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Abstract. The search for the critical slip surface on a slope is an optimization
problem whereby the factor of safety is minimized over a set of parameters which
define the shape of the slip surface. In limit equilibrium slope stability analysis, tra-
ditional methods for searching for the critical slip surface include grid search and
auto-refine search.More recently,metaheuristic optimizationmethods such as Par-
ticle Swarm and Cuckoo Search, among other variations, have been used to search
for critical slip surfaces. These simulate natural processes that search the solution
space for a minimum solution for various optimization problems encountered in a
vast range of disciplines. Typically, the parameters of spheres or ellipsoids which
cut the ground topography are varied to create different slip surfaces. The param-
eters of cutting planes and wedges can also be varied to create multi-planar slip
surfaces using the same metaheuristic techniques. However, critical slip surfaces
are not always spherical, ellipsoidal, or planar in nature. This paper introduces
a novel method which employs the use of three-dimensional spline surfaces in
a metaheuristic search to find the critical slip surface in a slope. By varying the
parameters which define the location, size and curvature of the spline, the critical
slip surface can be found. The proposed formulation of parameters is shown to
perform better than the parameters which define the preceding shapes due to the
superior flexibility of a spline surface in its curvature.
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1 Introduction

Limit equilibrium (LE) is a common method for assessing the overall stability of slopes.
For both 2D and 3D slopes, the factor of safety (FS) for a given slip surface below a
sliding soil mass can be computed relatively quickly via LE when compared to other
common methods such as finite elements (FE). However, a difficulty in LE remains in
finding the true FS in a slope, which is governed by the critical slip surface corresponding
to the minimum FS. Finding the critical slip surface requires solving an optimization
problem wherein the parameters defining the shapes of slip surfaces are varied until the
minimum FS is found.
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Fig. 1. Example of a spline slip surface defined by a 15x15 grid of points

Particularly in 3D, the FS calculation is relatively expensive compared to 2D so
defining an efficient optimization algorithm is required to maintain reasonable compu-
tational durations. Traditionally, engineers have relied on simple shapes such as spheres
and ellipsoids to define slip surfaces when searching for the minimum FS. Brute search
methods such as grid search are still commonly employed, whereby a 3D grid of points is
used to spawn the centers of spheres, with varying radii. Smarter methods such as auto-
refining algorithms have intensified the searching in regions with lower FS. Still further,
metaheuristic optimization algorithms such as Particle Swarm Optimization (PSO) and
Cuckoo Search have been used to determine the minimum FS of slip surfaces in slopes.
These have received widespread acceptance in slope stability research [1–10] due to
their ability to simulate natural processes to converge to a minimum FS slip surface
relatively quickly.

Many commercial slope stability programs offer the option to search for simple types
of surfaces, such as spheres, ellipsoids, and planar surfaces. These shapes are easy to
define as inputs into the above methods but suffer from lack of accuracy and ability to
represent the true critical slip surface in a slope because they are inflexible. Recently,
a Surface Altering (SA) optimization has been proposed for 3D slopes [5], which can
approximate the minimum FS result from the metaheuristic search of these primitive
surfaces (e.g. the minimum FS ellipsoid) into a plan-rectangular array of spline points.
The spline points form a net in 3D over which a Non-Uniform Rational Basis Spline
(NURBS) surface is contained, and its points can be manipulated to alter the slip surface
locally to find the minimum FS. In Fig. 1, a 15 by 15 grid of points is shown, and
the actual slip surface marked as the intersection of the spline surface with the slope
geometry is shaded.

The SA approach can technically approximate any slip surface obtained from the
metaheuristic search, and locally minimizes the FS. However, the approximation sug-
gested by [5] can cause undesirable changes to the geometry of the slip surface and can



132 T. Ma et al.

Fig. 2. Parameters defining the proposed spline surface

increase the FS obtained from the approximated surface before the local optimization is
performed. Furthermore, the minimum FS ellipsoid or sphere in a slope may not be in
the correct location, due to the inflexibility of the shape used during the metaheuristic
search. This paper proposes a method whereby the metaheuristic search can be con-
ducted using spline surfaces directly, which increases the flexibility of the shapes being
searched and does not require approximation when inputting the minimum surface into
SA.

2 Methodology

Ellipsoids, spheres, and other shapes used in the metaheuristic search can all be defined
using a list of parameters which can be varied. For example, a sphere can be defined
using four parameters, consisting of a center point (3 parameters – x, y and z in 3D space)
and radius. An ellipsoid can be defined using some additional parameters corresponding
to the principal radii and rotations. These parameters are varied using a metaheuristic
algorithm such as PSO to minimize the FS. Other metaheuristic algorithms can be used,
but PSO will be used to produce the results in this paper since it is among the most
popular. Details of the original PSO algorithm can be found in [11].

The proposed parameters defining the spline slip surface form are shown in Fig. 2.
There are eleven parameters in total, which define the general size and location of the
surface, and the curvature in the two orthogonal plan directions. Table 1 provides a list
of the parameters and their descriptions.

The creation of a spline surface using values of these eleven parameters is described
as follows. First, points A and B are spawned at random locations within the plan extents
of themodel.A local coordinate system (LCS) is definedwherebyu is a vector originating
from the midpoint of AB and pointing in the direction of B. The other local coordinate
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Table 1. List of parameters in the proposed spline metaheuristic search.

Ax X coordinate of Point A

Ay Y coordinate of Point A

Bx X coordinate of Point B

By Y coordinate of Point B

w Width of the control net in the v direction

dz Elevation offset of Point A above the ground elevation at (Ax, Ay)

γ Reference floor elevation of the spline surface

αu Positive skew in the u direction

βu Negative skew in the u direction

αv Positive skew in the v direction

βv Negative skew in the v direction

axis, the v direction, is the cross product of u and the z axis. Then an exponentially
curved surface in these two directions is defined via Eq. 1.
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H1 = −eαu
(
C1 + γ

(
e2βu − 1

)
(eαv − 1)

(
eβv − 1

))

D
(
eαu+βu − 1

) (2a)

H2 = −eβu
(
C2 + γ

(
e2αu − 1

)
(eαv − 1)

(
eβv − 1

))

D
(
eαu+βu − 1

) (2b)

H3 = −eαv
(
C3 + γ

(
e2βv − 1

)
(eαu − 1)

(
eβu − 1

))

D
(
eαv+βv − 1

) (2c)

H4 = −eβv
(
C4 + γ

(
e2αv − 1

)
(eαu − 1)

(
eβu − 1

))

D
(
eαv+βv − 1

) (2d)

C1 =
(
Az − Bze

2βu
)(

1+ eαv+βv
)
+ Az + Bz

2

(
eαv + eβv

)(
e2βu − 1

)
− (Az − Bz)e

βu
(
eαv + eβv

)

(2e)

C2 =
(
Bz − Aze

2αu
)(

1+ eβv+αv
)
+ Bz + Az

2

(
eβv + eαv

)(
e2αu − 1

)
− (Bz − Az)e

αu
(
eβv + eαv

)

(2f)

C3 =
(
e2βv − 1

)(
Aze

αu + Bze
βu − Az + Bz

2

(
eαu+βu + 1

))
(2g)

C4 =
(
e2αv − 1

)(
Aze

αu + Bze
βu − Az + Bz

2

(
eαu+βu + 1

))
(2h)

D = 1+ eαu+αv+βu+βv + eαu+βu + eαv+βv − eαu+αv − eβu+βv − eαu+βv − eαv+βu (2i)



134 T. Ma et al.

The H coefficients are defined such that they map the LCS points into global space
via Eq. 3

AZ = Z(−1, 0) (3a)

BZ = Z = (+1, 0) (3b)

0.5(Az + Bz) = z(0,−1) (3c)

0.5(Az + Bz) = z(0,+1) (3d)

The function in Eq. 1 is also scaled in global space such that the plan width w exists
between any two points in the v direction, (u, 1) and (u, −1). After the exponential
surface is defined, spline points are spawned on the exponential surface at locations
of u and v equal to {−1.1, −1.0, −0.9, −0.8, −0.5, 0, 0.5, 0.8, 0.9, 1.0, 1.1}. This
configuration results in an 11 by 11 grid of control points forming a NURBS surface.
The locations and number of these points in each direction can be changed. For this
paper, the NURBS surfaces have a degree of 2, and the knot vectors are uniform and
clamped. The end points have weights 0.1, while inner points have weights 1.0. A full
description of NURBS surfaces can be found in [12]. The resulting NURBS will have a
slightly different geometry from the exponential surface.

The PSO search is accomplished by varying these eleven parameters to find the
minimum slip surface. After the global minimum is found, the NURBS surface can be
directly inputted into the SA algorithm without requiring approximation. However, the
NURBS surface can be refined to have more control points without altering the resulting
geometry of the NURBS surface via the curve refinement procedures described in [12].
It can also be trimmed via curve splitting [12] such that only the portion of the NURBS
surface intersecting the ground topography is considered. This way, large parts of the
NURBS surface above the ground topography can be discarded before SA occurs to
ensure greater efficiency during the local optimization.

3 Numerical Example

In the following example, the results of an ellipsoidal PSO search with and without SA
are compared with the results of the proposed spline PSO search with and without SA.
The example, illustrated in Fig. 3, is of a slope in a coal mine adopted from a verification
manual [13] for 3D slopes. It contains anisotropic material properties, defined in the
original source, and listed in Tables 2 and 3.

In Tables 2 and 3, theMohr-Coulomb parameters c’ andφ correspond to the cohesion
and friction angle, respectively. γ d is the unit weight, and A and B are the angle ranges
of the joints in the respective dip and dip directions. For the Jointed CMR rock mass, if
the slipping vector at the base of a column in the slip surface is within A degrees of the
closest joint, then the joint material is applied to the base of the column. If it is between
A and B then a linear interpolation is applied to the shear strength between the joint and
base materials. If it is beyond B then the base material (Fresh CMR) applies.
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Fig. 3. Example of a coal mine with anisotropic materials

Table 2. Material properties for Mohr-Coulomb properties in coal mine example

Layer c’ (kPa) φ (°) γ d [kN/m3]

Joint 2 12 15

Coal layers 35 30 15

Fresh CMR 120 30 24

Table 3. Material properties for the anisotropic material layer in coal mine example.

Layer γ d [kN/m3] Base
Material

Joint
Material

Dip Dip
Direction

A B

Jointed CMR 20 Fresh CMR Joint 81° 132° 5° 10°

74° 49° 5° 10°

In Table 4, the results of the proposed method with PSO search are compared with
the results of the ellipsoid search with PSO obtained from Slide3 (version 3.018). The
Spencer FS reported in each cell is the result obtained from starting the metaheuristic
algorithmwith a different randomseed. In the end, the results fromfive seeds are averaged
to give the value F* corresponding to the method used. Taking the average provides a
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Table 4. Comparison between ellipsoid and spline search results (Spencer FS) for coal mine
example.

Ellipsoid Search Spline Search Ellipsoid Search +
3D SA

Spline Search + 3D
SA

FS (Seed 1) 1.219 1.172 1.177 1.140

FS (Seed 2) 1.230 1.154 1.179 1.133

FS (Seed 3) 1.228 1.195 1.178 1.149

FS (Seed 4) 1.208 1.133 1.165 1.115

FS (Seed 5) 1.219 1.166 1.187 1.110

Average (F*) 1.221 1.164 1.177 1.129

Fig. 4. Global minimum Spencer FS = 1.11 result obtained from all the searches and seeds

more reliable assessment of whether either of the methods is truly and consistently better
than the other.

Figure 4 shows the globalminimum result (FS= 1.11) obtained from all the searches,
found during the SA after the spline search on Seed 5. Figure 5 shows the corresponding
grid of control points which were used to generate the surface.

From the results of Table 4, the spline search alone (F* = 1.164) was superior to
the ellipsoid search (F* = 1.221), and even outperformed the post-SA results of the
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Fig. 5. Grid of spline points used to generate the global minimum surface

Fig. 6. Global minimum ellipsoid Spencer FS = 1.208

ellipsoid search (F* = 1.177). For comparison, the minimum ellipsoid was found in
Seed 4 and as shown in Fig. 6, is not in the same location as the true global minimum
slip surface.When SAwas performed on this ellipsoidal surface, a minimumFS of 1.165
was obtained after the local optimization, shown in Fig. 7 with the corresponding grid
of spline points. Clearly, it is in a different location from the true global minimum found
by the spline search result with surface altering.
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Fig. 7. After altering the 1.208 ellipsoid surface, a local minimum FS of 1.165 was obtained

4 Conclusions

A newmethod for metaheuristic searching of slip surfaces is introduced, which involves
using spline surfaces instead of the conventional ellipsoidal and spherical slip surfaces.
The method allows for much more flexibility in the shapes of the slip surfaces that are
produced during the search and can be readily used as an input to the surface altering
algorithm, rather than requiring an approximation. As such, the proposedmethod ismore
reliable at searching for the true critical slip surface in a slope than its predecessors. As
demonstrated in the example, due to the relative inflexibility of ellipsoid and spherical
slip surfaces, it is possible for ellipsoidal and spherical searching to converge to a region
containing a local minimum FS which is different from the true global minimum.
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