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Abstract. An experiment was carried out in the face milling process of AISI
1045 material to determine the levels of the process parameters that could mini-
mize cutting force (CF) and surface roughness (SR) and also maximize material
removal rate (MRR) simultaneously. A Taguchi orthogonal array L9 was selected
for this experiment. The experiment was randomized and replicated twice. The
face milling process parameters varied cutting speed (Vc), feeding speed (Vf),
and depth of cut (a). The optimization was performed using a combination of
backpropagation neural network (BPNN) and particle swarm optimization (PSO)
methods. The resulting network architecture configuration has 3 input layers and
3 output layers, with 5 hidden layers where each layer contains 5 neurons. The
optimization result shows that the minimum CF and SR and the maximum MRR
could be obtained simultaneously using the cutting speed of 308 m/min, feeding
speed of 145 mm/min, and depth of cut of 1.5 mm.
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1 Introduction

Themilling process is one of themost commonly appliedmetal-cutting processes since it
can be used to produce a high-quality product in a reasonable time but with a high surface
quality [1]. Today’s manufacturing industry continues to strive to improve efficiency in
the machining processes. To achieve high efficiency in the machining processes, one
must use less power, have good workmanship, and be time-efficient. If these three things
can be accomplished in the machining process, it will increase productivity and reduce
costs in the production process. Some responses, such as cutting force, material removal
rate, and surface roughness, can influence the quality of the product.

Measurement of the cutting force during themachining process shows that the cutting
force affects the material removal rate, tool geometry, product quality, cutting tempera-
ture, power consumption, tool wear, and chip formation [2]. The material removal rate
of the milling process plays a significant role because it affects productivity, energy
consumption, cutting force, tool life, and the cost and production process [3, 4]. In addi-
tion to cutting force and material removal rate, surface roughness has a vital role in the
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machining process because surface roughness has a role in measuring the surface quality
of the machine; in machining, surface roughness is required to be as low as possible [5].
Surface roughness affects fatigue, wear, friction properties, and machine surface resis-
tance. Therefore surface roughness must be controlled during the machining process
[3].

Determining effective process parameters during the machining process must be
considered to produce a quality product. And also, selecting the correct process param-
eters will be able to affect the capacity, time, and production cost [6]. Determining the
correct level of machining parameters is usually conducted based on work experience or
machining manuals, but this method produces parameters that are not optimal. Another
way to select machining parameters is to conduct trial and error experiments, but this
purely non-technical experiment takes a long time and costs a lot [7].

Conventional optimization approaches are also used to optimize machining parame-
ters using Taguchi techniques, factorial techniques, and response surface methodology.
The new trend of optimization is The application soft computing [5]. Backpropaga-
tion neural network (BPNN) is the most popular technique for developing a prediction
model. One of the optimization techniques currently used by researchers is particle
swarm optimization (PSO). This technique quickly achieves the best answer in the pop-
ulation in each iteration because it is based on the swarm intelligence technique. PSO
can solve multi-objective problems to choose the optimal process parameters [8]. Opti-
mization using PSO has been carried out over the last decade in various fields, including
manufacturing processes. Comparisons have been made with several other optimization
methods in the milling process. PSO is better for finding optimization solutions from
several techniques, such as ABC, SA, GA, and Taguchi [9].

Lin et al. [10] perform optimization using the PSO method in the milling process
to obtain optimal process parameters for cutting. In another study, Mishra et al. [11]
apply optimization based on multi-objective particle swarm optimization with ANN
modeling and get higher productivity and stable cutting conditions. Similar studies were
conducted by Tien et al. [12], and the optimization results showed that they reduced
power consumption by 10.49% and increased surface quality and tool life. The use
of BPNN-PSO method is also used in several machining processes. Narcahyo et al.
[13] use BPNN-PSO in the carbon fiber-reinforced polymer drilling process. The PSO
optimization results simultaneously minimize delamination at the inlet and outlet holes
during the CFRP drilling process.

The current study focuses on determining the levels of the milling process parameter
on AISI 1045 steel to obtain minimal cutting force, surface roughness, and maximum
material removal rate. The backpropagation neural networkmethod is used formodeling,
while multi-objective optimization is performed using PSO.

2 Experimental Design

2.1 Tools and Materials

The workpiece material used in this experiment is AISI 1045 carbon steel, with a length
of 100 mm, a width of 32 mm, and a thickness of 30 mm. This experiment was carried
out on a Hartford S-Vertical milling machine plus 10, using a carbide insert KYOCERA
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Table 1. Experimental parameters and levels

Process Parameters Unit Level 1 Level 2 Level 3

Cutting speed (Vc) m/min 118 193 308

Feeding speed(Vf) mm/min 42 98 230

Depth of cut (a) mm 0.5 1 1.5

type SEKT 1204AFEN-S. The response variables measured were CF, MRR, and SR.
CF was measured using a Kistler-type 9272 dynamometer. MRR is obtained by using
Eq. 1, while the measurement of SR was carried out using Mitutoyo Surftest SJ 310.

MRR = Wi −Wf

ρs.tc
mm3/second (1)

where:
wi = initial weight of material before cutting (g)
wf = weight of final material after cutting (g)
ρs = density of material (g/mm3)
tc = cutting time (seconds).

2.2 Design of Experiment

This study utilized Taguchi orthogonal array L9 as the design experiment. The exper-
iments were replicated twice for each combination of parameters. The experimental
design uses three parameters, and each parameter has three levels. The experimental
parameters are shown in Table 1, and the experimental results are shown in Table 2.

3 Multi-response Optimization Using BPNN-PSO

3.1 Backpropagation Neural Network

Rumelhart et al. developed one of the best models of artificial neural networks, namely
backpropagation [14]. BPNNconsists of three parts, i.e., the input layer, the hidden layer,
and the output layer. In general, the steps of BPNN modeling are the normalization of
data, the determination of network architecture, and the implementation of training,
testing, and validation.

Data normalization changes a data value into a value between −1 and 1. This
normalization was performed by using Eq. 2.

Pn = 2(p−min(p))

(max(p) −min(p))
− 1 (2)
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Fig. 1. Flow diagram

where:
p = process and response parameters data from the experiment
Pn = process and response parameters data which have interval values between −1

to 1 and unitless.
In the next step, the trial and error method is utilized to find the architecture of the

BPNNnetwork based on the smallest mean square error (MSE) value. The design criteria
for determining the BPNN architecture using the trial and error method are as follows:

• Number of neuron in the hidden layer is from 1 to 10.
• Number of hidden layer from 1 to 10.
• Activation function using tansig and logsig for hidden layers.
• Activation function using purelin and logsig for hidden layers
• Training function using trainlm.
• Maximum 1000 epoch.

After that, determine the training, testing, and validation data for the BPNN model.
The percentage of data used for training, testing, and validation is 70%, 15%, and 15%,
respectively. The BPNN results with the smallest MSE are then stored for optimization.
Further, the BPNN model results are compared with experimental results to verify the
error value, which is calculated using Eq. 3.

Error = Exp− BPNN

Exp
× 100% (3)

where:
Exp = experimental or observed response value
BPNN = predicted value from BPNN.
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Table 2. Experimental design and experimental results

Order Parameter Level Experiment Results

Vc Vf a CF (N) SR (µm) MRR (mm3/second)

1 1 1 1 41.65 1.51 9.67

41.99 1.64 9.61

2 1 2 2 168.54 1.61 45.31

158.87 1.60 45.45

3 1 3 3 359.90 1.85 156.37

361.85 1.67 163.70

4 2 1 2 91.55 1.19 20.03

92.46 1.23 20.06

5 2 2 3 191.52 1.15 67.73

190.68 1.16 68.14

6 2 3 1 100.40 1.24 52.45

100.61 1.29 52.18

7 3 1 3 106.89 0.73 29.76

113.75 0.73 29.72

8 3 2 1 68.19 0.80 22.05

66.32 0.86 24.33

9 3 3 2 159.10 0.96 105.85

183.48 0.93 107.58

3.2 Partial Swarm Optimization (PSO)

PSO adjust the behavior of certain animals in their ecosystem, such as flocks of birds or
fish, where they do not have a leader to guide them to get food, so they scatter randomly
to find a place to eat. When one particle or a bird sees a short or correct path to a food
source, the rest of the flock can follow the course instantly, even if their position is quite
far from the group [13].

Each particle will be evaluated using the fitness value obtained from the fitness
function. The best value for each particle in all iterations is called Pbest, and the best
fitness value for all particles in all iterations in the search space is called Gbest [14].

This study obtained the fitness function by combining the three objective functions
for each response from the BPNN prediction results. The objective function of each
response can be used in Eq. 4. The transfer tangent function (sigmoid hyperbolic tangent)
is used for the activation function. The steps for using BPNN-PSO are shown in Fig. 1.

Obj = ((

12∑

j=1

Vab.

((
2

1+ e−2p

)
− 1

)
+ v0b)) (4)
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Table 3. BPNN Modelling Result

Response Neurons Hidden Layers Activation Function MSE

CF 5 5 Tansig 0.0066

SR 5 5 Tansig 0.0056

MRR 5 5 Tansig 0.00030579

where:
Obj = response from the experiment
A = number of neurons in the hidden layers
B = number of process responses
v0 = value of bias from hidden layer to output layer
p = value of activation for each neuron in the hidden layer.

4 Results and Discussion

4.1 BPNN Modeling Results

Based on the BPNN modeling results with the smallest MSE, 5 hidden layers are
obtained, and each layer has 5 neurons. Trainlim is used as a training function. CF, SR,
and MMR have MSE values of 0.0066, 0.0056, and 0.00030579, respectively, shown in
Table 3. BPNN modeling results are also compared with experimental results, as shown
in Table 4, where the error value is less than 5%. Hence, it can be said that the BPNN
modeling results are satisfactory because they resemble experimental results.

4.2 PSO Optimization Result

The objective function of each BPNN response is used as a fitness function in PSO
optimization. The fitness function is shown in Eq. 5.

Max fitness function = Obj1 −
(
Obj2 + Obj3

)
(5)

where:
Obj1 =Material remoal rate
Obj3 = cutting force
Obj2 = surface roughness.
The combination of milling parameters obtained from PSO optimization is shown

in Table 5. The optimum face milling parameters are a cutting speed of 308 m/min, a
feeding speed of 145 mm/min, and a depth of cut of 1.5 mm. It can minimize CF and
SR and increase the MRR simultaneously. Response prediction using a combination of
optimized face milling parameters can produce CF of 111.275 N, SR of 0.733 µm, and
105.953 mm3/second for the MMR.
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Table 4. The comparison between the BPNN modeling result and the experimental results

No CF SR MRR

Exp BPNN Error Exp BPNN Error Exp BPNN Error

1 41.65 47.71 −14.53 1.51 1.58 −4.64 9.67 9.75 −0,83

2 41.99 47.71 −13.60 1.64 1.58 3.66 9.61 9.75 −1,46

3 168.54 142.68 15.34 1.61 1.60 0.62 45.31 45.3 0,02

4 158.87 142.68 10.18 1.6 1.61 −0.63 45.45 45.3 0,33

5 359.9 359.23 0.18 1.85 1.76 4.86 156.37 160 −2,32

6 361.85 359.23 0.72 1.67 1.76 −5.39 163.7 160 2,26

7 91.55 91.78 −0.25 1.19 1.2 −0.84 20.03 20 0,15

8 92.46 91.78 0.73 1.23 1.2 2.44 20.06 20 0,30

9 191.52 190.03 0.77 1.15 1.56 −35.6 67.73 67.9 −0,25

10 190.68 190.03 0.34 1.16 1.56 −34.4 68.14 67.9 0,35

11 100.40 108.45 −8.01 1.24 1.26 −1,61 52.45 52.2 0,48

12 100.61 108.45 −7.79 1.29 1.26 2.33 52.18 52.2 −0,04

13 106.89 104.42 2.31 0.73 0.73 0.00 29.76 29.7 0,20

14 113.75 104.42 8.20 0.73 0.73 0.00 29.72 29.7 0,07

15 68.19 47.6 30.19 0.8 0.83 −3.75 22.05 23.3 −5,67

16 66.32 47.6 28.22 0.86 0.83 3.49 24.33 23.3 4,23

17 159.1 152.25 4.30 0.96 0.93 3.12 105.85 107 −1,09

18 183.48 152.25 17.02 0.93 0.93 0.00 107.58 107 0,54

Average 4.131 Average −3.69 Average −0,274

Table 5. Optimization results and response prediction

Optimum parameter combination Response prediction

Vc (m/min) Vf (mm/min) a (mm) CF (N) SR (µm) MRR (mm3/sec)

308 145 1.5 111.275 0.733 105.953

4.3 Confirmation Experiment

The confirmation experiment is a verification process of prediction results using BPNN
with experimental results using BPNN-PSO process parameters optimization. Confir-
mation experimental results are shown in Table 6, where 5 replications were carried out,
and the average value of the CF was 111.868 N, SR was 0.733(µm), and MRR was
105.735 (mm3/min). In addition, a test of the similarity of the average value with the
value of the BPNN-PSOwas carried out using a one-sample T-test method. Based on the
one sample T-test, the p-value for each response is 0.278, 0.463, and 0.798, which means
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Table 6. Comparison between BPNN-PSO predictions with confirmatory experiments

BPNN-PSO prediction
parameters

BPNN-PSO prediction
responses

Results of the confirmation
experiment

Vc
(m/min)

Vf (mm/min) a (mm) CF (N) SR
(µm)

MRR
(mm3/min)

CF (N) SR
(µm)

MRR
(mm3/min)

308 145 1.5 111.275 0.733 105.953 113.122 0.728 106.976

112.276 0.727 103.122

110.266 0.735 105.771

111.54 0.739 107.699

112.14 0.761 105.11

Average 111.868 0.738 105.735

Error (%) 0,53 0,677 −0,206

that statistically, the experimental confirmation results are the same as the BPNN-PSO
optimization results.

5 Conclusion

From this study, the conclusions based on the process of experimentation and optimiza-
tion are as follows:

• The best network architecture to predict the response value in this study is 3 input
layers, and 5 hidden layers, each has 5 neurons and 3 output layers. Tansig and purelin
is used as the activation function for hidden layers and output layer

• BPNNmodeling results compared to experimental results have an error below5%, this
shows that the BPNN modeling is satisfactory because it resembles the experimental
results.

• The minimum cutting force, surface roughness and the increase of material removal
rate could be obtained simultaneous by using a cutting speed of 308 m/min, a feeding
speed of 145 mm/min, and a depth of cut of 1.5 mm.

• The BPNN-based PSO optimization method is acceptable because all the relative
errors between predictions and experimental confirmation are less than 5%.

References

1. Kumar, S., Saravanan, I., Patnaik, L.: Optimization of surface roughness andmaterial removal
rate in milling of AISI 1005 carbon steel using Taguchi approach. Mater. Today Proc. 22,
654–658 (2020).

2. Daniyan, I.A., Tlhabadira, I., Daramola,O.O.,Mpofu,K.:Design and optimization ofmachin-
ing parameters for effective AISI P20 removal rate during milling operation. Procedia CIRP.
84, 861–867 (2019).



Multi-objective Optimization Using BPNN-PSO 549

3. Qazi, M.I., Abas, M., Khan, R., Saleem, W., Pruncu, C.I., Omair, M.: Experimental inves-
tigation and multi-response optimization of machinability of AA5005H34 using composite
desirability coupled with PCA. Metals (Basel). 11, 1–24 (2021).

4. Moshat, S., Datta, S., Bandyopadhyay, A., Pal, P.: Optimization of CNC end milling process
parameters using PCA-based Taguchi method. Int. J. Eng. Sci. Technol. 2, 92–102 (2010).

5. Wibowo,A.,Desa,M.I.: Kernel based regression and genetic algorithms for estimating cutting
conditions of surface roughness in end milling machining process. Expert Syst. Appl. 39,
11634–11641 (2012).

6. Tlhabadira, I., Daniyan, I.A., Masu, L., VanStaden, L.R.: Process design and optimization
of surface roughness during M200 TS milling process using the Taguchi method. Procedia
CIRP. 84, 868–873 (2019).

7. Bharathi Raja, S., Baskar, N.: Application of Particle Swarm Optimization technique for
achieving desired milled surface roughness in minimum machining time. Expert Syst. Appl.
39, 5982–5989 (2012).

8. Om Prakash, S., Jeyakumar, M., Sanjay Gandhi, B.: Parametric optimization on electro
chemical machining process using PSO algorithm.Mater. Today Proc. 62, 2332–2338 (2022).

9. Sibalija, T. V.: Particle swarm optimisation in designing parameters of manufacturing
processes: A review (2008–2018). Appl. Soft Comput. J. 84, 105743 (2019).

10. Lin, L., He, M., Wang, Q., Deng, C.: Chatter stability prediction and process parameters’
optimization ofmilling considering uncertain tool information. Symmetry (Basel). 13, (2021).

11. Mishra, R., Singh, B., Shrivastava, Y.: Measurement of Tool Chatter and MRR Using Sound
Signal During Milling of Al 6061-T6. Mapan - J. Metrol. Soc. India. (2022).

12. Tien, D.H., Duc, Q.T., Van, T.N., Nguyen, N.T., Do Duc, T., Duy, T.N.: Online monitoring
and multi-objective optimisation of technological parameters in high-speed milling process.
Int. J. Adv. Manuf. Technol. 112, 2461–2483 (2021).

13. Norcahyo, R., Soepangkat, B.O.P., Effendi, M.K.: Minimization of the hole entry and hole
exit delamination on drilling process of carbon fiber reinforced polymer using BPNN-PSO.
AIP Conf. Proc. 2114, (2019).

14. Sateria, A., Soepangkat, B.O.P., Suhardjono: Artificial neural network and genetic algorithm
for multi-objective optimization in drilling of glass fiber reinforce polymer-stainless steel
stacks. AIP Conf. Proc. 1983, (2018).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Multi-objective Optimization Using BPNN-PSO in the Face Milling Process of AISI 1045
	1 Introduction
	2 Experimental Design
	2.1 Tools and Materials
	2.2 Design of Experiment

	3 Multi-response Optimization Using BPNN-PSO
	3.1 Backpropagation Neural Network
	3.2 Partial Swarm Optimization (PSO)

	4 Results and Discussion
	4.1 BPNN Modeling Results
	4.2 PSO Optimization Result
	4.3 Confirmation Experiment

	5 Conclusion
	References




