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Abstract. The slope stability has been widely analysed in the past, which demon-
strates the significance of the subject in human life, especially in terms of life safety
and economy. This is even more important in earthquake-prone areas where stat-
ically stable slopes may be triggered by the dynamic loads. Pseudo-static (PS)
approaches are most used in the first stages of the regular assessment of seismic
slope stability analysis. However, the spatial variability of the PS coefficient has
not been considered so far in the realm of PS analyses, meaning that the value
of the seismic coefficient is assumed to be constant at every location within a
field while this is not true in the real case. The consideration of the variation of
the PS coefficient is especially relevant to landslides in wide areas. This research
aims at addressing this issue considering the stochastic nature of soils in seis-
mic slope stability analysis within the framework of the limit equilibrium method
(LEM) of slices, Monte Carlo (MC) simulation and random fields, termed 2D-
RLEM. Results of parametric studies are presented, through which the sensitivity
of stochastic slope stability problem to various factors, including different levels
of spatially variable PS loading, the scale of fluctuation (SOF) of the PS coefficient
random field, etc, are explored. It was concluded that the effect of different values
assigned to the coefficient of variation and the SOF of the PS coefficient on the
resulting slope probabilities of failure was more tangible for larger earthquakes.

Keywords: Slope Stability · Seismic Slope Stability · PS Approach · Soil
Spatial Variability · Spatial Variability of Input Load

1 Introduction

The stability of slopes is of high significance due to their utility in terms of being
near, or part of, large engineered structures, such as bridges and dams. To speed up the
slope stability analyses in seismic-prone areas, simplified equivalent-seismic procedures
(i.e. pseudo-static (PS) approach) are commonly used compared to other methodologies
including more rigorous dynamic analyses that entail detailed-modelling as well as
considerable computation time (Baker et al., 2006; Burgess et al., 2019). A PS approach
is mainly based on a horizontal PS coefficient (Kh) the values of which have been
suggested by previous studies (Melo and Sharma, 2004; Jibson, 2011) while the effect
of the vertical component is recognised as less significant (Gazetas et al. 2009; Zhang
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et al. 2015). According to Baker (2021), the seismic intensity measure (IM) that each
structure (that can be interpreted as distinct locations in sloped areas) experiences when
dealing with spatially distributed systems (e.g. slopes) is different due to the differing
distances from each considered earthquake rupture to the locations of interest, differing
site conditions at each location, and other effects such as rupture heterogeneity, wave
propagation and scattering. However, the simplified PS approach merely considers a
constant value as the seismic load.

Soil properties (e.g. cohesion and friction angle) are stochastic aswell due to different
deposition conditions and loading histories in an area (Elkateb et al., 2003). Indeed, such
a spatially variable nature would have a significant effect on the results of geotechnical
reliability analyses if reflected correctly in mathematical models as it helps to simulate
a more realistic picture of the soil structure.

With regards to these stochastic features, a newmethodology has been developed and
presented in this paper, to consider these factors simultaneously andmake the simulations
more realistic as well as time-efficient for a seismic geotechnical problem.

2 Literature Review

2.1 Pseudo-static Approach

In the PS approach, a horizontal force (Kh*W ), where Kh is the PS coefficient and W
is the weight of the sliding mass of soil slope, is applied to the centre of the gravity
(COG) of a sliding mass (or COG of each slice in limit equilibrium of slices (LEM of
slices) instead of the real complex seismic load (Mostyn and Small, 1987). According
to Leshchinsky and San (1994) and Baker et al. (2006), the PS coefficient depends on
the seismological features, including earthquake magnitude and focal distance. Table 1
represents a summary of PS coefficient values from previous studies.

Several researchers have developed PS slope stability design charts for simple homo-
geneous slopes based on the PS approach used within the framework of either limit anal-
ysis, limit equilibrium or finite elements (Koppula, 1984; Leshchinsky and San, 1994;
Michalowski, 2002; Loukidis et al., 2003; Baker et al., 2006; Burgess et al., 2019).
Depending on the charts’ format, the critical horizontal seismic coefficient (Khc) (cor-
responding to a PS factor of safety (FPS) equal to 1) or FPS for a given PS coefficient
can be obtained (Leshchinsky and San, 1994; Burgess et al., 2019). More specifically,
the PS approach has been widely used within the LEMs (Baker et al., 2006; Park et al.,
2018). In the PS-LEM of slices (e.g. Loukidis et al., 2003; Choudhury et al., 2007), the
inertial force Kh*Wi (Wi being the slice weight) is inserted into the equations of static
equilibrium and applied at the COG of each slice. The output would be the PS factor of
safety, which is expected to decrease as the seismic load increases.

2.2 Spatial Variability

Different depositional conditions and stress histories in a sloped area, as well as varia-
tions in the mineralogical composition, are some of the factors causing soil properties
to vary from one location to another, being known as the soil inherent variability. This
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Table 1. PS coefficients from different studies (Jibson, 2011)

Reference Recommended PS
coefficient (Kh)

Recommended factor
of safety

Calibration conditions

Terzaghi (1950) 0.1(R-F = IX)a

0.2(R-F = X)
0.5(R-F > X)

>1.0 Unspecified

Seed (1979) 0.10(M = 6.50)b

0.15(M = 8.25)
>1.15 <1 m displacement in

earth dams

Marcusen (1981) (0.33 −
0.50)*PGAc/g

>1.0 Unspecified

Hynes-Griffin and
Franklin (1984)

0.50*PGA/g >1.0 <1 m displacement in
earth dams

California Division of
Mines and Geology
(1997)

0.15 >1.1 Unspecified; probably
based on <1 m
displacement in dams

a R-F is the Rossi-Forel earthquake intensity scale.
b M is earthquake magnitude.
c PGA is the peak ground acceleration.

has been the main subject of research by Phoon et al. (1995) and Phoon and Kulhawy
(1999a) who reported a very comprehensive literature review study, as well as tabular
and graphical presentations for the coefficient of variation (COV) of the inherent vari-
ability of different soil parameters, classified based on the soil and test types. Other
sources of uncertainty and variability in soil data are attributed to measurement errors
and transformation uncertainty (Phoon and Kulhawy, 1999a, 1999b). Only the inherent
variability of the soil properties can be modelled through the theory of random fields
(Sasanian et al., 2021). Vanmarcke’s random field theory is commonly implemented
to model this inherent spatial variability within an area (Vanmarcke, 1988). The least
number of inputs are required to generate a stationary Gaussian random field including
the mean of the soil property, COV of inherent variability component, type of the proba-
bilistic distribution of soil data (normal, lognormal), and the correlation model between
the inherent variability components. These values can be obtained from several avail-
able studies (Phoon et al., 1995; Phoon and Kulhawy, 1999a; Duncan, 2000; Cherubini,
2000; Wu, 2013; Cami et al., 2020; ISSMGE-TC304, 2021). For example, Phoon and
Kulhawy (1999a) presented ranges of COV values for soil friction angle and cohesion,
(COVφ and COVc), respectively reported as (5–15)% and (10–55)%. For this range of
COVφ , Phoon and Kulhawy (1999a) presented a range of mean values (μφ) between 20º
and 40º. Regarding the mean undrained cohesion value (μc), a range of 10–700 kPa was
recommended (Phoon and Kulhawy, 1999a). The Markovian autocorrelation function
(ACF) for a two-dimensional (2D) Gaussian random field is defined as

ρ(�H ,�V ) = exp
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where δH and δV are the absolute horizontal and vertical distances between two locations
within the random field and θH and θV are the scales of fluctuation (SOFs) in the
horizontal and vertical directions, respectively, with δ=

√
(δH2 + δH

2) and θ being the
isotropic SOF for a 2D isotropic Gaussian random field (Burgess et al., 2019; Cami et al.,
2020). The SOF is expressed as the distance within which the soil property is highly
correlated and is calculated as the area under the correlation function or estimated via
different procedures such as the Method of Moments (MOM), Maximum-likelihood
(MLE) and Bayesian analysis from limited soil sample data (El-Ramly, 2001; Cami
et al., 2020). Cami et al. (2020) provided a summary of scales of fluctuation of different
soils from the literature.

Various random-field generator algorithms are available to produce stochastic mod-
els, the most common of which are: Moving-average (MA) method, Discrete Fourier
transform (DFT)method, Covariance matrix decomposition (CMD), Fast Fourier Trans-
form (FFT)method, Turning-bandsmethod (TBM) andLocal average subdivision (LAS)
method (Fenton and Griffiths, 2008). Among them, the most widely-used are CMD and
LAS considering that FFT, TBM, and LAS methods are typically much more efficient
than the other ones. If the problem at hand requires, or benefits from, a local average rep-
resentation (e.g. soil statistical modelling), then the LAS method is the logical choice,
though other generators are also commonly-used (Fenton and Griffiths, 2008; Huang
et al., 2013; Jamshidi Chenari and Alaie, 2015).

Different studies have considered the soil spatial variability in slope reliability analy-
sis (Griffiths and Fenton, 2004; Srivastava and Babu, 2009; Griffiths et al., 2009; Huang
et al., 2010; Huang et al., 2013; Li et al., 2014; Jamshidi Chenari and Alaie, 2015;
Cami et al., 2017; Javankhoshdel et al., 2017; Burgess et al., 2019). Griffiths and Fenton
(2004) employed the random finite element method (RFEM), which is a combination of
the random field theory (i.e. using LAS), Monte Carlo (MC) simulation and finite ele-
ment method (FEM) for the reliability analysis of a purely cohesive slope and concluded
that the perfect correlation assumption leads to unconservative results for slopeswith low
factor of safety or when the soil COV is relatively high. One of the important features of
the RFEM is that it allows the failuremechanism to naturally seek out the weakest failure
path (Griffiths and Fenton, 2004). Srivastava and Babu (2009) investigated the effect of
the soil spatial variability on the reliability of a cohesive-frictional slope. Based on the
static cone penetration test (SCPT) data and considering the autocorrelation function
versus lag graph, they found out that the corresponding inherent variability components
were uncorrelated and thus only the depth-variable trend was considered.

Griffiths et al. (2009) compared the resulting probability of slope failure from FEM,
combined with a first-order reliability method (FORM) without spatial variation, with
a more advanced RFEM approach and found a critical value for COV of the soil shear
strength parameters at which the single randomvariable (SRV) approach, which assumes
a perfect correlation condition, becomes unconservative. Along the same vein, Huang
et al. (2010), concluded that RFEM ismore reliable as it can accurately predict the system
probability of failure of slopes rather than the probability of failure of the most critical
slip surface (corresponding to higher reliability compared to the system reliability) as it is
in FORM (no spatial variability). By employing Karhunen-Loeve expansion method for
modelling the stochastic purely cohesive soil applied to some theoretical slopes, Huang
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et al. (2013) proposed a new framework for quantitative risk assessment of landslides,
based on the logic that the consequence should be assessed individually for each failure
mode. Li et al. (2014) adopted a nonstationary randomfieldmodel to investigate the effect
of the soil spatial variability on the stability of clay as well as sandy infinite slopes. With
the use of stationary and non-stationary random fields generated from CMD method,
Jamshidi Chenari and Alaie (2015) investigated the effect of the anisotropic spatial
variation in the undrained shear strength on the reliability of clay slopes through a
RFDM approach (Random Finite Difference method). Burgess et al. (2019) developed
the first so-called seismic probabilistic slope stability design aids by adopting the PS
approach and considering the cohesive-frictional soil spatial variabilitywithin theRFEM
approach.However, the superiority ofRFEMhas been arguably outshined by themassive
computational effort embedded in the strength reduction technique (Javankhoshdel et al.,
2017; Cami et al., 2017).

The random limit equilibrium method (RLEM) was first introduced and utilized by
Javankhoshdel et al. (2017), being a combination of circular LEM, random field theory
and MC simulation where stochastic values are generated using the LAS method by
Fenton and Vanmarcke (1990) and mapped onto a grid of elements (mesh); each element
of the grid is assigned a random value which correlates with the nearby values based on
a correlation length. The RLEM has been used extensively to interpret the uncertainty
embedded in the slope stability analyses assuming both circular and non-circular slip
surfaces (Cami et al. 2017). Javankhoshdel and Bathurst (2014) and Javankhoshdel et al.
(2017) utilized circular-RLEM to investigate the influence of soil spatial variability on
the slope probability of failure. Lately, the advent of the new search and optimization
techniques like Cuckoo search and Surface Altering Optimization (SAO) (as discussed
in Shah Malekpoor et al., 2020), promoted to seeking for non-circular failure surfaces
(Tabarroki et al., 2013; Javankhoshdel et al., 2018; Cami et al., 2017; Shah Malekpoor
et al., 2020).

Regarding the dynamic input loads, it is worth noting that real earthquakes vary spa-
tially according to three effects: wave passage effect (the difference in the arrival time of
a seismic load in different areas), incoherence effect (due to the reflection and refraction
of seismic excitations), and local soil effect (where amplitude and frequency content of
an input load changes due to the local site effects) (Saxena et al., 2000). However, the
simplistic PS approach does not take such effects into account. The stochastic nature
of the real seismic loads can be, instead, simulated roughly by considering a stochastic
nature for the seismic coefficient in a PS approach within the area under investigation.
For the PS coefficient, Tsompanakis et al. (2010) assumed a lognormal distribution with
a mean value (μKh) in the range of (0.01–0.5) g and COVKh of 10%. Youssef Abdel
Massih et al. (2008) explored the effect of two distributions: exponential distribution
(Exp D) and an extreme value type II distribution (EVD) for the PS coefficient with
a COV in the range of (10–80)%. Notwithstanding, no spatial variation has ever been
considered for the PS coefficient. Hence, the current research aims at implementing the
spatial variability of the PS coefficient and exploring its effects on different aspects of
stochastic slope stability analysis.
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3 Methodology

The models presented in this paper are simple homogeneous slopes (i.e. single material)
made up of cohesive-frictional soils. The complex geometries are not considered as the
goal is to focus on the effect of the spatial variability of Kh. Random fields for soil
properties and PS coefficient are considered isotropic stationary Gaussian (Fenton and
Griffiths, 2008) with lognormal distribution due to their nonnegative nature based on
literature studies (Javankhoshdel et al., 2017). No cross-correlation has been considered
between the random variables. It should be noted that the given soil slope is considered
as dry and the effect of pore pressure on the stability is not taken into consideration for
the current stage of this research but will be also considered in the future. Figure 1 shows
the sample slope analysed in this study.

According to Cami et al. (2020), the SOF of mixed c-φ soil is taken here as δH
= 200 m and δV = 1.5 m with a Markovian ACF. Though the statistical features for
the PS coefficient were chosen similar to Tsompanakis et al. (2010) (i.e. a lognormal
distribution with a mean value in the range of (0.01–0.5), a range of COV (i.e. 0.1, 0.3,
0.5) was employed to explore the effect of different variability levels of seismic load
within the field.

In summary, the deterministic and statistical parameter values of simulations have
been presented in Table 2 (Phoon and Kulhawy, 1999a; Melo and Sharma, 2004; Jibson,
2011; Burgess et al., 2019; Cami et al., 2020).

As in the reliability analysis technique, MC simulations have been used, consisting
of a number of limit equilibrium analyses of the slope (in each iteration). For each
MC iteration, 5000 realizations in total, i.e. samples of random field variables, were
generated with the mrslope2d code by Fenton and Griffiths (2008) (inputting the mean,
standard deviation, mesh size, SOF, type of probabilistic distribution and ACF) and
imported as the inputs to the authors’ developed code in MatLab R2021b. This approach
is called 2D-RLEM as stated in the literature (Javankhoshdel et al. 2017). The mesh size
is recommended to be less than half of the SOF (Huang and Griffiths, 2015), e.g. being
0.5*0.5 when SOF= 1.5 m. In fact, the slope section is divided into grids (elements) and
the imported random values (for each random variable; c, φ and Kh) from mrslope2d
are assigned to each element. Implementing the LEM of slices, each slice base is located

Fig. 1. Sample slope section
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Table 2. List of simulation parameters

Parameter Values considered

β, Slope angle 20º to 85º

μφ 20º, 25º, 30º

Stability number, λ= μc/ γHtanμφ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

μc Determined based on λ

μKh 0.1, 0.3, 0.5

COVc 0.3

COVφ 0.15

COVKh 0.1, 0.3, 0.5

Unit weight of soil, γ 18 (kN/m3)

Slope height, H 5 m

Depth factor, Da 2

(θc,φ)Ho
b/H 40

(θc,φ)V
c/H 0.3

θKh(H,V)
d/H 0.3, 1, 2, 5, 200

a The depth factor is simply taken as the depth to the hard layer divided by the height of the slope
b Horizontal SOF of soil
c Vertical SOF of soil
d Isotropic SOF of the PS coefficient

within an element, the assigned value of which will be adopted as the random value of
that property (cohesion, friction angle or PS coefficient random values) for the whole
slice (Javankhoshdel and Bathurst, 2014). Then, the PS safety factor of each slip surface
is calculated with the Bishop simplified method in each MC iteration. This method is
chosen among different LEM of slices due to its efficiency and accuracy investigated by
the authors and also asserted in the literature (Fredlund and Krahn, 1977). At the end
of each iteration (and exploring the PS safety factor of different slip surfaces), the PS
safety factor of the critical slip surface (the one with the minimum Bishop PS factor of
safety) is compared to unity. The slope probability of failure is finally calculated as the
number of iterations with a PS factor of safety less than one with respect to the total
number of iterations (Shah Malekpoor and Lopez-Querol, 2022).

To find the optimal number of MC iterations, 2D-RLEM analyses were run for
different numbers of samples preceding themain parametric studies. The optimal sample
number is the one for which the probability of failure versus the number of samples graph
starts getting a stable value. This was conducted for a number of cases. It was observed
that 20,000 samples were enough for small probabilities of failure (i.e. (0–0.1) %) as the
plot in Fig. 2 starts to stabilize from 20,000 samples (highly variable as well as unreliable
probabilities before that), while 5000 samples were sufficient for higher probabilities of
failure (i.e. (0.1–100)%) based on the sample convergence plot (Fig. 3).
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Fig. 2. Optimal number of MC samples for probabilities of failure in the range (0–0.1)% (for the
case: β = 60°, μφ = 20 º , λ = 0.6, μKh = 0.1, H = 5 m, γ = 18 kN/m3, COVc = 0.3, COVφ =
0.15, COVKh = 0.5, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3

Fig. 3. Optimal number of MC samples for probabilities of failure in the range (0.1–100)% (for
the case: β = 70°, μφ = 20 º , λ = 0.6, μKh = 0.1, H = 5 m, γ = 18 kN/m3, COVc = 0.3, COVφ

= 0.15, COVKh = 0.5, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3

4 Results

This novel methodology is expected to result in the first series of seismic stochastic slope
stability design aids showing the effect of different intensities of spatially variable PS
coefficient on the probability of failure of stochastic soil slopes. In fact, they could be
an improvement form of Burgess et al. (2019) charts, for which a constant value was
considered for the PS coefficient. However, the current preliminary research focuses
on the results of some parametric studies including the sensitivity of the theoretical
stochastic slope stability problem to factors including (but not limited to) various levels
of spatially variable PS coefficient, different degrees of COVKh, the value of the SOF of
the PS coefficient, and the friction angle of soil material. It is worth noting that the solid
lines in Figs. 4, 5, and 6 represent the deterministic factor of safety values for different
slope angles and stability numbers while the dashed lines correspond to probability of
failure value both under three different levels of PS coefficient mean value. For example,
the red arrow (pointing to the right) in Fig. 5 shows the PS factor of safety of a slope
with β = 40°, λ = 0.6, φ = 20°, and Kh = 0.3 (deterministic parameter values) is 1.39.



Spatial Variability of Input Motion in Stochastic Slope Stability 187

On the other hand, the probability of failure for this slope in a spatially variable context
with statistical parameters mentioned in the caption of the corresponding figure is shown
by another red arrow (pointing to the left) and is estimated to be 2.16% when COVKh is
0.5.

4.1 The Effect of μKh, COVKh and λ

The first parametric study was dedicated to exploring the effect of different levels of
magnitude for the spatially variable PS coefficient in a stochastic slope stability prob-
lem considering different levels of variability within the PS random field and different
stability numbers, λ. In this regard, three values were inputted as μKh values e.g. 0.1,
0.3, and 0.5 for various levels of COVKh e.g. 0.1, 0.3 and 0.5, standardized SOF of 0.3
for the PS generated random field and different stability numbers which led to different
levels of failure (parameters described in Table 2 and results in Figs. 4, 5, and 6).

As is expected, a higher stability number (i.e. a higher cohesive strength when the
slope height and friction angle are constant) results in a lower probability of failure for
a particular slope angle subjected to a spatially variable PS loading while a higher mean
magnitude for the PS coefficient yields higher risk of failure for a specific slope.

Regarding a specific amount of failure probability, increases in stability factor from
left to right, shifts the graphs to higher slope angles.

It was observed in Fig. 4 that there is quite no difference between the results con-
sidering different COVKh values for a low amount of stochastic PS loading (i.e. 0.1).
However, Figs. 5 and 6 show that the higher the amount of the stochastic PS loading,
the more tangible is the effect of the level of variation, COV, in the PS coefficient within
the field. In other words, the effect of different COVKh values, of PS load is critical to
be considered especially for large magnitude earthquakes, the equivalent PS coefficient
of which is higher (according to Table 1).

As the mean value of the seismic coefficient increases to 0.3, a turning point starts to
emerge in charts that shows a higher COVKh (i.e. 0.5) in PS coefficient results in greater
vulnerability for a specific slope angle except for very high probabilities of failure (i.e.
more than 50% for λ = 0.6 in Fig. 5) where a low COVKh value is more critical. This
turning point shifts to lower probabilities of failure and higher slope angles for greater
stability factors (from left to right in Fig. 5) till it becomes disappeared for μKh = 0.5
when λ = 0.8 (Fig. 6). In fact, a COVKh of 0.5 is observed to be the critical value for a
mean PS coefficient value of 0.5 as it results in the highest risk of failure for almost all
the slope angles except for very high probability of failure values (i.e. more than 90%)
(Fig. 6).

Meanwhile, a lower level of variation for the PS coefficient (in charts with higher
μKh where the distinction between COV graphs becomes obvious) leads to a steeper
change in the charts slope (Figs. 5 and 6). In fact, the rate at which the risk of slope
failure increases with an increase in the slope inclination is higher for a smaller COVKh

value.
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Fig. 4. The effect of various levels of COVKh and λ for μKh = 0.1, μφ = 20º, COVc = 0.3,
COVφ = 0.15, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3 with a Markovian ACF

4.2 The Effect of θKh

The novelty of the current research is associated with the inclusion of the spatial vari-
ability of the PS coefficient (θKh) within a stochastic slope stability problem. This effect
has been explored through parametric studies over a number of SOF values for different
mean values of the PS coefficient (0.1, 0.3 and 0.5) considering a stochastic slope.

The same as the ineffectiveness of the COVKh in low mean values of PS coefficient,
different θKh values do not affect the resulting probabilities of failure of a slope (with the
same soil material but different angles) subjected to a small mean PS coefficient value
of 0.1 (Fig. 7).

For higher mean values of PS coefficient (i.e. 0.3 and 0.5), it was observed that
the more non-smooth is the random field for the PS coefficient (i.e. the smaller is the
SOF value for the PS coefficient random field), the higher is the risk of failure for all
slope angles when the probability of failure is very high (Figs. 8 and 9). The small SOF
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Fig. 5. The effect of various levels of COVKh and λ for μKh = 0.3, μφ = 20º, COVc = 0.3,
COVφ = 0.15, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3 with a Markovian ACF

value (i.e. 1.5 m) corresponding to the highest probabilities of failure is interpreted as
the worst-case SOF value which is of high importance in conservative and safe slope
designs (Figs. 8 and 9). The only discrepancy in the trend is with respect to SOF = 1.5
m for slope angles less than 50º and μKh equal to 0.3 (Fig. 8). This SOF value yields the
smallest probability of failure for slope angles less that about 35º in Fig. 8. According
to Fig. 9, a big difference between the resulting probabilities of failure for considering
the spatial variability of the PS coefficient and disregarding this effect was observed for
a large earthquake with μKh = 0.5 for gentle slopes (i.e. 20º and 30º).

All the Figs. of 7, 8 and 9 follow a logical trend that a steeper slope angle leads to a
higher risk of failure for all SOF values of the PS coefficient and a higher probability of
failure arises from a greater mean value for the PS coefficient for all slope angles.
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Fig. 6. The effect of various levels of COVKh and λ for μKh = 0.5, μφ = 20º, COVc = 0.3,
COVφ = 0.15, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3 with a Markovian ACF

4.3 The Effect of μφ

The effect of soil friction angle and its relationship with the spatial variability of the PS
coefficient has been explored and the outputs are presented here. According to the results
in Fig. 10, a higher mean value for the friction angle results in a lower risk of failure for
a specific slope angle when all the other parameters are the same (as expected). Small
differences exist between the resulting probabilities of failure for a higher mean value
for the friction angle (for a constant λ) under different values of COVKh in a specific
slope especially for more gentle slope angles when θKh(H,V)/H = 0.3 (e.g. 20º–40º).
Meanwhile, higher COVKh values lead to a higher probability of failure except for high
risks of failure for both mean values of friction angle.
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Fig. 7. The influence of θKh on probability of slope failure for μKh = 0.1, μφ = 20º, λ = 0.4,
COVc = 0.3, COVφ = 0.15, COVKh =0.5, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3
with a Markovian ACF

Based on Fig. 11, the perfect correlation case (when SOF value is 1000 m) is the
worst-case SOF for slope angles up to 60º while the smallest SOF value takes that role for
steeper slope angles. For a higher mean friction angle in Fig. 12, the perfect correlation
case yields the highest probabilities of failure for all slope angles for the same stability
number assumed in Fig. 11.

A comparison between the Figs. 11, 12 and 8 shows that the smaller the value of
μφ (for a constant stability factor), the higher is the effect of the spatial variability of
the PS coefficient. In fact, a more nonsmoothed random field with small SOF value of
1.5 m for the PS coefficient will yield a higher probability of failure for lower values of
mean friction angle for high slope angles compared to other θKh values. This matter is
especially important at the occurrence time of earthquakes when the friction angle is so
low, thus considering a more non-smoothed random field for the PS coefficient (i.e. a
smaller SOF value for that) would be much more effective in such cases.

Finally, it was observed that for a higher mean value for the friction angle (compared
to other mean friction values employed for the same constant λ), smaller differences
emerge between the resulting probability of failure of each slope regarding different
SOF values of the PS coefficient (Fig. 12).
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Fig. 8. The influence of θKh on probability of slope failure for μKh = 0.3, μφ = 20º, λ = 0.4,
COVc = 0.3, COVφ = 0.15, COVKh = 0.5, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3
with a Markovian ACF

Fig. 9. The influence of θKh on probability of slope failure for μKh = 0.5, μφ = 20º, λ = 0.4,
COVc = 0.3, COVφ = 0.15, COVKh = 0.5, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3
with a Markovian ACF
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Fig. 10. Influence of mean friction angle on probability of slope failure for μKh = 0.3, λ =
0.4, COVc = 0.3, COVφ = 0.15, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3, θKh(H,V)/H = 0.3 with a
Markovian ACF

Fig. 11. The influence of θKh on probability of slope failure for μφ = 25º, λ = 0.4, μKh = 0.3,
COVKh = 0.5, COVc = 0.3, COVφ = 0.15, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3 with a Markovian
ACF
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Fig. 12. The influence of θKh on probability of slope failure for μφ = 30º, λ = 0.4, μKh = 0.3,
COVKh = 0.5, COVc = 0.3, COVφ = 0.15, (θc,φ)Ho/H = 40, (θc,φ)V /H = 0.3 with a Markovian
ACF

5 Conclusion

The current novel methodology considers the simultaneous effect of the soil and PS
coefficient spatial variability in the context of probabilistic slope stability analysis using
2D-RLEM approach. Due to the computational efficiency of employing the PS app-
roach compared to a rigorous dynamic one, this novel methodology aligns with sustain-
able solutions. The underlying conclusions from parametric studies are summarized as
follows.

• For small values of PS coefficient, different values of neither COVKh nor θKhmake any
changes in the resulting probability of failure of soil slope. The higher the mean value
of thePScoefficient, themore distinct is the effect of these factors on the resulting slope
probabilities of failure. This justifies the importance of currentmethodology especially
for large magnitude earthquakes which hold a higher equivalent PS coefficient value.

• For a mean value of PS coefficient equal to 0.3, the worst-case COVKh value (corre-
sponding to the highest probability of failure) changes at a turning point from being
0.5 for smaller and 0.1 for the larger slope angles. The position of this turning point is
different for different stability numbers. However, a PS coefficient of 0.5 corresponds
to a worst-case COV value of 0.5 for most of the conditions.

• The smallest value for the SOF of the PS coefficient corresponds to the worst-case θKh
values (resulting in the highest probabilities of failure) for all slope angles when the
mean value of PS coefficient is high (i.e. 0.5). This shows the importance of modelling
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the PS spatial variability for large earthquakes triggering very high slope probabilities
of failure.

• A big difference between the probabilities of failure for considering a highly variable
field for the PS coefficient (i.e. SOF= 1.5m) and disregarding this effect was observed
for a large earthquake (i.e. μKh = 0.5) for gentle slopes.

• The smaller the mean value for the friction angle, the more critical is the effect of
modelling a more non-smoothed random field for the PS coefficient for steep slopes
(leading to higher probabilities of failure). Totally, the effect of small SOF values for
PS coefficient (i.e. 1.5 m compared to other SOF values) is significant for high values
of probability of failure.
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