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Abstract. During the drilling process with minimum quantity lubrication (MQL)
for AISI 1045, the thrust force and torque influence the drilled hole’s surface
quality. Therefore, it is important to select the appropriate combination levels of
machining parameters in order to minimize the thrust force, torque, and surface
roughness of drilled holes simultaneously. This paper predicts the optimal value of
thrust force, torque, and surface roughness of the AISI 1045 in the drilling process
by implementing a hybrid method of backpropagation neural network (BPNN)
and firefly algorithm (FA). BPNN was developed to obtain an appropriate model
and then applied the firefly algorithm for multi-objective optimization. Several
experiments on CNC machines were carried out using L18 orthogonal arrays
based on the Taguchi technique. Tool type, point angle, feed rate, and cutting
speed were selected as process parameters. Based on the prediction of BPNN and
FA to achieve optimal responses, the cutting process was obtained using a tool
type HSS-M2 with a point angle of 131°, feed rate of 0.04 mm/rev, and cutting
speed of 32.5 m/min.
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1 Introduction

The machining of steel requires the appropriate setting of the cutting parameters. The
cutting parameters of the drilling process usually considered are drill material, drill bit
geometry, cutting speed, and feed rate. Several studies have shown that drillmaterial, drill
point angle, cutting speed, and feed rate influence surface roughness, cutting force, and
torque [1–4]. On the other hand, cutting conditions with minimum quantity lubrication
(MQL) result in an efficient process in contrast to dry machining conditions. When the
tool and workpiece are in contact, MQL can reduce heat and friction, resulting in better
surface quality, high productivity, and longer tool life [5, 6].

The thrust force and torque determine the surface quality of drilled hole in the drilling
process. The surface roughness resulting from the machining process affects properties
such as fatigue strength, coefficient of friction, wear resistance, and corrosion. Poor
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surface quality can increase the cost and duration of the re-production process as well as
cause material failures such as friction, low dimensional accuracy, and heat production
in the hole walls [7, 8]. Poor machining performance can be avoided by conducting
experimental studies and optimization to produce quality products, reduce costs, and
increase productivity.

Various analysis, optimization, andmodeling methods have been developed to deter-
mine the optimal cutting parameters. The procedure to select the optimal parameter set-
tings is conducted in two parts. The first is the development of a mathematical equation
or model that illustrates the connection between the process parameters and the output.
Fuzzy logic, artificial neural networks (ANN), and response surface methodology were
all employed to develop the model. Furthermore, using the mathematical model, the
optimal solution can be determined. On the other side, metaheuristic algorithms, i.e.,
genetic algorithm, particle swarm optimization, simulated annealing algorithm, firefly
algorithm, etc., also can be applied to figure out the appropriate optimal solution [9].

A comparative study between ANN and regression methods has been used to predict
the cutting force and thrust force on the orthogonal cutting of AISI 316L stainless steel
material. TheANNmodel developed had a lower error than the regression. It showed that
ANN was better at predicting the cutting force and thrust force [10]. Anand et al. [11]
conducted a similar study which showed that ANNmodeling was better at predicting the
response of delamination, thrust force, and torque in the drilling process than regression
and fuzzy logic methods. Norcahyo et al. [12] developed a model to estimate hole
delamination and thrust force based on a backpropagation neural network (BPNN).
Based on the developed model, the predictive values were close to experimental results.
The results indicated that BPNN produced predictive values efficiently. Gautam and
Mishra [13] proposed a metaheuristic method based on swarm intelligence, namely the
firefly algorithm (FA), to improve the kerf quality of the basalt fiber-reinforced polymer
composite material in laser cutting. The prediction determined the best cutting geometry
parameters based on the kerf values made using the firefly method. The optimization
results showed an increase in kerf quality by 26.75%. Effendi et al. [14] applied a BPNN
and firefly algorithm (FA) to determine the setting parameters of the drilling operation,
ensuring minimum surface roughness and cutting force on GFRP material. According
to the results of the confirmation experiment, the BPNN-FA predicted value for the
optimum responses was acceptable, with an error below 5%.

Notable researchers have been conducting research using a combination of differ-
ent process parameters and then analyzing using certain methods to obtain the optimal
response. The backpropagation neural network (BPNN) method produces a model close
to the experimental results. The resulting error rate is small, and the BPNN prediction
results are acceptable. Furthermore, the metaheuristic algorithm, a non-traditional opti-
mization, is quite popular because the results are quite good. One of the metaheuristic
optimization methods, called the firefly algorithm, has the capability to predict the opti-
mumvalue of the responses simultaneously. Bharathi et al. [15] stated that the FAmethod
might generally be adapted and applied to conventional machining operations like turn-
ing and grinding and other non-traditional machining processes. The firefly algorithm
can resolve problems by selecting the appropriate value of process parameters to get the
optimal solution. The study in this paper, inspired by the literature mentioned above,
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aims to determine the drilling process settings parameter in AISI 1045 steel to obtain
minimum thrust force, torque, and surface roughness. The backpropagation neural net-
work method is used for modeling, while multi-objective optimization is carried out
using the firefly algorithm.

2 Materials and Methods

2.1 Experimental Setup

The drilling process was carried out on a CNCMillingmachine with a maximum spindle
speed of 4000 rpm. The material used was AISI 1045. Minimum quantity lubrication
(MQL) was used for the cutting process in conditions near dry. Palm oil was used as
the MQL cutting fluids with a nozzle angle was 45°. The tool type, point angle, feed
rate, and cutting speed were used as the drilling process parameters, whose values and
levels can be seen in Table 1. The thrust force (Ft) and torque (T) were measured using
the Kistler dynamometer. The surface roughness tester Mitutoyo SJ-310 was utilized to
measure the drilled hole’s surface roughness (SR).

2.2 Design of Experiment

The experiment was designed using an orthogonal array L18 based on the Taguchi tech-
nique. The orthogonal array L18 is depicted in Table 2 with 18 combinations of the
experiment.

2.3 Development of Backpropagation Neural Network A Subsection Sample

A data processing and modeling method called an artificial neural network (ANN) is
applied to create mathematical models of the learning process inspired by the human
nervous system’s mechanisms. Backpropagation is a systematic methodology for train-
ing multilayer ANNs. A backpropagation neural network (BPNN) structure consists of
a multilayer network, i.e., the input layer, hidden layer, and output layer. There are four
stages of algorithm training using the backpropagation method: initialization of weights,
feed-forward, backpropagation error, and lastly, updating weights and biases [16].

Each layer is interconnected with weights and biases. These weights pass informa-
tion from each input layer to all hidden layers. The final value is obtained through the
activation function, which has processed information from the hidden layer to the neuron
output layer. Bias is used to eliminate or compensate for the dominant solution in the
hidden layer and output layers. The process from the input to the output layer is called
feed-forward. The final value obtained in the output layer is compared with the target
value. The difference in value between the final and target values is evaluated. Then
the backpropagation process is carried out until the weights are optimized to get the
minimum error between the target value and the predicted value [10, 17].

The steps in modeling using BPNN are pre-processing the normalizing data, devel-
oping the network architecture (input layer, hidden layer, and output layer), determining
the criteria for stopping BPNN, and finally conducting training, testing, and validation.
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Table 1. Value of process parameters.

Process Parameters Unit Symbol Level 1 Level 2 Level 3

Tool Type - A HSS-M2 HSS-M35 -

Point angle °(degree) B 102 118 134

Feed rate mm/rev C 0.04 0.07 0.1

Cutting speed m/min D 25 37 50

Table 2. Design of experiment.

No. A B C D No. A B C D

1. 1 1 1 1 10. 2 1 1 3

2. 1 1 2 2 11. 2 1 2 1

3. 1 1 3 3 12. 2 1 3 2

4. 1 2 1 1 13. 2 2 1 2

5. 1 2 2 2 14. 2 2 2 3

6. 1 2 3 3 15. 2 2 3 1

7. 1 3 1 2 16. 2 3 1 3

8. 1 3 2 3 17. 2 3 2 1

9. 1 3 3 1 18. 2 3 3 2

Normalization of data is performed because the data has values of different magnitudes.
The normalization process aims to facilitate convergence, so the input and output of
BPNN are converted at intervals between −1 to 1. Normalization of input and output
data can be calculated using Eq. 1 [18].

y = 2
(p− pmin)

(pmax − pmin)
− 1 (1)

where y is the result of normalizing the input data (process parameters) and output
data (response parameters), and p is the process and response parameter data from the
experiment.

2.4 Firefly Algorithm

Ametaheuristic algorithm named the firefly algorithm (FA) is an algorithm based on the
phenomenon of light emitted by fireflies with the assumption that all artificial fireflies
are unisexual. Here, the brightness level of fireflies is their main attraction. The closer
the distance between the fireflies, the higher the attraction. When the distance between
fireflies increases, the firefly’s attraction decreases [13]. In addition, the attractiveness of
fireflies and their brightness have a proportional relationship. Fireflies move to a place
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Fig. 1. Flowchart of the BPNN-FA.

that has a brighter and more attractive light intensity. The idea behind this behavior
can be linked to the objective function of efficiently determining the most appropriate
solution. The movement of the less attractive fireflies to the other most attractive fireflies
makes the FA parameter can be updated [13, 19]. Figure 1 shows the flowchart of the
BPNN-FA hybrid method for multi-objective optimization.

3 Result and Discussion

3.1 Experimental Result

Experiments were carried out based on a combination of these parameter levels to pro-
duce eighteen data for each response, including Ft, T, and SR. Each experiment combined
process parameters such as tool type, point angle, feed rate, and cutting speed, as shown
in Table 2. The results of Ft, T, and SR measured during the drilling experiment are
represented in Fig. 2. From the graph in Fig. 2, the response of Ft, T, and SR reached the
lowest value in the 10th, 16th, and 7th experiments, respectively. The minimum value
of Ft was obtained as 575.8 N during the experiment with the combination of tool type
HSS-M2 with a point angle of 102°, feed rate of 0.04 mm/rev, and cutting speed of
50 m/min. Likewise, the minimum value of T was obtained as 1.676 Nm during the
experiment with the combination of tool type HSS-M35 with a point angle of 134°, feed
rate of 0.04 mm/rev, and cutting speed of 50 m/min. Whereas the minimum value of
SR was obtained as 2.48 μm during the experiment with the combination of tool type
HSS-M2 with a point angle of 134°, feed rate of 0.04 mm/rev, and cutting speed of
37 m/min. From the results of this experiment, it was found that the lower the feed rate,
the smaller the Ft, T, and SR. Similar results were also found in the previous study [20].
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Fig. 2. Experiment value for response (a) Ft, (b) T, and (c) SR.

3.2 Modeling Using BPNN

In this study, the modeling of the drilling process on AISI 1045 steel was carried out
using BPNN. BPNN modeling requires input data and output data. The data used as
input for predictions using BPNN was a combination of process parameters, namely
tool type, point angle, feed rate, and cutting speed. The experimental result, including
Ft, T, and SR, were used as output data.

Eighteen data collected resulted from experiments. Seventy percent (70%) of the data
were used for training, whereas just 15% of each was used for validation and testing.
Sixteen data sets were randomly selected for training data. Besides, each of the other
two data sets was presented to the network as testing and validation data. The BPNN
parameters were set first before being used for the modeling process; the maximum
numbers of epochs or iterations of BPNN were set to 1000; the total hidden layers and
neurons for each hidden layer varied between 2 and 5; the activation function in each
hidden layer used tansig, while the output layer used the activation function purelin.
Levenberg-Marquardt (trainlm) can provide a good convergence speed, so it was chosen
as the training function of BPNN [21].
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Table 3. BPNN architecture.

Response Total number of
hidden layers

Total number of
neurons

Activation function MSE

Thrust Force (Ft) 2 4 Tansig 0.000712

Torque (T) 2 4 Tansig 0.000587

Surface Roughness
(SR)

2 4 Tansig 0.000772

The developed BPNN model has been trained and tested based on the input and
output data. The desired BPNN architecture was determined using the smallest value
of mean square error (MSE). Based on the MSE value generated from BPNN shown in
Table 3, a two-hidden-layer structure with a total of four neurons for each hidden layer
and activation function tansig can be used to create a decent BPNN architecture. Ft,
T, and SR each have MSE values of 0.000712, 0.000587, and 0.000772, respectively.
Besides obtainingMSE, there are differences between the target value from experiments
and the BPNN prediction outcomes, which are demonstrated in Fig. 3. Based on these
results, it was known that the predicted value of BPNN was close to the experimental
results. The average error for each response, including Ft, T, and SR, was 0.36%, 0.48%,
and 0.45%, successively. The average error between prediction and experiment did not
exceed 5% for each response, which indicated that the BPNNmodel accurately predicted
the drilling process [10, 17].

3.3 Optimization Using FA

In this study, the FA approach was applied to simultaneously optimize the Ft, T, and
SR based on the drilling process parameters, including the tool type, point angle, feed
rate, and cutting speed. BPNN modeling, which has produced a network architecture
with the smallest MSE, was used for the FA optimization process. Before applying the
FA method, parameters such as light absorption coefficient, attractiveness value, and
randomness factor was determined first. The appropriate FA tuning parameter values,
such as randomness reduction, randomness factor (α), attractiveness value (β0), and
absorption coefficient (γ ), were 0.98, 0.91, 1, and 1, successively. The number of fireflies
was 30. While the maximum number of iterations was taken as 50 to terminate the
iteration process. This FA parameter was applied by previous researchers to get the most
appropriate solution [13, 14, 19, 22].

The fitness functionwas used during the optimization process to obtain theminimum
value from the response. The fitness function applied in this study was calculated by
combining all objective functions. The objective function was determined based on the
BPNN model. The fitness function was stated in Eq. 2.

minimizef (x) = ObjF + ObjT + ObjSR (2)

where ObjF , ObjT , and ObjSR were the objective function of thrust force, torque, and
surface roughness, respectively.
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Fig. 3. Comparison of BPNN prediction and data of experiment for (a) Ft, (b) T, and (c) SR.

Figure 4 displays the result of the iteration of the FAmethod. According to this result,
the fitness value was convergent within 50 iterations. Moreover, the multi-objective
optimization result using FA are shown in Table 4. According to the Table 4, the HSS-
M2 tool type with a point angle of 131°, feed rate of 0.04 mm/rev, and cutting speed of
32.5 m/min achieved the optimum performance for Ft, T, and SR. The predicted value
of Ft, T, and SR were 770.897 N, 1.731 Nm, and 2.501 μm, successively.

3.4 Confirmation Experiment

The best parameter prediction results from FA were then validated by performing con-
firmation experiments. The confirmation experiments were conducted three times. Table
4 summarizes the results of the confirmation experiment. According to the Table 4, the
confirmation experiment’s results indicate that the FA prediction was close to the exper-
iment. The average for the confirmation experiment for Ft, T, and SR were 776.433 N,
1.747 Nm, and 2.581 μm, respectively. Moreover, the errors between prediction and the
average of confirmation experiments for Ft, T, and SR were 0.71%, 0.92%, and 3.11%,
respectively. The error between prediction and experiment was small, less than 5%,
demonstrating the remarkable similarity between the predicted and measured Ft, T, and
SR [14].
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Fig. 4. FA method iteration process.

Table 4. Results of the confirmation experiment and the prediction.

Process Parameters Prediction Confirmation Experiment

Tool
Type

Point
Angle

Feed
rate

Cutting
speed

Ft
(N)

T
(Nm)

SR Ft
(N)

T
(Nm)

SR
(μm)

780.966 1.759 2.660

HSS-M2 131 0.04 32.5 770.897 1.731 2.501 771.267 1.747 2.558

777.065 1.736 2.526

Average 776.433 1.747 2.581

Error (%) 0.71 0.92 3.11

Additionally, one sample t-testwas carried out to check the results of the confirmation
experiment were statistically the same as the predictions of BPNN-FA [12]. The P-values
were 0.188, 0.130, and 0.183 for Ft, T, and SR, respectively. The P-value of the three
responses was higher than the significance level (α) of 0.05. These results statistically
show that the BPNN-FA prediction and confirmation were the same. Consequently, it
can be declared that the prediction of BPNN-FA was acceptable and valid.

4 Conclusion

Experimental investigations have been executed on the drilling process on AISI 1045
steel with the parameters of the type of tool, cutting speed, feed rate, and point angle.
Modeling andmulti-objective optimization use hybrid BPNN-FA to obtain theminimum
Ft, T, and SR. The final conclusions that can be drawn from this study are as follows:
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• The most appropriate BPNN architecture consists of two hidden layers with four
neurons for each hidden layer. The BPNN training function used is trainlm while the
activation functions for the hidden layers and output layer are tansig and purelin in
succession.

• BPNN has effectively predicted the minimal Ft, T, and SR with an average error value
of less than 5%.

• The optimum conditions can be achieved by setting the parameters of cutting speed
of 32.5 m/min, feed rate of 0.04 mm/rev, using the HSS-M2 cutting tool, and point
angle of 131°.

• Hybrid BPNN-FA methods produce a relatively small error between the predictions
and the average confirmation experiments, which is less than 5%.
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mization of surface roughness, thrust force, and torque produced by novel drill geometries
using Taguchi-based GRA. International Journal of Advanced Manufacturing Technology.
101, 1595–1610 (2019).

8. Tan, C.L., Azmi, A.I., Muhammad, N.: Surface Roughness Analysis of Carbon/Glass
Hybrid Polymer Composites in Drilling Process Based on Taguchi and Response Surface
Methodology. Adv Mat Res. 1119, 622–627 (2015).

9. Han, C., Luo, M., Zhang, D.: Optimization of varying-parameter drilling for multi-hole
parts using metaheuristic algorithm coupled with self-adaptive penalty method. Applied Soft
Computing Journal. 95, (2020).

10. Kara, F., Aslantas, K., Çiçek, A.: ANN and multiple regression method-based modelling of
cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Comput Appl.
26, 237–250 (2015).

11. Anand, G., Alagumurthi, N., Elansezhian, R., Palanikumar, K., Venkateshwaran, N.: Inves-
tigation of drilling parameters on hybrid polymer composites using grey relational analysis,
regression, fuzzy logic, and ANN models. Journal of the Brazilian Society of Mechanical
Sciences and Engineering. 40, (2018).



540 R. A. Fajardini et al.

12. Norcahyo, R., Soepangkat, B.O.P., Sutikno: Multi response optimization of thrust force and
delamination in carbon fiber reinforced polymer (CFRP) drilling using backpropagation neu-
ral network-particle swarm optimization (BPNN-PSO). In: AIP Conference Proceedings.
American Institute of Physics Inc. (2018).

13. Gautam, G.D., Mishra, D.R.: Firefly algorithm based optimization of kerf quality character-
istics in pulsed Nd:YAG laser cutting of basalt fiber reinforced composite. Compos B Eng.
176, (2019).

14. Effendi, M.K., Soepangkat, B.O.P., Norcahyo, R., Suhardjono, Sampurno: Cutting Force and
SurfaceRoughnessOptimizations inEndMilling ofGFRPCompositesUtilizingBpnn-Firefly
Method. International Journal of Integrated Engineering. 13, 297–306 (2021).

15. Bharathi Raja, S., Srinivas Pramod, C. v., Vamshee Krishna, K., Ragunathan, A., Vinesh, S.:
Optimization of electrical dischargemachining parameters on hardened die steel using Firefly
Algorithm. Eng Comput. 31, 1–9 (2015).

16. Chalisgaonkar, R., Kumar, J., Pant, P.: Prediction of machining characteristics of finish cut
WEDM process for pure titanium using feed forward back propagation neural network. In:
Materials Today: Proceedings. pp. 592–601. Elsevier Ltd (2019).

17. Soepangkat, B.O.P., Norcahyo, R., Pramujati, B., Wahid, M.A.: Multi-objective optimization
in face milling process with cryogenic cooling using grey fuzzy analysis and BPNN-GA
methods. Engineering Computations (Swansea, Wales). 36, 1542–1565 (2019).

18. Zhang, G., Xia, B., Wang, J.: Intelligent state of charge estimation of lithium-ion batteries
based on L-M optimized back-propagation neural network. J Energy Storage. 44, (2021).

19. Shukla, R., Singh, D.: Selection of parameters for advanced machining processes using fire-
fly algorithm. Engineering Science and Technology, an International Journal. 20, 212–221
(2017).

20. Krishnamoorthy, A., Rajendra Boopathy, S., Palanikumar, K., Paulo Davim, J.: Application
of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with
multiple performance characteristics. Measurement (Lond). 45, 1286–1296 (2012).

21. Wang, H., Li, J., Liu, L.: Process optimization and weld forming control based on GA-
BP algorithm for riveting-welding hybrid bonding between magnesium and CFRP. J Manuf
Process. 70, 97–107 (2021).

22. Majumder, A.: Comparative study of three evolutionary algorithms coupled with neural net-
work model for optimization of electric discharge machining process parameters. Proc Inst
Mech Eng B J Eng Manuf. 229, 1504–1516 (2014).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Multi-objective Optimization of AISI 1045 on Drilling Process Based on Hybrid BPNN and Firefly Algorithm
	1 Introduction
	2 Materials and Methods
	2.1 Experimental Setup
	2.2 Design of Experiment
	2.3 Development of Backpropagation Neural Network A Subsection Sample
	2.4 Firefly Algorithm

	3 Result and Discussion
	3.1 Experimental Result
	3.2 Modeling Using BPNN
	3.3 Optimization Using FA
	3.4 Confirmation Experiment

	4 Conclusion
	References




