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Abstract. Spatial variability is becoming more and more common in limit equi-
librium slope stability analysis. With the recent advances in the abilities for limit
equilibriumslope stability analysis to handle complicatedmodels, it ismore impor-
tant than ever to have a fast and accurate method to perform slope stability analysis
in spatially varying soils. The use of response surfaces is widely adopted in the
literature to deliver efficient stochastic analyses. However, their implementation
is usually deeply correlated with the choice of a field generation algorithm. This
makes the response surface method inflexible since it sometimes requires the
field generation algorithm to be completely rewritten. Finely discretized spatially
varying random fields can have many random variables which make the response
surface difficult to determine. To solve this, the authors have proposed a mod-
ified response surface guided approach to slope reliability analysis in spatially
varying soils which is independent of the choice of field generation algorithm.
This approach was evaluated using a two-dimensional problem, and validated by
comparing its accuracy and speed against the traditional Monte Carlo simulation.

1 Introduction

A probabilistic analysis is one where variability in the parameters is accounted for
by considering them as random variables. In contrast, an analysis with constant input
parameters is called deterministic analysis. A deterministic and probabilistic analysis
should be used together to consider different sources of uncertainty in the analysis and
design of slopes (Javankhoshdel and Bathurst 2014, 2016).

In the probabilistic analysis, a distribution (e.g. normal or lognormal) is defined
for the random variable. Traditionally, the input parameter distributions are sampled N
times – once per parameter, per simulation. In each simulation a limit equilibrium (LE)
analysis is performed to determine the factor of safety (FS). The probability of failure
(PF) is defined as follows:

PF = Number simulations with FS < 1

Total number of simulations
× 100% (1)
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Monte Carlo sampling (MC) or Latin Hypercube (LH) are traditionally used for
sampling of random variables in the probabilistic analysis (Hicks and Spencer 2010;
Nuttall 2011; Ji and Chan 2014). The number of samples required to produce an accurate
estimate of the PF depends on the complexity of the model, number of random variables
and/or whether the spatial variability of soil properties is considered. The computational
time required for such a probabilistic analysis is generally proportional to N.

Spatial variability of soil properties is due to the sedimentation process and chemi-
cal composition of the medium during formation. Several researchers in literature have
investigated the impact of the spatial variability of soil strength and stiffness parameters
on the stability of geo-structures (Javankhoshdel et al. 2022). The importance of spa-
tial variability of soil properties has been investigated through several studies of slope
stability analysis (Javankhoshdel and Bathurst 2014; Luo et al. 2016; Javankhoshdel
and Bathurst 2016, 2017; Javankhoshdel et al. 2017; Jamshidi Chenari and Izadi 2019;
Jamshidi Chenari et al. 2020; Shah Malekpour et al. 2020; Javankhoshdel et al. 2020;
Mafi et al. 2020).

The Random Limit Equilibrium Method (RLEM) has recently been implemented
commercially in the Slide2 Rocscience software (Rocscience 2022) which allows
for stochastic slope stability analyses. Javankhoshdel and Bathurst (2014, 2016),
Javankhoshdel et al. (2017), and Jamshidi Chenari and Izadi (2019) are examples of
studies considering only circular slip surface assumptions in their RLEM analyses.
Lately, with the introduction of optimization techniques in geotechnical field such as
Cuckoo search and Particle Swarm Optimization (PSO), which are global optimiza-
tion techniques together with the Surface Altering Optimization (SAO) which is a local
optimization technique (as introduced by Mafi et al. 2020), Tabarroki et al. (2013),
Javankhoshdel et al. (2017) and Cami et al. (2018) put into practice the implementation
of non-circular failure surface in their slope stability analyses. Owing to their improved
efficiency and effectiveness at identifying critical slip surfaces, these non-circular search
methods have become more popular where spatial variability of soil strength parameters
is considered (Javankhoshdel et al. 2022).

Stochastic response surface (SRS) is a method that can be used to reduce the com-
putation time of the complicated probabilistic analyses. However, SRS is sensitive to
the number of random variables in the analysis. In the spatial variability analysis, each
cell of spatial variable material is a variable itself so the original SRS approach is may
not always be suitable for such problems.

In this paper the original SRS algorithm that is well-suited for non-spatial analyses
is presented first. Then a new algorithm is developed to be able to use SRS for the spatial
variability analyses as well. The proposed SRS approach is more suitable for spatially
variable problems than the original SRS method.

2 Original Stochastic Response Surface Method

The original SRS method first employs a small sample of strategically selected com-
putations. These are used to generate a polynomial-based response surface of FS as a
function of the input parameters. The response surface can then predict the FS value of
every simulation, and hence provide an estimation of the PF. As expected, this method
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Table 1. Examples of transformation equations from three common distributions to standard
normal distributions (Li et al., 2011)

Distribution Probability density function, f (x) Transformation, x = f(U)

Uniform f (x) = 1
b−a x = �(U )(b − a) + a

Normal f (x) = 1√
2πσ

exp(− 1
2

(
x−μ
σ )2

)
x = μ + σU

Lognormal f (x) = 1√
2πσx

exp(− 1
2

(
ln(x)−μ

σ )2
)

x = exp(μ + σU )

See Li et al. (2011) for more details on the included parameters.

saves a significant amount of time when compared to traditional methods. However,
it also preserves a very reasonable degree of accuracy. The steps are outlined below
(Isukapalli 1999, Cami et al., 2021).

Step 1: Convert all random variables to standard normal. The initial random
variables are first converted to standard normal random variables. Standard normal ran-
dom variables are defined as having a mean of 0 and standard deviation of 1. This is
done with a series of transformation functions, some of which are listed in Table 1 as
examples (Li et al., 2011).

Step 2: Represent FS in polynomial form. Once all the variables have been nor-
malized, FS can be expressed as a function of all the normalized variables. The function
of choice can be anything but based on previous studies (Isukapalli 1999, Cami et al.,
2021) this study has adopted the 3rd order Hermite polynomial chaos expansion, shown
in Eq. 2. The coefficients will be determined by the sample of initial simulations.

F(U1, . . .Un) =a0 +
n∑

i=1

ai�1(Ui) +
n∑

i=1

i∑
j=1

aij�2
(
Ui,Uj

)

+
n∑

i=1

i∑
j=1

j∑
k=1

aijk �3
(
Ui,Uj,Uk

)
(2)

Note that in Eq. 2, F is the factor of safety and Ui is the value of parameter i. �p is
the pth degree Hermite polynomial. Its definition is found in Eq. 3.

�p
(
U1, . . . ,Up

) = (−1)pe0.5U
TU δp

δU1, . . . , δUp
e−0.5UTU (3)

Step 3: Determine the coefficients. The number of simulations required to be com-
puted (N) is calculated as shown in Eq. 4. These are the number of simulations that must
be pre-computed in order to determine the coefficients of the response surface.

N = 2

(
1 + 3n + 3n(n − 1)

2
+ n(n − 1)(n − 2)

6

)
(4)

The most challenging part of the SRS method is picking the best collocation points.
Various studies have determined various different algorithms for picking out the best
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collocation points. These are important in that they are used to train the model – they
determine the extent of the information fed into the response surface to train it. Several
method were compared in this study, and in the end Latin Hypercube was used to
determine the collocation samples (Choi et al., 2004). Latin-Hypercube ensures that the
solution space has been equally sampled, hence not ignoring any key solution regions.
Once the collocation samples have been gathered, the FS for each one is computed, and
they are used to solve for the coefficients in Eq. 2, a.

Step 4: Estimate PF. Once a has been determined, Eq. 2 is complete as a predicting
function. The desired number of samples is now collected, and each one is fed through
the equation, resulting in the desired number of predicted FS values. These are then used
to compute the predicted PF value, using Eq. 1.

3 Sparse Quadratic Response Surface

The shortfall of the original SRS method is that it is not suitable for spatially variable
materials, where the number of random variables can become very large (one variable
per cell). With so many variables, overfitting in the model can occur, and the number
of parameters in the response surface function becomes unreasonably large (Zhou et al.
2021).

To resolves these issues, the variational autoencoder (VAE) approach was used to
discretize the spatially varying fields. VAE’s (Kingma and Welling 2014) provide effi-
cient inference and learning for the given probabilistic model. Furthermore, the VAE
was used instead of other classical approaches because the variables in the compressed
representation had two desirable properties: the distribution was normal (desirable for
the Response Surface function), and the variables in the latent space were disentangled.
In statistics, latent random variables not directly observed, but are rather inferred from
observed variables. The resulting randomfield has latent random variables which closely
follow a standard normal distribution.

Afterwards, a preliminary slope reliability analysis was performed by training a
sparse quadratic response surface on the learned features. The nature of the FS com-
putation is expensive, which means that to generate the response surface we require
generalization from only a few training samples - a few hundred computations in our
case. As such, this problem is in the area of few-shot learning (FSL), which is described
in Wang et al. (2019). One approach to this type of problem is called self-supervised
learning, in which the model learns from both a small number of labelled data (fields
which we have found the FS for), and many unlabeled data (fields with unknown FS). In
this modality of machine learning, the aim is to help the downstream task (determining
the factor of safety) by first pertaining a model in the upstream task (compressing the
random fields).

If it is desired, the resulting response surface can be further iteratively corrected
to an unbiased estimation of a limit equilibrium target analysis by performing subset
simulations near the failure domain. Results indicate that variational autoencoders can
successfully be applied to discretize random fields, allowing for response surfaces to be
implemented independently of the field generation method.
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4 Example: 2D

Figure 1 shows the example model used in this study to compare the results of the
probabilistic analysis using LHSmethod and the Stochastic Response Surface algorithm
presented in this study.

In this model, the green region is a weak layer as it can be seen in Table 2.
The cohesion of the “Soil” material and friction angle of the “Weak Layer” material

are assumed to have spatial variations. The statistical properties including the spatial
correlation length of these properties are presented in Table 3.

Figure 2 and Fig. 3 present an example of the random field generated for cohesion
of the Soil material and friction angle of the Weak Layer material, respectively.

1000 samples were generated for the probabilistic analysis using both methods. The
Spencer LEM method together with the PSO and Surface Altering Optimizations are
used to calculate FS values with the non-circular failure mechanisms.

The surface results of the LHS method are presented in Fig. 4 and the results of the
Stochastic Response Surface method are presented in Fig. 5. The critical slip surface
shown in both figures is the deterministic factor of safety. It can be seen in Figs. 4 and 5

Fig. 1. Example model with a weak layer.

Table 2. Material Properties table.
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Table 3. Statistical parameters.

Material Name Random
parameter

Distribution
type

COV Horizontal
Correlation
length

Vertical
Correlation
length

Soil Cohesion Normal 0.25 5 5

Weak Layer Friction
angle

Lognormal 0.23 1 1

Fig. 2. An example random field for cohesion in the Soil material.

that, a smaller number of samples required in the Stochastic Response Surface Method
(a smaller number of surfaces in Fig. 5). In other words, to train the stochastic response
surface, we require only a portion of the 1000 samples, i.e., the computation time for
the Stochastic Response Surface method is less that the LHS method.

Also, the mean FS value computed using LHS method (not shown in these figures)
was 1.065 and the mean FS for the Stochastic Response Surface method was 1.07 which
are in a good agreement.
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Fig. 3. An example random field model for the friction angle of the Weak Layer material.

Fig. 4. Results of the probabilistic analysis in this study using LHS method.
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Fig. 5. Results of the probabilistic analysis in this study using the Stochastic Response Surface
method.

5 Conclusion

Amethod for efficiently estimating the probability of failure in slope stability for spatially
varying materials is presented in this paper. Stochastic response surfaces (SRS) is a
popular method for estimating the probability of failure in a slope without needing
to complete a full slope stability analysis for every simulation. However, in the case of
spatially variablematerials where the properties are assigned using randomdistributions,
traditionally SRS methods fall short due to the large number of spatially distributed
variables in the randomfield. The difficulty of constructing the response surfaces because
of the large random fields is overcome in this paper using a sparse quadratic response
surface via advanced techniques including variational encoding and few-shot learning.
The efficiency of the proposed method is demonstrated via an example.
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