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Abstract. Soil-water dynamics pattern in a lettuce cropping field under cotton
mulch (CM), plastic mulch (PM), and zero mulch (C) coverage was characterized.
Three lettuce plots of 300 cm x 100 cm large each were prepared. Soil-water
content, electrical conductivity (EC) and temperature at 0–10 and 10–20 cm depth
were monitored hourly. Soil-hydraulic conductivity (Kus) within each soil profile
was characterized and modelled using van-Genuchten model. The soil with CM
showed higher water content (0.29–0.33 cm3 cm−3) than that with PM (0.29–
0.31 cm3 cm−3) and C (0.26 cm3 cm−3). At 32.1 mm d−1 rainfall rate, the soil
EC with CM (0.22–0.30 dS m−1) was higher than others (< 0.02 dS m−1). The
soil temperature with CM was 2–3 and 4–5 °C lower than that with PM and C,
respectively. Furthermore, theCMplot had higherKus (3.1–4.4 cmd−1) compared
to the PM (0.18–0.21 cm d−1) and C plot (0.36 cm d−1). The results reflect a
unique characteristic of the cotton mulch, which is able to provide sufficient water
and nutrient availability, and to control weeds and temperature in soil profile, for
effective growth as well as sustainable production of the crop.

Keywords: Cotton mulch · lettuce crop · soil-water dynamics · sustainable
agriculture · weeds suppression

1 Introduction

During last couple of decades, mulch has been utilized in agriculture due to its benefit in
maintaining soil moisture and temperature, reducing erosion impact, suppressing weeds
and insects, and enhancing soil nutrients [1, 5, 7, 9, 11, 17, 25, 45, 50]. Over various types
of mulches, plastic is the most common mulch, which is low cost and easy to be applied
[56]. The mulch also is effective in reducing evaporation rate from soil surface by 55%
[53]. However, an intensive use of plastic mulches tends to deteriorate soil condition
and enhance environmental risks [33]. For instance, polyethylene films generally causes
an extreme high temperature inside soil profile, especially in hot climate or summer,
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Table 1. Physical properties of Shikoku’s decomposed-granite (loamy-sandy soil orMasa-do in
Japanese)

Parameter Value

Texture (Sand: Silt: Clay) (g g−1) 82.9: 9.6: 7.6 (loamy-sand) 3)

Particle density (g cm−3) 2.67 – 2.68 1)

Dry bulk density (g cm−3) 1.40 – 1.43 1)

Porosity (%) 60 – 70 3)

Hydraulic conductivity (cm d−1) 50.9 – 419.9 2,3)

Soil organic matter or C-N ratio (%) 8.68 – 11.01 4)

1) [12]; 2) [14]; 3) [8]; 4)[26]

resulting in low soil microbial activities as well as organic matter mineralization, and
high rate of soil nutrients volatilization [22]. In fact, the application of huge amount of
plastic mulches, i.e., 60,000 t y-1, in Japan, has brought to agricultural field pollution
by its landfill disposal [37, 38].

Cotton sheet is a new type of biodegradable mulch produced from cotton waste.
Ehime University and Marusan Sangyo Co. Ltd., Japan, has proposed the use of cotton
mulch for fruits and vegetables cultivation under Ehime’sMasado or loamy-sandy soil, as
an alternative way to minimize potential risk of CO2 emission by its waste incineration
in surrounding areas. According to some experiments on cabbage growing field by
[36], the mulch is effective in suppressing weeds, enhancing soil-N uptake as well as
improving growth and yield of the crop, and also is potential to prevent soil and nutrient
loss by erosion. Furthermore, the application of the cotton waste on the lettuce crop in
summer can provide suitable nutrient added into soil [4] as well as good productivity
[19]. However, the effect of the cotton mulch sheet on the soil-water properties as well as
soil-water dynamics in the lettuce cropping field, including the correlation to nutrients
distribution in the soil profile and uptake rate by the crop, has not been evaluated yet.

This research was aimed to characterize the soil-water properties as well as soil-
water dynamics pattern in a lettuce cropping field under cotton, plastic, and zero mulch
application. In further steps, this information is essential to model water and nutrients
transports within the field for sustainable farming system of the crop.

2 Materials and Method

2.1 Experimental Plot and Data Collection

The research was conducted at Field Science (FS) Center, Ehime University, Japan
(decomposed-granite or loamy-sandy soil, Table 1). Three lettuce plots of 300 cm x
100 cm large were prepared for cotton mulch (CM), plastic mulch (PM), and zero mulch
(C), respectively. The lettuce seeds were sowed on each plot with interval of 30 cm x
30 cm (Fig. 1, top). At each plot, water content, electrical conductivity (EC), and tem-
perature of soil within 0–10 and 10–20 cm depth were monitored hourly by using 5TE
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(Field Science Center)

Fig. 1. Schematic diagram of the field monitoring for water content, temperature, and EC in the
lettuce growing soil with three different mulches coverage.

moisture sensors coupled with EM50 data logger (Decagon Devices Inc.) (Fig. 1, bot-
tom). Undisturbed soil samples from the same depths were taken for laboratory analysis
of water content, dry bulk density, and hydraulic conductivity of the soil. Meteorological
data including precipitation, aerial temperature, relative humidity, wind speed, and solar
radiation were summarized from the local weather station installed at the FS Center.

2.2 Laboratory Water Flow Modelling

Prior to the field monitoring, 5TE moisture sensors were calibrated specifically by using
loamy-sandy soil to gainmore representative data. This stepwas conducted by repacking
soil into an acrylic cylinder with 8 cm diameter and 7 cm height, and followed by sensor
operation into the repacked sample for seconds.

The sensor output (mV) was recorded by using Em50 data logger. Volumetric water
content of repacked sample was then measured gravimetrically by using oven dryer, and
then was plotted against the output voltage data by employing the least square method
to obtain a specific calibration formula.

Soil physical properties, mainly, volumetric water content and dry bulk density, then
saturated hydraulic conductivity, were measured by using gravimetric and falling head
method, respectively. The latter was then used as a data input of for the water flow
((K(θ )) simulation based on the field monitored or laboratory measured data with help
of van-Genuchten model [29]. The model was expressed in Eq. (1), (2), and (3).

K(θ) = KsSe
l
[
1 − (1 − Se

1/m)m
]

(1)

Se = θ − θr/θs − θr = 1/(1 + |αh|n)m (2)

m = 1 − 1/n n > 1 (3)
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where: K(θ ): unsaturated hydraulic conductivity, as a function of volumetric water con-
tent (cm d−1), Ks: saturated hydraulic conductivity (cm d−1), Se: effective saturation
(cm3 cm−3), θ: actual or field volumetric water content (cm3 cm−3), θ r : residual volu-
metric water content (cm3 cm−3), θ s: saturated volumetric water content (cm3 cm−3),
and n, α, l: fitting parameters.

The hydraulic properties are usually required to determine the soil water and nutri-
ents dynamics as well as their balance in an agricultural field, since the parameters are
inter-correlated one to another. In this study, the water balance at each lettuce plot was
determined by quantifying the incoming and outgoing water flow into the root zone over
a certain period of time. The rainfall or irrigation was added water to the root zone, and
part of them was lost by runoff or deep percolation toward groundwater recharge. The
water in the root zone might was also depleted to atmosphere by evapotranspiration.
Therefore, the dynamic change in water within soil profile (�SW) was calculated by
using Eq. (4).

�SW = (P + I) − (Rn + Pc + ET ) (4)

where: P, I, Rn, Pc, and ET: added or depleted water by the rainfall (mm), irrigation
(mm), runoff (mm), percolation (mm), and actual evapotranspiration (mm), respectively.

The ET was determined by comparing ΔSW and potential evapotranspiration (ETo,
in mm d−1) of Penman-Monteith (Eq. (5)). If the former is superior to the latter, the ET
was equalized to the ETo, instead of ΔSW, and vice versa (Eq. (6)).

ETo = 0.408�(Rn − G) + γ
900

T + 273
u2(es − ea)/� + γ (1 + 0.3u2) (5)

ET =
{
ETo ETo < �SW
ETo ETo ≥ �SW

(6)

where: Rn: net radiation at crop surface (MJ m−2 d−1), G: soil heat flux density (MJ
m−2 d−1), T: mean daily air temp. at 2 m in height (oC), u2: wind speed at 2 m height
(m s−1), es: saturated vapor pressure (kPa), ea: actual vapor pressure (kPa), Δ: slope of
vapor pressure curve (kPa oC−1), and γ : psychometric constant (kPa oC−1).

3 Results

3.1 Specific Calibration

Figure 2A shows specific calibration results for 5TE moisture sensors, of which rela-
tionship between volumetric water content and output voltage was expressed in a linear
regression with R2 of 0.90. The calibrated equation (Eq. (7)) was reliable within range
of 0.05–0.50 cm3 cm−3 volumetric water content, and was overestimated the default
equation proposed by Decadon Devices Inc., and also the general calibration results of
the previous dielectric constant-based moisture sensors. The former was about 5–8%
higher in its calculated data compared to the latters. Furthermore, fitting the data against
the gravimetric volumetric water content in 1:1 relation (Fig. 2B) reveals that calculated
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BA

Fig. 2. Calibration of 5TE sensor: volumetric water content vs. sensor output voltage for specific
and default/general calibrations (A), and measured vs. predicted volumetric water content (B).

data agreed well with the measured ones with high accuracy (R2 = 0.88) or low error
and (RSME = 0.04 cm3 cm−3).

θ = 0.0468 + 0.000648v (7)

where: θ: calculated/predicted volumetricwater content by the specific calibrated eqution
(cm3 cm−3), and v: output voltage of 5TE moisture sensors read by EM50 data logger
(mV ).

3.2 Spatio-Temporal Change in Soil Water Content, EC, and Temperature

The distribution pattern of water content in lettuce field with various mulches coverage
at 0–10 and 10–20 cm depth in response to rainfall and irrigation during 20–46 days
after transplanting (DAT) is presented in Fig. 3A. The maximum soil water content with
CMwas higher (0.290–0.333 cm3 cm−3) than that with PM (0.297–317 cm3 cm−3) and
C (0.267 cm3 cm−3).

Figure 3B shows the distribution pattern of EC in the lettuce growing soil profile
with various mulches coverage at 0–10 and 10–20 cm depth during 20–46 DAT. Change
in the soil EC, mainly for the cotton mulch (CM) plot, strongly corresponded with either
rainfall or irrigation rate, in which it reached a maximum value of 0.30 dS m−1 when
total water supply was in highest rate, i.e., 32.1 mm d−1.

Unlike soilwater content andEChaving positive correlationwith rainfall or irrigation
rate, soil temperature in most plots corresponded inversely to both those parameters, in
which the latter was decreased with increasing water supply rate and soil water content
(Fig. 4A). Such phenomena was related to high capacity of water in conducting and
transmitting heat from soil after rainfall or irrigation added to surrounding profile, hence
reduced its temperature. Specifically, since CM plot had highest soil water content over
others, the decrease in soil temperature for CM plot within 0–10 and 10–20 cm depth
was lowest (22–29 °C), and consecutively followed by PM (25–31 °C) and C plot (23–
34 °C). Furthermore, the change in microclimate parameters such as aerial temperature
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Fig. 3. Distribution pattern of: water (A) and electrical conductivity (B) in lettuce growing soils
with cotton, plastic, and zero mulch coverage.

Rainfall
Atm Temp.
Rel. Humidity

Water supply (R + I)
Soil Temp.-CM10
Soil Temp.-CM20
Soil Temp.-PM10
Soil Temp.-PM20
Soil Temp.-C10

A B

Fig. 4. Distribution pattern of: soil temperature (A) and atmospheric temperature and relative
humidity (RH) (B) in the lettuce plots with cotton, plastic, and zero mulches coverage.

and relative humidity were also related to rainfall rate (Fig. 4B), and might in turn
correspond to heat or water vapor rate released from lettuce growing soil.

3.3 Soil Water Characteristics

Unsaturated hydraulic conductivity (Kus) was predicted by employing evaporation
inverse analysis (van Genuchten model in Hydrus-1D) based on the monitored/observed
volumetric water content of the lettuce growing soils, especially after heavy rainfall and
irrigation during 30–46 DAT (Fig. 3A). The volumetric water contents of the loamy-
sandy soil under various mulches coverage at 0–10 and 10–20 cm depth were fitted well
by the model with R2 values of 0.982–0.996 (Table 2 and Fig. 5A). According to its 1:1
relation, there was a good agreement between the predicted and monitored/observed
volumetric water content with R2 of 0.996 and root mean square error (RMSE) of
0.0028 cm3 cm−3 (Fig. 5B).

Concerning the soil-water characteristics curve of each plot (Fig. 6A, B), it is shown
that CM plot, mainly at 10 cm depth, had highest soil water holding capacity, followed



Soil-Water Dynamics Pattern in a Lettuce Cropping 189

Table 2. Fitted hydraulic parameters of the lettuce growing soil with cotton mulch (CM), plastic
mulch (PM), and zero mulch (C) coverage at 10 and 20 cm in depth

Parameters Cotton mulch
(CM)

Plastic mulch (PM) Zero mulch (C) v-G model 5)

10-cm 20-cm 10-cm 20-cm 10-cm

θ r 0.138 0.144 0.032 0.0000111 0.00813 0.028 – 0.060

θ s 0.298 0.344 0.308 0.317 0.267 0.314 – 0.350

α 0.116 0.272 0.106 0.094 0.0819 0.079 – 0.940

n 1.335 1.98 1.226 1.140 1.34 1.148 – 1.611

Ks 27.49 9.79 7.07 1.19 5.92 –

l 0.5 0.5 0.5 0.5 0.5 –

R2 0.991 0.982 0.961 0.985 0.996 0.690 – 0.820

SSQ (x10–5) 6) 7.16 33.2 46.1 20.9 6.66 –
5) v-G model for Loamy-sandy soil (Takeshita and Kohno (1993); Fujimaki et al. (2004); Yang
et al. (2004))
6) SSQ (sum of square): an objective function of fitting, of which smaller value means higher
precision of fitting.

BA

Fig. 5. Fitted (or predicted) vs. observed volumetric water contents (VWC) of the lettuce growing
soils at 10 and 20 cm depth concerning with: its temporal change during 30 – 46 DAT (A) and 1:1
relation (B).

by PM and C, while at 20 cm depth it was relatively similar to others. This corresponded
to the results shown in Fig. 3A, of which CM plot was more effective in transmitting as
well as maintaining rainfall and irrigation water input than PM and C plot.

The lower bulk density of CM soil (Fig. 7C) compared to others corroborated the
above results. Accordingly, the hydraulic conductivity of CM soil at 0–10 and 10–20 cm
depth were significantly higher than that of PM and C soil, in which at field capacity
those ranged between 3.1–4.4, 0.18–0.21, and 0.36 cm d−1, respectively (Fig. 7A).
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B

A

Fig. 6. Soil water characteristics: matric potential vs. VWC (A) and unsaturated hydraulic
conductivity vs. VWC (B) of the lettuce soils with various mulches coverage.

Furthermore, the saturated water flow rate within CM soil profile, either temporary
(Fig. 7A) or spatially (Fig. 7B), was higher than the PM and C covered soils.

3.4 Soil Water Balance

Figure 8 shows the water balance in the lettuce growing plots under various mulches
coverage at 0–10 and 10–20 cm depth during 20–46 DAT. The soil water storage in
most plots observed was temporary fluctuated, dependent on the rate of water input.
According to Fig. 8A and 8B, the CM plot had the fluctuation of -14.3 to 23.8 mm
and cumulative water storage of 7.3 mm) The PM plot had the fluctuation of -5.4 to
14.7 mm and cumulative water storage of 5.9 mm. The C plot had the fluctuation of -4.8
to 13.2 mm and cumulative water storage of -3.0 mm. The fluctuation and cumulative
water storage in CM plot was larger and higher than the PM and C plot. As compared
to PM plot, the ET of CM plot was higher in the initial 20–29 DAT, but lower in the last
30–46 DAT, while such in C plot was lowest among others (Fig. 8B). Accordingly, the
cumulative ET of CM plot (43.42 mm) was similar as that of PM plot (43.17 mm), but
both were significantly higher than that of C plot (34.27 mm) (Fig. 8C). By assuming
the surface runoff (Rn) to be zero (sandy soil), it was found that the soil water loss by
percolation was higher in C plot (16.47 mm within 0–10 cm depth or 5.15 mm within
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Fig. 7. Temporal (A) and spatial pattern (B) of soil hydraulic conductivity, in relation to its dry
bulk density at the end of cultivation period (C), in the lettuce field with various mulches coverage.

0–20 cm depth) than in CM and PM plot, namely -3.04 and -1.43 mm, respectively
(negative indicated the upward or capillary movement of the soil water) (Fig. 8C).

4 Discussions

4.1 Specific Calibration Formula

The overestimated calibration results over the default equation proposed by Decadon
Devices Inc., and the general formulas of the previous dielectric constant-based TDR
moisture sensors proposed by [35] and [40] revealed that the specific calibration formula
tended to be more reliable and applicable, other than the default or general formula, for
measuring soil physical properties. This reason in further has encouraged [41, 42, 44]
and [43] to develop and apply the similar specific calibration formula for measuring and
monitoring soil water distribution in several upland and lowland soils, namely andisol,
alluvial, and regosol soil to gain more representative results.

4.2 Soil Water Content-EC-Temperature Changes and Relations

The water content change for most plots observed were sensitively depended on rainfall
and irrigation rate, which was due to the basic characteristics of loamy-sandy soil hav-
ing high total macro-pore inside [45, 46, 54, 55]. Specifically, the higher capability of
CM over others in intercepting and distributing rainfall and irrigation water within soil
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Fig. 8. Water balance, in term of: (A) temporal change, (B) cumulative, and (C) budget in lettuce
cropping field with various mulches coverage throughout a cultivation period.

profile as well as preventing upward water loss by evaporation verified its prospective
applicability in crop cultivation to support better water management [7, 34, 47, 52].

The higher soil EC value at maximum water supply was affected by the higher
decomposed-granite content in Masado, reflecting higher plasticity or cation exchange
capacity (CEC) than the common sandy soils [23]. In fact, the water might act as an
electrolyte medium conducting mineral ions to move easily through soil pore [27, 28].
Furthermore, [15, 18] reported that when clay content is low, as it occurs in loamy-sandy
soil, its water content has a greater effect on EC. Accordingly, the higher EC value in CM
soil as compared to that in PM and C soil was due to its better capability in transmitting
the incoming water as well as holding the underlined soil water.

The capability of mulch in conducting and transmitting heat from soil to atmosphere
or vice versa was a key factor affecting the temperature change in the underlined soil.
For instant, the lower capacity of PM, as compared to CM and bare soil, in transmitting
heat from soil to atmosphere might increase its underlined soil temperature [3, 10, 33].
In contrast, although C plot or bare soil tended to deliver heat from soil to atmosphere
more effective than CM and PM plot, it absorbed more heat from solar radiation directly



Soil-Water Dynamics Pattern in a Lettuce Cropping 193

resulting in its higher soil temperature than the two former plots. Furthermore, an effec-
tive soil temperature reduction by CM, mainly in hot-summer condition, allowed crop
to be healthy grown, since leaf and root of the crop are sensitive to hot temperature
[36–38].

4.3 Water Flow Pattern

The unsaturated hydraulic conductivity (Kus) represents the dynamic of water in its
soil profile [6, 31]. Having knowledge of Kus will then help us in quantifying water
and nutrient budget within certain growing field including lettuce crop to support its
appropriate irrigation scheduling [2, 20, 48, 51] aswell as to determine its optimal dosage
of fertilizer applied [12, 16, 39]. The fitting volumetric water content for entire mulches-
covered soils showed the results that were comparable to that of [14, 32, 55]. This
suggests that such fitted parameters is acceptable for predicting the water characteristics
and hydraulic conductivity [51] as well as modelling water flow in the lettuce growing
soils under various mulches coverage.

4.4 Cotton Mulch Application for Better Soil-Water Management

According to the quantified soil water balance, it was realized that the cotton mulch
was sufficiently effective in maintaining the underlined soil water available to crop. The
mulch was not only able to transmit and redistribute the water input from either rainfall
or irrigation within soil profile, but also could prevent the upward water loss by either
evaporation or deep percolation. Such condition might in turn keep the soil temperature
in suitable condition for suitable crop growth [36–38]. Furthermore, the cotton mulch
was easily biodegraded in soil, which contributed to significant improvement of soil
physical properties and organic matter [22, 37, 38], hence soil water holding capacity.
Although the plastic mulch is almost as effective as the cotton mulch in supporting
optimal ET rate and preventing soil loss by deep percolation [56], it has negative impact
on reducing soil water storage, due to its lower transmissibility to water input. The plot
covered by the plasticmulchmight then result in higher temperaturewithin its soil profile
compared to that covered by the cotton mulch. In contrast, the zero mulch might allow
more water to infiltrate and percolate into the deeper profile, thus reduces its soil water
holding capacity as well as ET rate.

The information on the soil water balance in the lettuce growing plot under vari-
ous mulches coverage was essentially required to support its better water management,
including irrigation scheduling and fertilizer application to enhance yield of the crop
grown [24, 30, 49]. The soil water balance represented the dynamic movement of water
within the crop and its surrounding environment over a cultivation period. The effective
water uptake by the crop was determined based on its water used efficiency (WUE)
coefficient, which was calculated as the ratio of the total aboveground dry matter weight
of the crop to the cumulative amount of water required for ET process [21]. Concerning
this study, it was expected that the CM plot might haveWUE higher than PM plot, since
the former had higher fresh and drymatter compared to the latter, although both ET value
were relatively similar. The high yield of the crop in CM plot was affected by the typical
characteristic of the cotton mulch, which was transmissible to water input from either
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rainfall or irrigation resulting in appropriate soil water availability and temperature for
better crop growth. Furthermore, the CM application had benefit to suppress weeds in
the growing field up to 89%, mainly in hot condition or summer [36, 37].

5 Conclusions

The distribution pattern of soil physicochemical properties in the lettuce growing soil
under various mulches coverage such as cotton mulch, plastic mulch, and zero mulch
was characterized and modelled with help of 5TE moisture sensor data and Hydrus-1D
analysis. The field with cotton mulch had higher soil water content as well as soil water
holding capacity as compared to that with plastic and zero mulch, resulted in good soil
water and nutrients availability (indicated by high EC value), and suitable soil temper-
ature, of which those were never seen in other mulches-covered field. The application
of the cotton mulch, mainly in hot-summer condition, might in further contribute to
high water use efficiency as well as optimum yield of the crop, and effective weeds
suppression.
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