., the model obtained after
removing all parameters with less than 1% importance) has the highest f1-score equals
to 0.925 compared to 0.901 for the first model, which considers all parameters after
heatmap selection. This confirms that feature importance ranking (FIR) is an extremely
important step in supervised learning not only to improve efficiency and effectiveness of
a predictive but also provide insight into the model, i.e. what features (variables) most
influence the model’s predictive power, and which features are irrelevant. Skipping this
important step may result in a less robust and less accurate model, as well as slowing
down the learning process.
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Fig. 8. Confusion Matrix of the Model 2. This model has the best performance across all ground
classes.

Fig. 9. Confusion Matrix of the Model 3.

Fig. 10. Confusion Matrix of the Model 4.
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Table 4. Recall and Precision of different models per ground class

Model/Ground Class Soil Mixed Rock

Recall Precision Recall Precision Recall Precision

Model 1 0.907 0.907 0.884 0.884 0.919 0.919

Model 2 0.930 0.910 0.900 0.925 0.946 0.943

Model 3 0.814 0.897 0.814 0.826 0.932 0.885

Model 4 0.860 0.900 0.900 0.850 0.918 0.940

7 Conclusions

In this paper,XGBoostmodelwas used to developmachine learningmodels to predict the
geology along the Porto metro tunnel line C using TBMparameters as input features. All
the TBM parameters were initially considered for the analysis. Heatmaps were plotted
for all the parameters to show linearly correlated parameters and eliminate them. Three
other models were developed for this study. The first was by eliminating parameters with
importance less than 1%. In the two other models, the ground conditioning parameters,
foam parameters, and bentonite and grout parameters, were eliminated to examine their
influence on the performance of the model. The performance of different models was
compared using precision, recall and f1-score metrics. The following conclusions can
be drawn from this study:

1. Model 2 had the best performance out of the four models with f1-score equal to
0.925. This shows that it is good practice to perform feature selection ranking (FIR),
as including all TBM parameters may affect the model’s performance negatively.

2. The rock ground class always has the highest scores for different models (see Figs. 7,
8, 9, and 10 and Table 4), and only gets mislabeled as Mixed. The Soil and Mixed
classes have lower precision and get mislabeled both as Soil and Rock (in case of
Mixed) and as Mixed and Rock (for the case of Soil). This seems to indicate that the
machine parameter values in the case of Soil and Mixed are more variable. This led
us to believe that other ground classes need to be refined or subclassified into more
classes. This makes sense since the geology at Porto Metro is a granitic formation
that has been weathered to different degrees. According to the results the rock like
formation seems to possess more homogeneous properties, thus more consistent
values are observed in the sensed data, and the mixed and soil like formations seem
to be more heterogenous as a result of the weathering process, and more variable
values are observed in the sensed data.

3. The results ofModel 3 andModel 4 show that ground conditioningparameters play an
important role in the classification of Soil and Mixed ground classes. For example,
in the absence of foam parameters as input (Model 3), some Soil was misclassi-
fied as Mixed while some Mixed was classified as Rock. The ground conditioning
parameters did not have a great effect on the prediction of the Rock.
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
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statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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