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Abstract. The purpose of this paper is to look at how annealing time affects the
microstructure and mechanical characteristics of lightweight medium manganese
steel. OM, XRD, SEM, and other characterization methods were used to examine
and test the microstructure. The findings revealed that the test steels’ microstruc-
tures were all composed of martensite, a-ferrite, 3-ferrite, and retained austenite.
The retained austenite content of the test steel appears to increase after a certain
time of annealing treatment. The TRIP effect created by stretching increases the
mechanical properties of the test steel.
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1 Introduction

In recent years, the automotive industry has shifted toward reduced weight and
more safety. As energy consumption and environmental issues grow more significant,
increased demands are put on steel used in vehicles. Improving the strength of automo-
tive steels and reducing material density are important ways to accomplish lightweight-
ing [1-3]. The present third generation of automobile steel is based on combining the
inclusion of lightweight materials for “lightness” with strengthened plasticization for
“thinness.” Medium manganese steel, the most promising new generation of advanced
high-strength automotive steel, has become a hot spot for domestic and international
research because of it combined of high strength and high plasticity, which can well meet
the requirements of automobile light weight and safety [4]. As a series of Mn steels, the
Fe-Mn-Al-C system is the focus of the current study by adding lightweight Al elements
and austenite-stabilized Mn elements to the steel to enlarge the austenite phase zone
and therefore achieve a significant quantity of austenite with definite stability at room
temperature [5]. Currently, the critical annealing (IA) process, i.e., austenite reduction
phase transformation of martensite between the ferrite and austenite two-phase zones, is
used to manufacture medium manganese steels, including ferrite and sub-stable austenite
grains [6, 7]. The TRIP effect of sub-stable austenite improves the ductility and tensile
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strength of medium manganese steels [8, 9]. Shi [10] and Mishra [11] studied the (0.2-0.4
wt.%) C-(5-7 wt.%) Mn and 0.18C-5Mn (wt.%)-based cold-rolled medium manganese
steels by adjusting the annealing temperature in the two-phase zone to achieve the prod-
uct of strength and elongation 40 GPa-%, respectively. De Cooman [12] demonstrated
excellent yield strength and ultra-high tensile strength for Fe-0.29C-6.1Mn-2.2Al1-1.5Si-
0.23V (wt.%) steel by combining IA with quenching and partitioning (Q&P) treatment
of critical austenite, resulting in a higher overall performance of the test steel.

As can be seen, the medium manganese steel may be manufactured to have an excel-
lent balance of strength and plasticity by adjusting the process parameters throughout the
heat treatment process. Based on the critical annealing and Q&P processes, this paper
investigates the effects of different annealing times on the microstructure and mechan-
ical properties of lightweight medium manganese steel, with the hope of serving as a
reference for adjusting annealing process parameters in the actual production process.

2 Experiment Section

Cold-rolled low carbon silicon manganese steel with a thickness of 1.5 mm was employed
in this study, and its chemical composition and percentage content were reported in
Table 1.

JMatPro simulation software was used to measure the temperature of the heat treat-
ment process, and the temperatures determined for Ac3 and Ac; were 1227 °C and 728
°C, respectively. The requisite tensile specimens were manufactured using an ASTM ES8
wire-cutting process.

First, the test steel was kept in the two-phase zone at 750 °C for 0, 15, and 30 min.
After that, it was quickly placed in a 25 °C water bath and held for the 90 s. Finally, the
test steel was cooled to room temperature using water. In this research, the specimens

Table 1. Chemical composition of test steel (wt.%).

Composition |C Mn Al Si Cu |Mo |Cr Nb B Fe
Content 009 |723 [442 |199 |05 |02 033 |0.11 |0.001 |bal
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Fig. 1. Heat treatment process.
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with varying holding times in the two-phase area were designated as A0, A15, and A30
for ease of presentation. The heat treatment process is shown in Fig. 1.

The specimens were ground and polished before being etched with 4% ethanol
nitrate. For microstructure testing, the samples were examined by OM electron
microscopy, an x-ray diffractometer (XRD, RIKEN Smart Lab), and field emission
scanning electron microscopy (FE-SEM, SUPRATM 55). Using the following equation
[13], the austenite peaks (200)y, (220)y, (311)y, and ferrite peaks (200)a, (211)a of the
XRD patterns were utilized to compute the content of retained austenite and the quantity
of carbon contained in the retained austenite.

1.41,
Vi= —————
I, + 141,

W + k% + 12
Aylg = ——————
v/e 2s8inf
a, — 3.547
0.046

Where: V; - volume fraction of retained austenite; /,, - cumulative intensity of ferrite

peaks; I,, - cumulative intensity of austenite peaks. C,, is the mass fraction (%) of carbon

in the retained austenite; a,, is the lattice constant on the surface of the retained austenite

crystal; C, is the mass fraction (%) of carbon in the martensite. a is the lattice constant
on the surface of the martensite crystal.

6]

@)

w(Cy) = 3)

3 Results and Discussion

3.1 Microstructure

OM optical electron microscopy was used to observe the specimens, as shown in Fig. 2.
The black section was martensite, whereas the white section was austenite/ferrite. The
microstructure of the test steel can be observed to have a clear rolling direction. Because
cold rolling has a high depression rate, the original microstructure of the test steel grain
was broken a lot, and this was accompanied by the generation of the grain penetration
phenomenon.

The specimens were analyzed by SEM observation, as shown in Fig. 3. This enables
the identification of a multiphase microstructure of the test steel consisting primarily of
a-ferrite(at), 8-ferrite(8), retained austenite (RA), and martensite (M).

Fig. 2. OM microstructure observation: (a) A0 specimen, (b) A15 specimen, (c) A30 specimen.
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Fig. 3. SEM microstructure observation: (a) AQ specimen, (b) A15 specimen, (c) A30 specimen.
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Fig. 4. (a) XRD diffraction analysis, (b) retained austenite content and carbon content in retained
austenite.

The XRD patterns, retained austenite content, and retained austenite carbon content
variation curves of the test steels are shown in Fig. 4. There was no significant intensity
of the {200}y and {311}y diffraction peaks in the AO specimen. Meanwhile, the {220}y
diffraction peak had a lower intensity than the A15 and A30 specimens. It can be shown
that a certain duration of intercritical annealing of the test steel may enhance the amount
of retained austenite in the test steel.

3.2 Mechanical Properties

The specimens were stretched at room temperature, and their stress-strain and work-
hardening curves are shown in Fig. 5. It was discovered that the work-hardening curves
of A15 and A30 specimens occur in 4 stages: rapid rising (S1 stage), fast falling (S2
stage), slow falling (S3 stage), and fast falling (S4 stage). Work-hardening curves for
AQO specimens, on the other hand, were only ever-present for the S1 and S2 stages. As a
consequence, the AQ specimen has low plasticity. It can be shown that A15 and A30 have
virtually similar work-hardening curves, resulting in approximately the same elongation.
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Fig. 5. (a) Stress-strain curve, (b) Work-hardening curve.
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The microstructure grain of medium manganese steel steadily increases, and the
tensile strength gradually declines after a certain time of annealing treatment.
Medium manganese steel, after a certain period of annealing treatment, can increase
the content of retained austenite in the microstructure, thereby improving the overall
mechanical properties of the test steel.

When the microstructure and mechanical properties of A15 and A30 were com-
pared, it is clear that the shorter annealing process can also optimize the perfor-
mance of the test steel while saving energy in the manufacturing process, providing
some theoretical guidance for the adjustment of the actual heat treatment process
parameters for automotive steels.
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