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Abstract. Advance rate (AR) prediction is crucial for optimal mecha-
nized tunneling performance. However, the type of input features used
when developing AR prediction models vary greatly from study to study.
In this paper, a hybrid automatic feature selection method is presented
and demonstrated through the development of a support vector regres-
sion (SVR) model for AR prediction in Earth pressure balance machine
(EPBM) tunnel construction. EPBM datasets are collected from a tun-
nel project in the city of Porto, Portugal. Irrelevant features whose val-
ues are constant for most of the time were first removed via constant
and quasi-constant detection method (CQD). Sequential forward selec-
tion (SFS) was then performed to determine the best subset of features
to develop the best performed model. The results showed that the SVR
model successfully predicted AR using the selected features with squared
correlation coefficient (R2) of 0.919 and 0.884 for training and testing,
respectively. The efficiency of the feature selection method is demon-
strated by comparing the results of the SVR model with feature selection
and the one without. It is proved that proposed method helps improve
the accuracy of the predictions by 8% and 17% for training and testing,
respectively.

Keywords: EPBM · tunnelling performance · advance rate · hybrid
feature selection · SVR

1 Introduction

The growing traffic in metropolitan areas and the need for high-performance rail
systems has driven cities to use their underground space for transport infras-
tructure [1,2]. This resulted in increased construction of tunnels and continuous
development in tunnelling technology in the past years. In urban environments,
tunnel boring machines (TBM) are widely used due to their suitability to drive
in a broad range of geological conditions and their increased safety. Given the
risks of tunnelling in metropolitan areas, making an accurate prediction of TBM
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performance is of great importance to ensure a safe and economical construc-
tion [3,4].

To properly asses TBM performance, one needs to accurately forecast
advance rate (AR) or penetration rate (PR), i.e., the speed of tunnel exca-
vation, since a realistic prediction of AR directly affects our ability to estimate
cost, times of completion and assess risk [5]. However, it is difficult to make accu-
rate predictions of AR as AR is not directly controlled by operator but a result
of a complex interaction between the ground and the TBM [6,7]. Operators,
particularly their experience and ability to react to observed parameters, have
also a great influence on TBM driving performance. During the design phase,
thresholds are set for operational TBM parameters. These values are estimated
based on data from site survey which is often scarce and uncertain. The opera-
tors monitor certain parameters like the quantity of muck extracted and earth
pressures and adjust these parameters as the excavation progresses to maintain
their values within the thresholds set during design to maintain a stable AR and
assure safety. Moreover, complex operations, which affect AR, such as maintain-
ing the appropriate foam lance pressure, maintaining required earth pressure
at the face, selecting effective controllable parameters, and processing the muck
through a depressurizing screw conveyor, are still performed intuitively and thus
are not optimized [6,8]. Therefore, accurate models to predict AR given ground
conditions based on monitored data from TBM are urgently needed.

There have been several attempts to predict AR. In earlier stages, traditional
statistical methods as well as experimental methods were widely adopted for AR
prediction. However, the highly complex and non-linear interactions between
different TBM parameters cannot be captured by these methods [7,9]. Recently,
machine learning algorithms have been implemented to develop AR prediction
models for TBMs based on machine monitored data. The results have confirmed
that machine learning algorithms are able to capture the complex behavior of
TBMs and make accurate AR predictions [10,11].

Several machine learning models have been used to predict AR by utilizing
great amount of recorded data by TBM during tunnelling, including artificial
neural networks (ANN) [11,12], support vector regression (SVR) [6,13], ran-
dom forest (RF) [14,15], fuzzy logic [16,17], and classification and regression
tress [18,19]. Among them, two models, SVR and RF, became the most widely
adopted for AR prediction due to their robustness and high accuracy. For exam-
ple, Mokhtari and Mooney [6] developed a SVR based model capable of suc-
cessfully predicting earth pressure balance TBM (EPBM) AR. Zhou [13] used
hybrid SVR models to predict AR with high accuracy, aiming at minimizing the
financial and scheduling risks for tunneling projects. Yang [14] developed RF
models for TBM performance prediction, showing greater accuracy than numer-
ical regression method. In this paper, SVR is used to model EPBM AR. SVR was
chosen in this paper since it is a well-established and accepted machine learning
technique, showing promising results.

Based on recent research [5,7,20,21], most of the features used in previous
studies on AR prediction are determined by researchers’ experience rather than
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systematically, sometimes failing to consider the most influential and efficient
parameters. Simply selecting parameters based on previous studies, sometimes
referring to tunnels under different conditions, is not rigorous and may result in
loss of accuracy of the model. Addressing this need to systematically select the
adequate model features, we developed an hybrid automatic feature selection
method which combines constant and quasi-constant detection method (CDQ)
and sequential forward selection (SFS) [22]. The developed method allows for a
better selection of the model input features, leading to a more accurate model
and prevents redundancy, thus increasing computational speed.

The datasets used for the modeling were collected from the 3.95 km long S
line from the light metro project in the city of Porto, Portugal. The excavation
method adopted in this project was a EPBM which is rarely a target of research
in AR prediction. To identify and select the best model features, a new hybrid
automatic feature selection method was developed. CDQ was employed first to
filter out parameters with constant and quasi-constant values. Then, best feature
subsets describing EPBM AR were determined by SFS. Stratified split from
verstack package was introduced to ensure training and testing data represent
entire range of AR. To find out the optimum values of the parameters and
prevent over-fitting, cross-validation and grid search were performed during the
process of model development. The model performance was evaluated through
R2 and RMSE. Another SVR model was also developed through the features
selected based on previous research (i.e. selecting the typical features used in
AR models) and compared with SVR model developed using hybrid automatic
features selection method to highlight the importance of feature selection.

2 Data Description

2.1 Projects Description

The monitored data are collected from the Porto light metro project in Porto,
Portugal. The tunnel used to demonstrate the methodology is 3.95 km long and
it runs between the Salgueiros and Sao Bento stations, as shown in Fig. 1.

The excavation method adopted was an EPBM, capable of both closed and
open mode excavation in mixed face conditions. A schematic of the EPBM used
in Porto is shown in Fig. 2.

2.2 Data Preparation

The EPBM used in the Porto metro tunnel of Line S contained numerous sensors
which recorded a total of 195 features every 10 s, including data from both exca-
vation and halt (e.g. segment assembly) phases of the tunnel construction. Since
the main focus of our work was to predict AR, only the data that corresponded
to the excavation phase was included in the learning of the models, and all data
corresponding to the halt phase was excluded. For simplicity, all parameters and
AR during one ring excavation (i.e. a length of 1.4 m) was averaged.
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Fig. 1. Project Location

Fig. 2. TBM structure

3 Feature Selection and Analysis

The high dimensionality of the data collected by the EPBM sensors may lead to
a poor performance of the machine learning model. More data leads to a robust
model, but this is true for the number of instances and not for the number of fea-
tures. For this reason, dimensionality reduction is needed to exclude redundant
and irrelevant parameters that provide little information but affect the efficiency
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of the model. In this section, a hybrid feature selection method is presented by
the combination of CDQ and SFS.

3.1 Constant and Quasi-constant Detection Method

The monitored data involve two types of irrelevant parameters: constant param-
eters and quasi-constant parameters. The constant parameters which are the
ones with constant values, such as feed line bentonite, were eliminated as they
had no influence in the predicting AR. The second type of parameters, the
quasi-constant, have only limited impact on the target variable, as they contain
insufficient information, and including them in the model may even lead the
model to learn from the fringe cases and cause overfitting. Thus, these were also
eliminated.

One common way to perform the elimination is to measure its variance by low
variance filter method. However, sometimes useful parameters may be eliminated
via this method, for example, cutting wheel speed of rotation, a potentially useful
variable, has small values and thus low variance. This issue can be avoided by
adopting the constant and quasi-constant detection method (CDQ) from fast ml
package which can detect and remove constant and quasi-constant parameters
while keeping important parameters. CDQ excludes quasi-constant parameters
by setting up cut-off value of percentage of constant values. In this case, thirty
(30) constant parameters and thirty-eight (38) quasi-constant parameters were
detected by setting the threshold of constant parameter percentage to 50%. After
the application of the CDQ method to the datasets, a total of 127 parameters
remained.

3.2 Sequential Forward Selection Method

Feature selection is the process of selecting the most relevant and non-redundant
features to use in model development. As a first step, we used the constant and
quasi-constant detection to reduce the number of features from 195 to 130. To
further reduce dimensionality (i.e. the number of input features), Sequential
forward selection (SFS), a more intelligent model-performance based method,
was implemented.

SFS is a part of stepwise algorithm [23] by which a variable is considered for
addition to or subtraction from the set of explanatory variables based on some
pre-specified criterion. With SFS, one feature is added in each iteration until no
further improvement of model performance is possible, resulting in a optimized
feature subset, as shown in Fig. 3. SFS first runs the model using each feature
and determines the most relevant (i.e. the variable which results in best model
performance). In the case of the example in Fig. 3, Feature 3 is selected. Then
the algorithm pairs Feature 3 with the remaining features, one at a time, and
determines which pair performs the best for the model. In this example, Feature
3 and Feature 2 are confirmed. This process keeps going, another feature is added
to the previous “best” feature set until the desired number of features is reached.
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Fig. 3. Sequential forward selection

Fig. 4. Sequential forward selection results

3.3 Results of Feature Selection

In our analysis, the desired number of features was set to 20 for high computa-
tional efficiency. The relationship between model performance and the number of
features is shown in Fig. 4. The SVR model performance increases first with the
increasing number of features and peaks when the number is 12, then decreases
slightly after that. When the number of features is beyond 8, there is a steady
trend of model performance. It is worth noting that R2 during that range are
larger than 0.90, indicating a good performance of SVR models.
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Table 1. Selection order through sequential forward selection

Selection order Features

1 Polymer or Bentonite injected q.ty

2 Water injected quantity

3 Foam lance 2 liquid flow

4 N◦ of strokes tailskin grease back 8.00 oclock

5 Grout injection group A3 pressure

6 Liquid pump water flow

7 Thrust pressure ZYL.6 group C

8 Stroke measuring shield articulation cylinder 02

9 Pressure grease chamber front 11.00 oclock

10 Pressure force cutting wheel

To reduce computational burden and ensure that all relevant parameters are
included in the analysis, the 10 first “best” features are chosen to develop the
machine learning model, as listed in Table 1.

4 Comparison Between Hybrid and Experience-Based
Feature Selection

4.1 Methodology

Support vector regression (SVR) is a extension of support vector machine (SVM)
which is a well known classification algorithm. It has been widely adopted for
AR prediction due to its high efficiency and accuracy [5,6]. In this part, two SVR
models we developed for comparison. The first one was developed using the input
features selected by proposed feature selection method while the second one
used input features selected based on authors’ experience and previous research
(without feature selection), as summarized in Table 2. The first 8 features are
also averaged during one ring excavation as before. It should be noted that earth
pressure and foam lance pressure are measured by several sensors at different
locations of the cutterhead (e.g. 7 sensors for earth pressure and 4 sensors for
foam lance pressure). In this work, the average value of all earth pressure and
the average value of all foam lance pressure sensor data was used for model
development.

The split of training and testing data sets is a key factor that can affect the
prediction performance of SVR models. If entire range of AR is not represented
in both training and testing datasets, correct relationship between features and
AR is not guaranteed and bias may be introduced. In such situations, predictions
made by SVR models may not be accurate when it comes to the range which is
not represented in the training dataset. In this paper, stratified split is introduced
to ensure that the training and testing datasets are representative of the entire
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Table 2. Features selected based on experience

Feature number Features

1 Torque cutting wheel

2 Pressure force cutting wheel

3 Thrust force

4 Torque screw

5 Cutting wheel speed of rotation

6 Cutting wheel high pressure

7 Thrust pressure

8 excavated material flow

9 Earth pressure

10 Pressure foam lance

Table 3. SVR Model performance with and without feature selection

Model Training dataset (80%) Testing dataset (20%)

R2 RMSE (mm/min) R2 RMSE (mm/min)

With feature selection 0.919 2.794 0.884 4.651

Without feature selection 0.839 5.558 0.715 11.409

(a) With feature selection (b) Without feature selection

Fig. 5. Performance of SVR models

range of AR. As such, 80% of dataset was assigned for training and 20% for
testing the model. For training dataset, 20% out of 80% is used for validation in
the cross validation process to determine the optimum hyperparameters. Finally,
both models were evaluated using R2 and root mean squared error (RMSE) and
compared. The results are presented in the next section.
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4.2 Results of Support Vector Regression

The performance of the models is summarized in Table 3. In both models, the
prediction accuracy in the training datasets is higher than in the testing datasets,
verifying the effectiveness of the developed model in predicting AR. The model
with feature selection explains 92% of AR variation (i.e. the R2 value is 0.92),
leaving only 8% of AR variation unexplained. Besides, this model performs well
also in the prediction, with a R2 value of 0.88. The model without feature selec-
tion performs worse than the model developed using feature selection. Only 84%
of the AR variation is explained by the model (training data) and only 72%
of the AR variation can be predicted (testing data). The performance of the
model with feature selection has an increase in R2 of 8% and 17% in training
and testing, respectively. Model errors, expressed in RMSE, are low in the model
with feature selection for both training and testing. In contrast, RMSE is much
higher in the model without feature selection, showing an increase of 98.9% and

(a) With feature selection

(b) Without feature selection

Fig. 6. Predicted AR, monitored AR, and error over rings
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145.3% for training and testing, respectively, when compared with the RMSE of
the model with feature selection.

Figure 5 and Fig. 6 show the output of each model versus the monitored
sensor data, where line y = x means perfect prediction. It is clear that the per-
formance of the model with feature selection is better than the one without
feature selection. The difference in performance of the two models is further
confirmed by the results in Fig. 6a, where one can clearly observe the error curve
of the model with feature selection is quite stable and mostly around 0. Whereas
in Fig. 6b, which shows the results of the model without feature selection, the
discrepancy between predicted and monitored data is larger and error curve less
stable. Accordingly, the developed model using features selected by proposed
method is able to better capture EPBM performance, revealing and confirm-
ing the importance of feature selection in building a robust prediction model.
Besides, it should be noted that for both models, large errors often occur beyond
20 mm/min and generally concentrate in the range beyond 35mm/min, which is
worthy for further research.

5 Conclusions

In this paper, we proposed a hybrid automatic feature selection method to
select features and developed support vector regression (SVR) models for EPBM
advance rate prediction. Constant and quasi-constant detection method (CDQ)
is used to filter out parameters with constant and quasi-constant values and
sequential forward selection (SFS) is then used to select the best feature subset
for developing the SVR model. The model was trained and tested using the 10
first “best” features as input. Based on the model results, the following conclu-
sion can be drawn:

(1) Hybrid automatic feature selection method is developed by combining CDQ
and SFS, which is able to reduce dimensionality and consequently compu-
tational burden while improving model accuracy.

(2) The developed SVR model using automatically selected features can effec-
tively predict AR, better than the one developed without feature selection.
The prediction accuracy of the model with feature selection was 92% and
88% for training and testing, respectively. When compared with the per-
formance of model without feature selection, the accuracy of the model
with feature selection improved by 8% and 17% for training and testing,
respectively.
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