

# Research on the Relationship Between R & D Investment and Enterprise Performance

Jie Zhang<sup>(⊠)</sup>

School of Marxism, Dalian University, Dalian, Liaoning, China 1044479904@qq.com

**Abstract.** Based on the panel data of Chinese listed enterprises from 2015 to 2020, using the knowledge of econometrics, starting from the impact of R&D investment on enterprise performance, through empirical analysis, a series of reasonable suggestions to improve enterprise performance are put forward.

Keywords: R & D investment  $\cdot$  enterprise performance  $\cdot$  ownership concentration  $\cdot$  feasibility suggestions

# 1 Introduction

This paper takes 28 listed companies in China from 2015 to 2020 as a sample, and also analyzes the direct impact of relevant factors on the operating income of listed companies more accurately, and conducts regression analysis of these data. In addition, "R&D investment intensity", "equity concentration", "asset-liability ratio" and "government subsidy" were selected as the explanatory variables of the model. This article is developed in these four aspects, through the data from 2015 to 2020 to observe their impact on enterprise performance, so as to provide some suggestions for the long-term development of China's current enterprises.

# 2 Research Design

## 2.1 Sample Selection and Data Sources

This paper selects the data of 8 listed companies with strong development momentum, good development prospects and relatively active industrial activities in the past six years. In order to more accurately understand the impact of various relevant factors on enterprise performance, regression analysis was carried out on factors such as financial subsidies, equity concentration and asset-liability ratio. All of the data covered in this article comes from the Cathay Database. Use eViews7 and Excel to perform statistics and analysis on data (Table 1, 2, 3, 4 and 5).

| RD                   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | Unit    |
|----------------------|--------|--------|--------|--------|--------|--------|---------|
| TCL                  | 37.66  | 42.66  | 47.59  | 46.78  | 33.97  | 44.03  | Billion |
| Baoshan Iron & Steel | 34.5   | 36.62  | 42.07  | 70.54  | 88.64  | 105.38 | Billion |
| BYD                  | 36.75  | 45.22  | 37.39  | 49.89  | 56.29  | 81.74  | Billion |
| CHANGAN              | 25.63  | 32.03  | 26.17  | 31.85  | 31.69  | 44.6   | Billion |
| FOTON                | 22.38  | 25.53  | 8.65   | 15.17  | 17.2   | 26.03  | Billion |
| GREE                 | 26.62  | 35.16  | 36.18  | 69.88  | 58.91  | 72.73  | Billion |
| GAC                  | 19.19  | 23.89  | 4.96   | 8.38   | 10.02  | 9.76   | Billion |
| Hikvision            | 17.23  | 24.33  | 31.94  | 44.83  | 54.84  | 90.22  | Billion |
| Aisino               | 3.7    | 5.46   | 2.53   | 6.23   | 7.92   | 9.3    | Billion |
| Hengrui Medicine     | 89.17  | 11.84  | 17.59  | 26.7   | 38.96  | 60.18  | Billion |
| Hundsun              | 8.63   | 10.51  | 12.79  | 14.05  | 15.6   | 15.17  | Billion |
| Huayu Automotive     | 15.4   | 24.45  | 42.1   | 51.33  | 52.65  | 55.73  | Billion |
| JIANGXI COPPER       | 17.14  | 23.28  | 1.58   | 2.07   | 5.86   | 6.61   | Billion |
| BOE                  | 33.19  | 41.39  | 31.78  | 50.4   | 67     | 76.23  | Billion |
| SAIC                 | 83.71  | 94.09  | 130.15 | 153.85 | 133.94 | 13395  | Billion |
| SF Holding           | 2.55   | 5.61   | 6.49   | 9.84   | 11.93  | 17.42  | Billion |
| CHANGHONG            | 12.71  | 10.84  | 11.85  | 13.27  | 15.89  | 24.45  | Billion |
| SUNING.COM           | 10.01  | 12.58  | 12.51  | 22.62  | 32.68  | 37.38  | Billion |
| SINOCHEM             | 16.4   | 14.65  | 18.07  | 25.82  | 33.17  | 37.65  | Billion |
| CSCEC                | 81.92  | 105.92 | 123.85 | 159.11 | 218.72 | 237.21 | Billion |
| CCCC                 | 72.73  | 79.07  | 85.87  | 100.14 | 125.92 | 195.69 | Billion |
| SINOPEC              | 56.26  | 59.4   | 64.23  | 79.56  | 93.95  | 128.32 | Billion |
| CNPC                 | 149.33 | 105.79 | 110.75 | 128.26 | 156.66 | 157.46 | Billion |
| CRCC                 | 87.59  | 88.67  | 103.98 | 115.72 | 165.28 | 209.35 | Billion |
| CREC                 | 102.84 | 104.19 | 111.03 | 134.36 | 165.11 | 197.41 | Billion |
| MCC                  | 51.79  | 60.77  | 53.36  | 71.83  | 99.34  | 123.27 | Billion |
| ZTE                  | 122.01 | 127.62 | 129.62 | 109.06 | 125.48 | 147.97 | Billion |
| UNIS                 | 0.67   | 17.84  | 30.3   | 33.28  | 39.41  | 51.77  | Billion |
|                      |        |        |        |        |        |        |         |

| Table 2. | ZFBT | [Owner-draw] |
|----------|------|--------------|
|----------|------|--------------|

| ZFBT                 | 2015   | 2016  | 2017  | 2018  | 2019  | 2020  | Unit    |
|----------------------|--------|-------|-------|-------|-------|-------|---------|
| TCL                  | 26.29  | 28.4  | 8.4   | 9.57  | 1.29  | 4.92  | Billion |
| Baoshan Iron & Steel | 6.68   | 4.39  | 2.75  | 3.14  | 2.13  | 1.63  | Billion |
| BYD                  | 7.03   | 8.44  | 2.79  | 2.3   | 2.26  | 2.82  | Billion |
| CHANGAN              | 5.15   | 9.75  | 1.04  | 9.16  | 0.5   | 0.78  | Billion |
| FOTON                | 13.13  | 10.58 | 1.13  | 1     | 1.1   | 1.82  | Billion |
| GREE                 | 14.04  | 10.96 | 5.11  | 3.18  | 3.46  | 2.87  | Billion |
| GAC                  | 3.96   | 2.74  | 2.87  | 3.18  | 6.61  | 1.09  | Billion |
| Hikvision            | 12.94  | 15.11 | 0.47  | 1.11  | 0.65  | 0.99  | Billion |
| Aisino               | 3.68   | 2.03  | 0.5   | 0.79  | 0.86  | 0.25  | Billion |
| Hengrui Medicine     | 0.28   | 0.31  | 0.02  | 0.004 | 0.008 | 0.01  | Billion |
| Hundsun              | 1.48   | 1.89  | 0.08  | 0.02  | 0.03  | 0.02  | Billion |
| HuayuAutomotive      | 4.24   | 6.25  | 2.36  | 6.58  | 4.16  | 0.87  | Billion |
| JIANGXI COPPER       | 2.13   | 1.51  | 0.71  | 0.43  | 0.91  | 0.68  | Billion |
| BOE                  | 10.83  | 20.86 | 1.8   | 1.69  | 2.08  | 1.21  | Billion |
| SAIC                 | 36.67  | 29.44 | 8.69  | 11.25 | 7.67  | 7.5   | Billion |
| SF Holding           | 0.03   | 15.57 | 1.28  | 1.48  | 2.13  | 2.29  | Billion |
| CHANGHONG            | 4.47   | 3.58  | 0.35  | 0.49  | 0.37  | 0.75  | Billion |
| SUNING.COM           | 16.65  | 10.6  | 4.05  | 5.06  | 2.51  | 4.2   | Billion |
| SINOCHEM             | 1.65   | 3.06  | 0.32  | 0.84  | 0.86  | 0.71  | Billion |
| CSCEC                | 8.65   | 12.26 | 10.4  | 6.09  | 12.94 | 18.58 | Billion |
| CCCC                 | 10.68  | 12.48 | 5.4   | 4.73  | 3.07  | 3.43  | Billion |
| SINOPEC              | 69.45  | 47.06 | 13.17 | 20.7  | 26.01 | 23.7  | Billion |
| CNPC                 | 129.56 | 102.2 | 36.12 | 32.18 | 49.71 | 41.09 | Billion |
| CRCC                 | 8.09   | 9.34  | 10.9  | 10.97 | 9.75  | 10.68 | Billion |
| CREC                 | 13.02  | 10.42 | 7.64  | 5.97  | 6.74  | 7.99  | Billion |
| MCC                  | 13.76  | 13.07 | 4.39  | 4.5   | 5.24  | 4.75  | Billion |
| ZTE                  | 44.43  | 43.62 | 1.31  | 1.43  | 1.84  | 2.38  | Billion |
| UNIS                 | 1.24   | 2.72  | 1.29  | 0.83  | 1.05  | 1     | Billion |

| Table 3. | LEV | [Owner-draw] | I |
|----------|-----|--------------|---|
|----------|-----|--------------|---|

| LEV                  | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|----------------------|------|------|------|------|------|------|
| TCL                  | 0.66 | 0.69 | 0.66 | 0.68 | 0.61 | 0.65 |
| Baoshan Iron & Steel | 0.49 | 0.51 | 0.50 | 0.44 | 0.44 | 0.44 |
| BYD                  | 0.69 | 0.62 | 0.66 | 0.69 | 0.68 | 0.68 |
| CHANGAN              | 0.62 | 0.59 | 0.55 | 0.51 | 0.55 | 0.56 |
| FOTON                | 0.56 | 0.65 | 0.69 | 0.74 | 0.71 | 0.71 |
| GREE                 | 0.70 | 0.70 | 0.69 | 0.63 | 0.60 | 0.58 |
| GAC                  | 0.41 | 0.45 | 0.41 | 0.41 | 0.40 | 0.39 |
| Hikvision            | 0.36 | 0.41 | 0.41 | 0.40 | 0.40 | 0.39 |
| Aisino               | 0.34 | 0.38 | 0.37 | 0.37 | 0.38 | 0.35 |
| Hengrui Medicine     | 0.10 | 0.10 | 0.12 | 0.11 | 0.09 | 0.11 |
| Hundsun              | 0.36 | 0.45 | 0.44 | 0.45 | 0.41 | 0.49 |
| HuayuAutomotive      | 0.57 | 0.57 | 0.60 | 0.59 | 0.58 | 0.61 |
| JIANGXICOPPER        | 0.47 | 0.44 | 0.49 | 0.49 | 0.56 | 0.53 |
| BOE                  | 0.49 | 0.55 | 0.59 | 0.60 | 0.59 | 0.59 |
| SAIC                 | 0.59 | 0.60 | 0.62 | 0.64 | 0.65 | 0.66 |
| SF Holding           | 0.20 | 0.53 | 0.43 | 0.48 | 0.54 | 0.49 |
| CHANGHONG            | 0.68 | 0.67 | 0.68 | 0.70 | 0.71 | 0.73 |
| SUNING.COM           | 0.64 | 0.49 | 0.47 | 0.56 | 0.63 | 0.62 |
| SINOCHEM             | 0.66 | 0.65 | 0.65 | 0.64 | 0.68 | 0.70 |
| CSCEC                | 0.78 | 0.79 | 0.78 | 0.77 | 0.75 | 0.74 |
| CCCC                 | 0.77 | 0.77 | 0.76 | 0.75 | 0.74 | 0.73 |
| SINOPEC              | 0.46 | 0.45 | 0.47 | 0.46 | 0.50 | 0.50 |
| CNPC                 | 0.44 | 0.43 | 0.43 | 0.42 | 0.47 | 0.47 |
| CRCC                 | 0.81 | 0.80 | 0.78 | 0.77 | 0.76 | 0.75 |
| CREC                 | 0.80 | 0.80 | 0.80 | 0.76 | 0.76 | 0.74 |
| MCC                  | 0.79 | 0.78 | 0.77 | 0.77 | 0.75 | 0.72 |
| ZTE                  | 0.64 | 0.71 | 0.68 | 0.75 | 0.73 | 0.69 |
| UNIS                 | 0.57 | 0.27 | 0.32 | 0.37 | 0.41 | 0.42 |

# Table 4. TOP [Owner-draw]

|                      | 2015 | 2016 | 2017 | 2010 | 2010 | 2020 |
|----------------------|------|------|------|------|------|------|
| ТОР                  | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
| TCL                  | 0.06 | 0.06 | 0.08 | 0.08 | 0.09 | 0.08 |
| Baoshan Iron & Steel | 0.59 | 0.52 | 0.52 | 0.51 | 0.51 | 0.49 |
| BYD                  | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
| CHANGAN              | 0.34 | 0.36 | 0.36 | 0.19 | 0.19 | 0.19 |
| FOTON                | 0.14 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
| GREE                 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.19 |
| GAC                  | 0.61 | 0.61 | 0.38 | 0.53 | 0.53 | 0.53 |
| Hikvision            | 0.40 | 0.40 | 0.39 | 0.39 | 0.39 | 0.39 |
| Aisino               | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
| Hengrui Medicine     | 0.24 | 0.24 | 0.13 | 0.17 | 0.20 | 0.24 |
| Hundsun              | 0.21 | 0.21 | 0.12 | 0.12 | 0.6  | 0.21 |
| Huayu Automotive     | 0.49 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 |
| JIANGXI COPPER       | 0.41 | 0.41 | 0.41 | 0.42 | 0.42 | 0.44 |
| BOE                  | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
| SAIC                 | 0.70 | 0.70 | 0.71 | 0.71 | 0.71 | 0.71 |
| SF Holding           | 0.43 | 0.43 | 0.59 | 0.59 | 0.59 | 0.59 |
| CHANGHONG            | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
| SUNING.COM           | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 |
| SINOCHEM             | 0.65 | 0.65 | 0.65 | 0.40 | 0.37 | 0.37 |
| CSCEC                | 0.40 | 0.40 | 0.40 | 0.56 | 0.56 | 0.56 |
| CCCC                 | 0.64 | 0.64 | 0.55 | 0.51 | 0.45 | 0.58 |
| SINOPEC              | 0.71 | 0.71 | 0.71 | 071  | 0.71 | 0.68 |
| CNPC                 | 0.86 | 0.86 | 0.83 | 0.81 | 0.80 | 0.80 |
| CRCC                 | 0.56 | 0.56 | 0.56 | 0.51 | 0.51 | 0.51 |
| CREC                 | 0.50 | 0.51 | 0.49 | 0.47 | 0.47 | 0.47 |
| MCC                  | 0.59 | 0.59 | 0.59 | 0.56 | 0.55 | 0.49 |
| ZTE                  | 0.28 | 0.28 | 0.28 | 0.28 | 0.25 | 0.22 |
| UNIS                 | 0.13 | 0.55 | 0.20 | 0.28 | 0.38 | 0.46 |
|                      |      |      |      |      |      |      |

Table 5.BI [Owner-draw]

|                      |          |          |        | -      |        |         |
|----------------------|----------|----------|--------|--------|--------|---------|
| BI                   | 2015     | 2016     | 2017   | 2018   | 2019   | 2020    |
| TCL                  | 1048.31  | 1065.46  | 1117   | 1134   | 750.78 | 768.3   |
| Baoshan Iron & Steel | 1638.50  | 1855.13  | 2895   | 3055   | 2921   | 3909.07 |
| BYD                  | 800.10   | 1034.70  | 1059   | 1301   | 1277   | 1566    |
| CHANGAN              | 667.72   | 785.42   | 800.12 | 662.98 | 705.95 | 1001.88 |
| FOTON                | 340. 10  | 465.32   | 517.1  | 410.54 | 469.66 | 792.08  |
| GREE                 | 999.12   | 1100.19  | 1500   | 2000   | 2005   | 2190.11 |
| GAC                  | 294.18   | 494.18   | 715.68 | 723.8  | 597.04 | 631.57  |
| Hikvision            | 252.71   | 319.24   | 419.05 | 498.37 | 576.58 | 757.21  |
| Aisino               | 223.83   | 256.14   | 297.54 | 279.4  | 339.79 | 218.13  |
| Hengrui Medicine     | 93.16    | 110.94   | 138.36 | 174.18 | 232.89 | 36249   |
| Hundsun              | 22.26    | 21.70    | 26.66  | 32.63  | 38.72  | 44.71   |
| Huayu Automotive     | 911.20   | 1243.10  | 1405   | 1572   | 1440   | 1336    |
| JIANGXI COPPER       | 1857.82  | 2023.08  | 2051   | 2153   | 2404   | 3186    |
| BOE                  | 486.24   | 689.10   | 938    | 971.09 | 1161   | 1356    |
| SAIC                 | 6680.56  | 7542.30  | 8706   | 9022   | 8433   | 7421    |
| SF Holding           | 473      | 574.83   | 712.73 | 909.43 | 1122   | 1540    |
| CHANGHONG            | 648.48   | 671.75   | 781.62 | 833.85 | 887.93 | 1187.38 |
| SUNING.COM           | 1355.48  | 1485.85  | 1879   | 2450   | 2692   | 3571.39 |
| SINOCHEM             | 635.32   | 530.76   | 585.71 | 814.45 | 1041   | 1168.21 |
| CSCEC                | 8805.77  | 9597.65  | 10500  | 12000  | 14200  | 20720   |
| CCCC                 | 4044.20  | 4317.43  | 4828   | 4909   | 5554   | 6276    |
| SINOPEC              | 20188.83 | 19309.11 | 23600  | 28900  | 29600  | 21100   |
| CNPC                 | 17254.28 | 16169.03 | 20200  | 23700  | 25200  | 19300   |
| CRCC                 | 6005.39  | 6293.27  | 6810   | 7301   | 8305   | 9103    |
| CREC                 | 6240.31  | 6432.39  | 6934   | 7404   | 8509   | 9747    |
| MCC                  | 2173.24  | 2195.58  | 2440   | 2895   | 3386   | 4001    |
| ZTE                  | 1001.86  | 1012.33  | 1088   | 855.13 | 907.37 | 1015    |
| UNIS                 | 133.50   | 277.10   | 390.72 | 483.38 | 540.99 | 768.77  |

#### 2.2 Selection and Definition of Variables

## 2.2.1 The Variable Being Explained

The explanatory variable in this article is the performance of the enterprise, and the operating income of the enterprise is the most intuitive table of the performance of the enterprise.

At present, operating income is usually income obtained from engaging in the company's main business or other business. It is divided into the following three types: main business income and other business income. Through the analysis of accounting for operating income, the performance of the enterprise is relatively clarified.

# 2.2.2 Explanatory Variables

The explanatory variable in this paper is R&D activity investment, which refers to the expenditure of an enterprise in the field of scientific and technological innovation, which is an important relevant indicator to measure the scientific research ability of an enterprise. Through the study of R&D Investment, we can intuitively show the R&D scale of various listed enterprises in China, and more clearly reflect the positive correlation between R&D investment and Enterprise Performance [1].

## 2.2.3 Control Variables

The control variables that need to be described in this article are defined as the degree of concentration of equity funds of the company, the asset-debt ratio, and government subsidies. Equity concentration refers to the controlling ratio of the largest shareholder, which shows the degree of equity concentration of a company. The asset-liability ratio is the ratio of an enterprise's total liabilities to its total assets, reflecting the comprehensive level of the ability of all assets of Chinese enterprises to actively repay all debts, the comprehensive level of guarantee and use ability, and the comprehensive level of all debts to actively support the use of enterprise funds [2] (Table 6).

## 2.3 Research Hypotheses

As the most dynamic and influential subject in the market, if enterprises want to maintain their advantages in the complex and diverse international market economic environment, they must improve their core competitiveness, and the most feasible way to improve the competitiveness of enterprises is to improve the independent innovation ability of enterprises, and this independent innovation needs the support of enterprises' research and development investment costs, focusing on the future, and the investment in research

| The variable type            | Variable symbol | Variable description                                                                                |
|------------------------------|-----------------|-----------------------------------------------------------------------------------------------------|
| The variable being explained | BI              | Operating income                                                                                    |
| Explanatory variables        | RD              | R&D investment                                                                                      |
| Control variables            | ТОР             | Equity concentration (number of holdings of<br>the largest shareholder / total number of<br>shares) |
|                              | LEV             | Gearing ratio (total liabilities / total assets)                                                    |
|                              | ZFBZ            | Government subsidies                                                                                |

 Table 6. Describes the meaning of variable symbols [Owner-draw]

J. Zhang

and development expenses is closely related to the future survival of the entire enterprise [3]. Based on the above conclusions, this paper puts forward the following hypothesis:

Under the condition that the R&D investment expenses of China's listed enterprises are increasing, the intensity of R&D investment has a significant positive correlation with the operating income of enterprises [4].

#### 2.4 Model Building

Estimation model : BI = C + RD + TOP + LEV + ZFBZLet  $Y = BI \times 1 = RD \times 2 = TOP \times 3 = LEV \times 4 = ZFBZ$  $Y = c + c1 \times 1 + c2 \times 2 + c3 \times 3 + c4 \times 4$ 

where c is the constant term and c1, c2, c3, and c 4 are the parameters to be estimated.

If the coefficient of the variable RD is significantly greater than 0, it indicates that the increase of R&D investment intensity of enterprises is conducive to improving performance. If the coefficient of RD is significantly less than 0, it indicates that the increase in R&D investment intensity of enterprises is not conducive to improving enterprise performance. If the coefficient of RD is not significant, it means that the improvement of R&D and technology investment of enterprises has little effect on the performance of enterprise operation and management [5].

# 3 Second, Empirical Analysis

#### 3.1 Descriptive Statistical Analysis

#### 3.1.1 The Variable Being Explained

Through the analysis of the statistical results of Table 7, the maximum value of 28 listed enterprises from 2015 to 2020 was 29600 and the minimum value was 21.70, which showed that China's listed enterprises developed well, their operating income maintained a trend of continuous growth, and their performance increased year by year.

|                                    | variable | Number of samples | average value | standard deviation | minimum | maximum |
|------------------------------------|----------|-------------------|---------------|--------------------|---------|---------|
| The variable<br>being<br>explained | BI       | 168               | 4048.52       | 51.32              | 21.70   | 29600   |
|                                    | RD       | 168               | 58.58         | 6522.52            | 0.67    | 237.21  |
| Explanatory variables              | ТОР      | 168               | 40.35         | 19.91              | 6.26    | 86.01   |
| Control                            | LEV      | 168               | 0.57          | 0.16               | 0.09    | 0.81    |
| variables                          | ZFBZ     | 168               | 8.92          | 16.08              | 0.01    | 129.56  |

 Table 7. Descriptive statistical analysis of variables [Owner-draw]

#### 3.1.2 Explanatory Variables

Through the analysis of the statistical results in Table 7, the average value of these 28 listed companies from 2015 to 2020 is 58.58, which is not very significant compared with the maximum value of 237.21, which indicates that the R&D investment intensity of listed companies in China has changed greatly in the past six years. The maximum value of R&D investment growth is 237.21 and the minimum value is 0.67, which shows that the R&D investment intensity of Chinese enterprises is growing rapidly.

## 3.1.3 Control Variables

Through the analysis of the statistical results in Table 7, the minimum value of equity concentration is 6.26 and the maximum value is 86.01, the gap is large, and the average value is 40.35, which is also less than the maximum value, which indicates that the equity concentration of enterprises in China has increased. The minimum value of the asset-liability ratio is 0.09, the maximum value is 0.81, the difference is not significant, the average value of 0.57 is not significant compared to the maximum value of 0.81, which also shows that the change in the asset-liability ratio of China's listed enterprises in the past six years is not obvious, the percentage of total liabilities to the total net asset value of the enterprise is not large, and the effectiveness and protection level of funds for debt are relatively high. The minimum value of government subsidies is 0.01 and the maximum value is 129.56, the difference between the two is significant, and the average value of 8.92 is far lower than the maximum value of 129.56, which shows that the subsidy expenditure of the Chinese government to enterprises is increasing year by year.

## 3.2 Correlation Analysis

In order to accurately determine the correlation between the five related variables of enterprise operating income, R&D investment, effective concentrated use of equity, asset-debt ratio and government subsidy, and further determine whether the interpretive and control variables selected in this paper are reasonable, a simple correlation coefficient is used for analysis, and the results are shown in Table 8.

It can be seen from Table 8 that the correlation coefficient between the respective variables is significantly lower than 1%, and the R&D innovation investment intensity

|    | Y         | X1       | X2       | X3        | X4       |
|----|-----------|----------|----------|-----------|----------|
| Y  | 1         | 0.563454 | 0.549025 | -0.005365 | 0.527154 |
| X1 | 0.56345   | 1        | 0.407096 | 0.401667  | 0.354567 |
| X2 | 0.549025  | 0.407096 | 1        | 0.043190  | 0.420650 |
| X3 | -0.005365 | 0.401667 | 0.043190 | 1         | 0.002018 |
| X4 | 0.527154  | 0.354567 | 0.420650 | 0.002018  | 1        |

 Table 8. Simple correlation coefficient matrix analysis results [Owner-draw]

of enterprises and the operating income of enterprises show a positive correlation, and it is significant at the level of 1%, indicating that the intensity of investment in the process of carrying out R&D activities of enterprises increases, which will help promote the improvement of the overall operating income of enterprises [6]. The intensity of R&D investment, the degree of equity concentration, and government subsidies are all positively correlated with the company's operating income, indicating that these independent variables are closely related to the company's operating income, indicating that the selection of the control variables in this paper is reasonable.

#### 3.3 Multicollinearity Analysis

The characteristic of applying regression models is that they require that there is no multicollinearity between the individual regressors of the regression model [7]. In order to avoid multiple variables having the same tendency to change, which brings a series of problems to the model estimation, this paper takes relevant measures to test the problem of "whether there is multicollinearity of each variable in the sample" before starting to apply multiple linear regression. This article uses the VIF test, the results are seen in Table 9.

From the data in Table 9, it is clear that the variance inflation factor VIF values are all at a low level, less than 3, and it can be considered that there is no collinearity problem between X1, X2, X3, and X4.

#### 3.4 Regression Analysis

#### Statistical Inference Test:

Firstly, the goodness-of-fit test of the model is carried out, and the estimated multiple linear regression model is:  $Yi = c + C1X1i + C2X2i + C3X3i + \beta + C4X4i + ei$ ; It is determined by the R2 R2. From the result of the regression result R2 and the square of R- shows that 0 < R2 = 0.551927 < 1, indicating that the model is feasible and well fitted. Secondly, the significance test of the model is carried out, and the hypothesis is proposed: H0:C1 = C2 = C3 =  $\beta$  = Ck = 0 that is, the linear relationship of the model does not hold; The alternative hypothesis is: H1: C1, C2, C3,  $\beta$ , Ck is not all zero; The calculated F statistic follows the F distribution with (4,136) degrees of freedom. Selected at a significance level of 5%, according to the F distribution table, the critical value of 5 .65 < F  $\alpha$  (k, n - k - 1) < 5 .66, and the calculated F = 7 .08325 > 5 .66, rejects the null hypothesis H0 at the significance level of 5%, that is, the linear relationship of the model is significance test of the explanatory variables is carried out, and the null hypothesis H0: Ci = 0 is designed. Alternative hypothesis: Ci  $\neq$  0; The absolute value of the T value

 Table 9.
 VIF analysis results [Owner-draw]

| Y         |   | X1     | X2    | X3     | X4    |
|-----------|---|--------|-------|--------|-------|
| VIF value | - | 1 .044 | 2.462 | 2. 193 | 1.208 |

| Coefficient                    | Std. Error                                                                                                                                                                      | t-Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Prob.                                                                                                                                                                                                                                                         |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 47.40814                       | 9.423459                                                                                                                                                                        | 5.030864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                        |  |
| 8901.548                       | 2040.608                                                                                                                                                                        | 4.362204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                        |  |
| -6824.510                      | 2405.476                                                                                                                                                                        | -2.837072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0052                                                                                                                                                                                                                                                        |  |
| 134.2844                       | 27.29865                                                                                                                                                                        | 4.919085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                                                                                                                                        |  |
| 358.2757                       | 1482.709                                                                                                                                                                        | 0.241636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8094                                                                                                                                                                                                                                                        |  |
| Effects Specification          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                               |  |
| Period fixed (dummy variables) |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                               |  |
| 0.551927                       | Mean dependent var                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4048.521                                                                                                                                                                                                                                                      |  |
| 0.526404 S                     | .D. dependent var                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6522.521                                                                                                                                                                                                                                                      |  |
| 4488.690 A                     | kaike info criterion                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.71419                                                                                                                                                                                                                                                      |  |
| 3.18E + 09 S                   | chwarz criterion                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.90014                                                                                                                                                                                                                                                      |  |
| -1645.992                      | Hannan-Quinn criter.                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.78966                                                                                                                                                                                                                                                      |  |
| 21.62456                       | Durbin-Watson stat                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.648181                                                                                                                                                                                                                                                      |  |
| 0.000000                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                               |  |
|                                | Coefficient<br>47.40814<br>8901.548<br>-6824.510<br>134.2844<br>358.2757<br>ables)<br>0.551927<br>0.526404 S<br>4488.690 A<br>3.18E + 09 S<br>-1645.992<br>21.62456<br>0.000000 | Coefficient         Std. Error           47.40814         9.423459           8901.548         2040.608           -6824.510         2405.476           134.2844         27.29865           358.2757         1482.709           ables)           0.551927         Mean depender           0.526404 S         .D. dependent v           4488.690 A         kaike info criter           3.18E + 09 S         chwarz criterior           -1645.992         Hannan-Quinn           21.62456         Durbin-Watson | CoefficientStd. Errort-Statistic $47.40814$ $9.423459$ $5.030864$ $8901.548$ $2040.608$ $4.362204$ $-6824.510$ $2405.476$ $-2.837072$ $134.2844$ $27.29865$ $4.919085$ $358.2757$ $1482.709$ $0.241636$ ooooooooooooooooooooooooooooooooooooooooooooooooooooo |  |

| Table 10.         Multiple regression analysis results [Owner] | r-draw] |
|----------------------------------------------------------------|---------|
|----------------------------------------------------------------|---------|

Dependent Variable: Y Method: Panel Least Squares Date: 05/06/21 Time: 02:37 Sample: 2015 2020 Periods included: 6 Cross-sections included: 28 Total panel (balanced) observations: 168

is calculated > 2, indicating that at a significance level of 5%, the original hypothesis H0 is rejected, that is, Ci is significantly not 0, that is, the influence of the variable Xi on the explanatory variable is significant. Through the test, it shows that the model has a good fit, "R&D investment", "equity concentration" and "government subsidy" have a significant impact on enterprise performance, and "asset-liability ratio" has no obvious impact on enterprise performance [8] (Table 10).

# 4 Conclusions and Recommendations

For improving the operating income of enterprises and increasing the performance of enterprises, suggestions with practical value are put forward: (1) Vigorously strengthen the company's R&D investment investment, increase the proportion of R&D expenditure investment in the company's operating income, and increase the intensity of the company's R&D activities and expense investment. Comprehensively broaden new fields, develop new investment points, improve enterprises' independent innovation capabilities, enhance their core competitiveness, and maintain their dominant position in the complex market environment [9]. (2) Reduce the decentralization of enterprise equity,

396 J. Zhang

appropriately enhance the concentration of shareholding of the largest shareholders, so as to ensure that the interests of the majority shareholders and the company are consistent, stimulate the enthusiasm of the major shareholders, promote the management to better operate the company, and at the same time strengthen the incentive and supervision of the management personnel, which has a positive impact on the performance of the enterprise[10]. (3) It is necessary to strictly control the asset-liability ratio of companies and enterprises, increase funds from the equity owner part, reduce funds from the debt part, reduce the degree of financial risk, and reduce financing costs. While controlling the asset-liability ratio of enterprises, it is also necessary to consider the cash flow of enterprises, and must not affect the effectiveness of the use of enterprises' cash. (4) The government should also increase subsidies to enterprises, especially for their R&D activities. Not only in terms of funds, but also in terms of systems. For example, reducing the tax rate of enterprises in developing new fields and formulating relevant support policies.

# References

- TANG Hua, WANG Longmei, CHENG Huiling. Internal Control Effectiveness, R&D Expenditure and Enterprise Innovation Performance—Based on the Empirical Data of High-tech Enterprises[J].Friends of Accounting,2021(08): 136-141.
- 2. GUO Qianwen, XU Huanzhang, WANG Yi.R&D investment, equity structure and enterprise performance[J].Finance and Accounting Bulletin,2020(12):50–57.
- 3. Wang Xiaowei. Research on the impact of R&D investment in China's new energy automobile industry on enterprise performance[D].Shanxi University of Finance and Economics, 2018.
- 4. Wang Yiying. Research on the correlation between R&D investment and enterprise performance of high-tech enterprises[D].Liaoning University,2018.
- Wang Liqiao, Tan Yunqing.Financial subsidies, R&D investment and enterprise value[J]. Accounting and Economic Research,2016,30(04):68-80.
- 6. Wang Nucheng. Research on the correlation between R&D investment and enterprise growth [J]. Scientific Management Research,2001(03): 13- 16.
- 7. Jun Huang, Guoliang He.Corporate Social Responsibility, Technological Innovation and Enterprise Value[J].Soft Science,2017,31(07):93–97.
- 8. Matthias Olga and Fouweather Ian. The Long Game: Technological Innovation and the Transformation of Business Performance[J]. International Journal of Technology and Human Interaction (IJTHI), 2021, 17(2): 60-78.
- 9. The effects of owner identity and external governance systems on R&D investments: A study of Western European firms[J]. Federico Munari, Raffaele Oriani, Maurizio Sobrero. Research Policy. 2010 (8)
- Cheng Ping, Yan Lu. Research on Performance Evaluation of Enterprise R&D Projects Based on CART Decision Tree Algorithm [J/OL]. Monthly Journal of Finance and Accounting: 1–8 [2022–12–02].

**Open Access** This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

