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Abstract. The efficiency of plant breeding programs can be improved by deter-
mining genetic variability, heritability, and genetic advance. The experiment was
carried out to study the genetic variability, broad-sense heritability, and genetic
advance for somemorphological and physiological traits in rice influenced by heat
stress.A split plot designwas used in this studywith 16 rice varietieswere arranged
as sub plot with two heat stress treatments as the main plot. The temperature was
set to 37–38 °C and 40–41 °C and the experiment was carried out with three repli-
cations. The observed morphological and physiological traits were tiller number,
leaf number, plant height, root length, root fresh weight, root dry weight, shoot
fresh weight, shoot dry weight, leaf area, proline content at the vegetative stage,
number of sterile pollens, stomatal density, chlorophyl content, and 1000 seed
weight. There was a high coefficient of variation for most of the traits observed in
the experiment. The phenotypic variances of the observed variables were greater
than those of the genotypic variances. This finding was in line with the trends of
their phenotypic co-efficient of variances compared to genotypic co-efficient of
variances. The broad-sense heritability values were high for all observed traits,
except moderate for the number of sterile pollens. The higher the heritability, the
better a trait can be inherited into the next progenies. The genetic advances were
varied from low to high for all observed traits.

Keywords: “broad-sense heritability · genetic advance · genetic variability ·
high temperature · plant physiology.”

1 Introduction

High temperature causing heat stress become problem in many agricultural lands in the
world. It has been reported by theCentralBureau of Statistics that the highest temperature
in Indonesia in 2021 was 38.4 °C in 2021 with the average temperature of 27.1 °C and
positive anomaly of 0.4 °C. Rice plant can grow well from 25–35 °C for all stages of
development [1]. Temperatures above 35 °C are reported to reduce vegetative growth [2]
and interfere with generative growth resulted in low yield [3]. In addition, pollen is very

© The Author(s) 2023
S. B. Sulistyo et al. (Eds.): ICSARD 2022, ABSR 30, pp. 251–260, 2023.
https://doi.org/10.2991/978-94-6463-128-9_26

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-128-9_26&domain=pdf
https://doi.org/10.2991/978-94-6463-128-9_26


252 P. S. Dewi et al.

sensitive to high temperature stress causing pollen sterility. As a result, the fertilization
process will be hampered and the yield will decrease [4].

One of the efforts to overcome this problem is breeding new rice varieties toler-
ant to high temperature stress. The initial step that needs to be done is screening rice
germplasms for high temperature tolerance. After obtaining the genotype of rice plants
tolerant of high temperature stress, crosses between the tolerant genotype and genotypes
with other superior traits can be carried out as needed. Estimates of heritability values
and genetic progress are needed to determine howmuch a trait can be passed down from
one generation to the next [5]. Most of experiment related to genetic studies in plants
is focused on genetic variability, heritability, and genetic advance for specific collec-
tions/landraces [6, 7]. However, estimation of heritability values and genetic advance in
rice plants under abiotic stress was still limited. [8] reported that heritability for several
physiological and yield contributing traits in wheat varieties under heat stress were mod-
erate to high. Moreover, it was also reported that the genetic advance for these traits was
moderate to high. The information regarding the genetic response of the rice varieties and
genotypes under specific abiotic stress will help us to determine the mechanism of heat
stress tolerance in rice plants and consider the specific traits to be used as morphological
or physiological markers for selection. The heritability value can help plant breeders
to determine the duration and selection method because it represents the proportion
between genotypic and phenotypic variation that is inherited to the next generations.

This study was aimed to estimate the genetic variability, the broad-sense heritability,
and the genetic advance of 16 rice varieties and accessions for some morphological and
physiological traits in rice under high temperature stress.

2 Materials and Methods

2.1 Plant Materials

There were 16 rice varieties and accessions used in the experiment (Table 1). Some seeds
were requested from Indonesian Centre for Rice Research (ICRR) and the remaining
seeds were kindly provided from the breeders. These rice varieties and accessions are
known for their superior characters including drought tolerant, salt-tolerant rice [9, 10],
black rice [11, 12], upland rice, and commercial ones with excellent palatability, high
yield, and wide adaptability.

2.2 Heat Stress Experiment

The experiment was carried out in the screenhouse of Center for Crop and Horticul-
tural Seeds (Balai Benih Tanaman Pangan dan Hortikultura) Purwokerto Central Java
Indonesia. A split plot design was applied with heat stress as the main plot and genotype
as the sub plot with three replicates. Temperature treatment was consisted of the tem-
perature between 37–38 °C and above 40–41 °C. The plants were grown in the polybags
following cultural practices and plant protection recommended by Ministry of Agricul-
ture Republic of Indonesia. The temperature for T2 and T3 was achieved by covering
the screenhouse with vinyl plastic. Observation of the temperature and humidity were
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Table 1. Rice genotypes used in this study

Variety Superior trait Source

Inpari 18 Tolerant to drought Indonesian Center for Rice
Research (ICRR)

Inpari 19 Tolerant to drought ICRR

Inpari 20 Tolerant to drought ICRR

Inpago Lipigo 4 Tolerant to drought ICRR

Inpago 8 Tolerant to drought ICRR

Inpari 34 Agritan Tolerant to salinity ICRR

Inpari 35 Tolerant to salinity ICRR

Inpari Unsoed 79 Agritan Tolerant to salinity ICRR

Jeliteng A variety of black rice ICRR

PH 3 An accession of black rice Perjuangan University West
Java

PH 5 An accession of black rice Perjuangan University West
Java

Inpago Unsoed 1 A lowland rice variety with
aromatic and fluffy rice type

Jenderal Soedirman
University

IR 64 High yield and wide
adaptability

ICRR

Parimas Tolerant to drought and
aluminium

Jenderal Soedirman
University

Ciherang High yield and wide
adaptability

ICRR

Situbagendit Tolerant to drought ICRR

carried out three times a day. First observation was done in the morning (6 am), in the
midday (12 am), and in the evening (6 pm) for 19 weeks. The observed variables were
tiller number (tiller), leaf number (leaf), plant height (cm), root number (root), root
dry weight (g), root fresh weight (g), shoot dry weight (g), shoot fresh weight (g), leaf
area (cm2), proline content at the vegetative stage (μgml−1), number of sterile pollens
(pollen), stomatal density (stomata/mm2), chlorophyl content (mgl−1), and weight of
1000 seeds (g).

2.3 Data Analysis

The data recorded using the experiment were then used for statistical analysis by using
analysis of variance (ANOVA) for the split plot design using IBM SPSS 17.0. Means
from the result of ANOVA analysis were used to calculate some genetic parameters such
as variance of genetics, variance of phenotype, variance of environment, genotypic coef-
ficient of variation (GCV), phenotypic coefficient of variation (PCV), and the genetic
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advance. The phenotypic variation for all observed variables were divided into genetic
factors, environmental factors, and interaction between genetics and environmental
factors which were estimated following [13].

σ 2p = σ 2t + σ 2txg

g
+ σ 2e

rg
(1)

where σ2e, σ2txg, and σ2p are variance of environment, variance of genotype, and vari-
ance of phenotype, respectively.MSe,MSt,MStxg, r, and g are themean squares of error,
themean squares of temperature treatment, themean squares of interaction between tem-
perature treatment and genotype, number of replications, and number of rice accessions
or genotypes used in the experiment, respectively.

%PCV =
√

σ 2p

x
x100 (2)

%GCV =
√

σ 2txg

x
x100 (3)

The criteria for dividing genotypic and phenotypic coefficient of variation were
according to [9]. CGV and PCV were categorized as narrow if the value is 0–10%,
moderate if the value is > 10%, and wide if the value is > 20%.

h2b = σ 2t

σ 2t + σ 2txg
g + σ 2e

rg

(4)

Broad-sense heritability was calculated according to [14]. Genetic advance (GA)
and genetic advance in per cent (GA%) were calculated following [15].

GA = h2b.i.σp (5)

where h2b is broad-sense heritability, i is selection differential, with the value of 1.76 at
10% level of selection intensity, and σp is phenotypic standard deviation. Broad-sense
heritability was categorized as low (h2b < 20%), moderate (20% ≤ h2b ≤ 50%), and
high (h2b > 50%) following [16].

The genetic advance in percent of mean (GA%mean) was estimated following [15].

GA%mean = GA

x
x100 (6)

GA was categorized as low (GA < 7%), moderate (7% ≤ GA ≤ 14%), and high
(GA > 14%) according to [17].

3 Results and Discussion

Table 2 showed that the range of genotypic and phenotypic coefficient of variance was
0.92–17.75 and 12.12–93.17, respectively. Phenotypic variance is higher than that of
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Table 2. Genetic and phenotypic variations for the observed variables

Observed variables σ2txg σ2p σ2e GCV PCV

Value Category Value Category

Tiller number (tiller) 0.02 71.65 7.32 0.92 N 60.03 W

Leaf number (leaf) 7.76 110.67 9.20 13.59 M 62.57 W

Plant height (cm) 26.83 217.62 77.18 5.15 N 14.68 M

Root number (root) 5.85 65.18 42.01 4.55 N 15.18 M

Root dry weight (g) 7.28 114.48 71.70 9.25 N 36.66 W

Root fresh weight (g) 5.50 1091.50 351.21 2.10 N 29.60 W

Shoot dry weight (g) 6.81 175.77 78.60 5.71 N 29.00 W

Shoot fresh weight
(g)

147.22 4330.86 2065.09 5.39 N 29.21 W

Leaf area (cm2) 6.31 516.00 32.11 6.64 N 60.09 W

Proline content at the
vegetative stage
(μgml−1)

0.48 0.26 1.20 14.74 M 18.20 M

Number of sterile
pollens (pollen)

10395.47 147318.69 216266.17 12.67 M 47.68 W

Stomatal density
(stomata/mm2)

36.19 3781.49 2936.96 9.11 N 93.17 W

Chlorophyl content
(mgl−1)

50.13 181.28 79.60 17.75 M 33.74 W

Weight of 1000 seeds
(g)

0.17 9.18 2.82 1.65 N 12.12 M

Remarks: σ2txg= genotypic variance, σ2p= phenotypic variance, σ2e= environmental variance,
CGV= genotypic coefficient of variation, PCV= phenotypic coefficient of variation, N= narrow,
M = moderate, and W = wide.

the genotypic variance, followed by the phenotypic coefficient of variance (PCV) value
which is greater than the genotypic coefficient of variance (GCV) value for all observed
characters. Similar findings were reported by [8] for PCV of plant height, heading date,
maturity date, canopy temperature at both vegetative and grain filling stages, chlorophyl
content, spike per meter square, spikelet per spike, grains per spike, 1000 grain wight,
and harvest index is greater than GCV in wheat genotypes under heat stress condition.
When the level of genetic variation is narrow then this shows that the individual is in
the population is relatively uniform. Therefore, selection for trait improvement is less
effective [18]. On the other hand, the wider the genetic variation, the greater the chance
for successful selection for the targeted traits. Based on the results of the analysis in
this study, the small difference in variance between phenotypic and genotypic values
was indicated by proline content at the vegetative stage. Therefore, the proline content
at the vegetative stage is an important trait to select the genotypes which are tolerant to
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heat stress. Proline has been known as the osmoprotectants for rice plant under abiotic
stresses including drought, heat, salinity, and both drought and heat stresses [19].

It is necessary to determine the heritability estimation value of a character to predict
the progress of a selection, whether the appearance of the character is heavily influenced
by genetic or environmental factors [20]. Based on the analysis of the estimation of
variance and heritability values, a plant character that has a low genetic diversity value
does not necessarily have a low heritability value and vice versa. There are several
characters of the outcome components in this study that have low PCV or CGV values
but have high heritability categories. This is because the heritability value is formed
by the ratio between genotypic variance to the total phenotypic variance [16, 21]. This
is in line with the experiments of heat stress in wheat by [8] for all the vegetative and
generative traits which had low CGV but showed high heritability. [22] also reported
that all the observed traits exhibited high heritability although their GCV were varied
between low to wide (Table 3 and 4).

The genetic advance was low for proline content at the vegetative stage and weight
of 1000 seeds, moderate for root number, and the remaining observed variables were
high. Characters with high genetic progress values indicate that these characters are
supported by genetic factors, so that they can facilitate selection progress. Most of these
studies had high and low values of genetic advancement. If the value of the genetic
advance for a trait is high, it means that there is a great opportunity for improvement of
the trait during selection. On the other hand, if the value of genetic advance is low, then

Table 3. Estimation of broad-sense heritability for the observed variables

Observed variables Population means Broad-sense heritability Category

Tiller number (tiller) 14.10 0.97 H

Leaf number (leaf) 20.50 0.97 H

Plant height (cm) 100.50 0.82 H

Root number (root) 53.19 0.74 H

Root dry weight (g) 29.19 0.82 H

Root fresh weight (g) 111.61 0.90 H

Shoot dry weight (g) 45.72 0.87 H

Shoot fresh weight (g) 225.29 0.86 H

Leaf area (cm2) 37.80 0.99 H

Proline content at the vegetative
stage (μgml−1)

2.81 0.75 H

Number of sterile pollens 805.00 0.48 M

Stomatal density (stomata/mm2) 66.00 0.75 H

Chlorophyl content (mgl−1) 39.90 0.72 H

Weight of 1000 seeds (g) 25.01 0.89 H

Remarks: M = moderate and H = high.
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Table 4. Estimation of genetic advance for the observed variables

Observed variables Genetic Advance (GA) GA% Category

Tiller number (tiller) 14.39 102.08 H

Leaf number (leaf) 56.83 277.22 H

Plant height (cm) 21.29 21.19 H

Root number (root) 10.52 19.78 M

Root dry weight (g) 15.50 53.10 H

Root fresh weight (g) 52.06 46.64 H

Shoot dry weight (g) 20.31 44.42 H

Shoot fresh weight (g) 99.38 44.11 H

Leaf area (cm2) 39.39 104.22 H

Proline content at the vegetative stage (μgml−1) 1.31 46.53 L

Number of sterile pollens 321.13 39.89 H

Stomatal density (stomata/mm2) 80.73 122.31 H

Chlorophyl content (mgl−1) 16.95 42.48 H

Weight of 1000 seeds (g) 4.74 18.95 L

Remarks: H = high, M = moderate, and L = low.

the selection for this trait can be carried out after the population reached some extent
of homozygosity which means need longer time because selection can only be taken in
the late generation. Moreover, the selection can also be ended because the improvement
of the trait is relatively low [23]. This indicates that the observed characters with low
genetic advance based on the tested genotypes are regulated by the action of non-additive
genes. Low genetic advance was also reported in the study of [24], including harvest age,
number of productive tillers, weight of grain per panicle, number of grains per panicle,
and weight of 1000 seeds.

This experiment showed that there is high value for the broad-sense heritability and
the genetic advance for most all the observed traits. This is indicated that selection in
rice breeding program tolerant for heat stress can be done in the early generations using
several recommended selection methods such as mass selection, pure line selection, or
pedigree [25].

4 Conclusions

The genotypic coefficient of variation was low to moderate while phenotypic coefficient
of variationwasmoderate towide for the observed variables. The broad-sense heritability
was moderate except low for the number of sterile pollens. The genetic advance was low
for proline content at the vegetative stage and weight of 1000 seeds, moderate for root
number, and the remaining observed variables were high.
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