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Abstract. Probabilistic analyses of slopes using Random Limit Equilibrium
Method (RLEM) have been extensively reported in literature. However, in these
types of analyses, the generated random fields are based on assumed values of
horizontal and vertical correlation lengths. In practice, horizontal and vertical cor-
relation lengths can be measured using CPT data and the data can be used to
condition the generated random fields. Conditioning random fields reduces the
level of uncertainty in the analysis and helps the simulations to render more rea-
sonable results. In this study, the stability analysis of a simple slope is used to
investigate the influence of conditional and unconditional random fields. To gen-
erate spatially variable fields, first, some artificial borehole data are employed
to correlate the spatially variable friction angle field. Then, considering some
typical values for the variability of the cohesion random field and the possible
cross-correlation between the two fields, a couple of scenarios are defined to syn-
thesize the spatially variable realizations of the cohesion field. Then, the results of
cross-correlated conditioned and unconditioned random fields are compared. The
results show that conditioning random field and considering the cross-correlation
between soil input parameters significantly reduce the probability of slope failure.

1 Introduction

About 300 slope failures occur annually inHongKong causing significant sumsofmoney
being spent on slope stabilisation. Hong Kong statistics show that 5% of slopes that
have been constructed and stabilised using the classical deterministic approach would
ultimately collapse. Neglecting the fluctuations in the many parameters influencing the
stability of slopes is one of the causes of this phenomenon (Huang et al. 2019). An
important source of uncertainty in the analysis of slope stability is the inherent spatial
variability of soil parameters. The impacts of soil spatial variability on slope reliability
analysis have been thoroughly examined using random field theory throughout the past
few years (Griffiths and Fenton 2004; Griffiths et al. 2009; Hicks and Spencer 2010;
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Li et al. 2015; Jiang et al. 2014; Hicks et al. 2014; Liu et al. 2017; Jamshidi Chenari
and Alaie 2015; Javankhoshdel et al. 2017; Liu et al. 2018; Cami et al. 2018; Jamshidi
Chenari and Izadi 2019; Shah Malekpoor et al. 2020; Javankhoshdel et al. 2020; Mafi
et al 2020).

In order to evaluate the dependency of an embankment slope in spatially variable
soils to available CPT data, Liu et al. (2016a) presented a numerical strategy combining
Subset Simulations (SS) with the Kriging method. Yang et al. (2017) also used Kriging
approach to generate correlated random field (CRF) utilizing CPT data for probabilistic
stability study of slopes. Li et al. (2016a) noted that if the number of known data points
was vast, the calculation time for theKriging approachwould turn out to be unreasonably
high.

Li et al. (2016b) presented a Markov Chain Monte Carlo (MCMC) approach for
producing CRFs from borehole data so as to describe the variability of geologic profiles.
Additionally, to create CRFs of soil parameters for a probabilistic investigation of tunnel
longitudinal performance, Gong et al. (2018) used the Hoffman technique (2008). The
Hoffman technique, while theoretically straightforward and computationally effective,
is unable to account for the measurement uncertainties in site investigation data. While
modeling multivariate geotechnical random fields, it is also important to appropriately
account for the cross-correlation between various parameters in addition to the autocor-
relation for a given geotechnical parameter. In a recent study, Tang et al. (2020) proposed
a genericmethod for producingmultivariate cross-correlated geotechnical randomfields.

Random Limit Equilibrium Method (RLEM) was originally introduced by
Javankhoshdel et al. (2017). RLEM is a combination of random field theory to cre-
ate a spatially variable field and limit equilibrium slope stability analysis to calculate
the factor of safety. In the current study, two cases of RLEM analysis with and without
conditional and cross-correlated random fields are studied and compared.

2 Conditional Random Fields

To generate spatial variability fields, horizontal and vertical spatial correlation lengths
should be measured. These two parameters are measured using CPT data (Cami et al
2020). Using these twomeasured parameters is a starting point of generating the spatially
variable random field. However, the process of random field generation is still random
and does not consider the known values of the data in the CPT locations.
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The goal in the probabilistic analysis is to reduce the level of uncertainty of the prob-
lem. Considering spatial variability of soil properties instead of having homogenous
material in the soil profile is one of the steps. The second way of reducing the uncer-
tainty of the problem is to consider the cross-correlation between soil input parameters
(Javankhoshdel and Bathurst 2015).

The last step that can be taken into account to reduce this uncertainty is to consider
the available data to generate a random field, which is called conditional random field.
Conditioning of a random field comprises a process that uses an unconditional random
field along with the statistics calculated from the available data. The random field is then
post-processed in order to condition it at the known conditioning points (Loret-Cabot
et al. 2012).

There are different approaches to condition random fields. The most recent approach
presented by Ching et al. (2021) uses sparse Bayesian approach to provide site character-
ization and conditional random fields. The purpose of site characterization is to measure
the statistical parameters (mean, standard deviation, and spatial correlation length) and
use them together with the cross-correlation between the soil parameters so as to gener-
ate conditional cross-correlated random fields. The same algorithm combined with the
RLEM analysis is utilized in this study to investigate the influence of conditioned and
unconditioned random fields. Slide2 (Rocscience 2022) software is used for the RLEM
analyses.

3 Methodology

Figure 1 shows the steps followed in this study to generate cross-correlated conditional
randomfields. First, a rectangular randomfield of 100m by 45m is generated for friction
angle. This random field was random, and the statistical parameters of friction angle will
be measured later. Then, for one of the fields, 20 artificial boreholes were generated to
extract data every 5 m horizontally and every 0.2 m vertically. An example of one of the
vertical data points is shown in Fig. 2.

These artificial boreholes were then used to measure the statistical parameters of the
friction angle. These parameters can be found in Table 1.

Next, using the artificial boreholes and statistical parameters of friction angle,
unconditional and conditional random fields are generated.
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Fig. 1. Flowchart of the steps of generating conditional cross-correlated random fields (X =
80 m).

Then, with the assumed statistical parameters of cohesion (see Table 2), a cross-
correlation of−0.5 between cohesion and friction angle, and also an algorithm suggested
by Sasanian et al. (2019), unconditional and conditional random fields for cohesion were
generated. The procedure suggested by Sasanian et al. (2019) is presented in Fig. 1.
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Fig. 2. The information of one of the artificial boreholes for friction angle (X = 80 m).

Table 1. Measured statistical parameters of friction angle

Parameter Mean Standard deviation Horizontal correlation
length

Vertical correlation
length

Friction angle (°) 32.25 5.65 1.65 0.97

Table 2. Assumed statistical parameters of cohesion.

Parameter Mean Standard deviation

Cohesion (kPa) 26.42 13.21

4 Illustrative Example

Figure 3 shows the model used in this study. The geometry is modified version of a case
study in Oman presented by Dastpak et al. (2022).

Figure 4 shows an example of unconditional randomfield for friction angle generated
using the statistical data from Table 1.
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Fig. 3. An example model used in this study.

Fig. 4. A sample random field generation for friction angle.

On the other hand, using the generated internal friction angle field, as shown in Fig. 4,
the corresponding conditioned cross-correlated randomfield of c andφ using the adopted
artificial boreholes are shown in Fig. 5. Note that weak regions in Fig. 5a correspond to
strong regions in Fig. 5b since c and φ fields are negatively cross-correlated.
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Fig. 5. Conditional and cross-correlated random fields of a) friction angle b) cohesion

The probability of failure for the unconditional case is 7.6%with the reliability index
(RI) of 0.83. However, probability of failure for the conditioned case reduces to 1.2%
with the RI of 2.4. As it was expected, conditioning the random fields even with some
random artificial data, increases the level of certainty in the problem and reduces the
probability of failure significantly (increases the RI value).

In this study, an advancedRLEMapproach is usedwhich utilized theSurfaceAltering
Optimization technique for local optimization in order to find a better factor of safety
(Mafi et al 2020). Figure 6 shows a critical slip surface for one of the failed cases (FS=
0.996). It is clear in this figure that the failure mechanism goes through the blue region
which is indicative of the weak material in this problem. This shows the advantage of the
adopted advanced RLEM approach that seeks out the weakest failure path in the model.
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Fig. 6. Critical slip surface for one of the failed cases of the model.

5 Conclusion

In this study, the influence of conditional and unconditional random fields was examined
through the stability analysis of a simple slope using random limit equilibrium method
(RLEM). To this end and to generate spatially variable fields, first, some artificial bore-
hole data were exploited to correlate the spatially variable friction angle field. In the
next step, some typical values for the variability of the cohesion random field along with
a possible cross-correlation between the soil friction angle and cohesion fields were
considered so as to generate unconditional and conditional random fields for cohesion.
Comparing the results of cross-correlated conditioned and unconditioned random fields
show that conditioning random fields and considering the cross-correlation between soil
input parameters, including the shear strength properties, would significantly reduce the
probability of slope failure. The described procedure was demonstrated via an illustra-
tive example. It was shown in this example that conditioning the random field even with
some random artificial data, increases notably the level of certainty in the problem and
thus reduces significantly the probability of failure (increases the RI value).
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