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Abstract. In this study, we explore the idea of rainbow antimagic col-
oring, which combines the notions of antimagic labeling with rainbow
coloring. We consider a connected and simple graph G(V,E) with a ver-
tex set V (G) and an edge set E(G). A vertex labeling of graph G is
defined as a bijective function f : V (G) → {1, 2, 3, ..., k}, where the
resulting weight for an edge uv ∈ E(G) is determined by the function
f(u)+f(v) = wf (uv). A set of edge weight functions (W (G)) is obtained
from the edge weight function (wf(uv)), and is determined by the car-
dinality of the set (|W (G)|). A function f of graph G is considered a
rainbow antimagic labeling if the weight of any two edges uv and u′v′

on the path u − v are distinct. The minimum amount of hues necessary
for a rainbow coloring that emerges from a rainbow antimagic labeling
of graph G, denoted as rac(G), is referred to as the rainbow antimagic
connection number. Our study has led to the discovery of the precise
numerical values for rac(G) of both a double wheel graph and a parachute
graph. Specifically, rac(DWn) = 2n and rac(PCn) = n + 2.

Keywords: rainbow antimagic connection number · double wheel
graph · parachute graph · rainbow connection number

1 Introduction

A graph G is a finite set of ordered pairs (V,E), where V represents a set
of vertices that is not empty and E represents a set of edges (which may be
empty) consisting of unordered pairs of two vertices (v1, v2) where v1, v2 ∈ V ,
referred to as edges. In a graph G, the collection of vertices is represented by
V (G) = {v1, v2, v3, ..., vn}, while the set of edges in a graph G is represented by
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E(G) = {e1, e2, e3, ..., en}. It should be noted that a graph G may not have any
edges, but must have at least one vertex [1]. The order of a graph G is defined
as the number of vertices, and is denoted by |V (G)|, whereas the size of a graph
G is defined as the number of edges, and is denoted by |E(G)| [4].

One of the significant areas of study in graph theory is graph coloring. Ini-
tially presented by Chartrand et al. in their publication “Introduction to Graph
Theory 4th ed” [2], the concept of graph coloring includes the term rainbow
coloring of graphs. In a graph G that is connected and has no loops or multiple
edges, edge coloring is defined as a function c : E(G) → {1, 2, 3, ..., |E(G)|},
where edges that are adjacent may have the same color. A path in which no
two consecutive edges possess identical colors is referred to as a rainbow path. A
graph G is considered to have the property of rainbow connection if there exists
a path between any two vertices u and v that is composed of edges with different
colors. The coloring of the edges of graph G that results in this property is known
as rainbow coloring. The minimum quantity of hues necessary for a connected
graph G to possess the property of rainbow connection, denoted as rc(G), is
referred to as the rainbow connection number of the graph. Subsequently, this
concept has been further developed by various researchers; Agustin et al. [14]
obtained rc for specific graphs and obtained a sharp lower bound, while Hasan
et al. [15] obtained rainbow connection numbers for several shackle graphs and
showed that the boundaries are sharp.

Another crucial area of study within the field of graph theory is the con-
cept of graph labeling, including the term antimagic labeling. The introduc-
tion of this concept was first presented by Hartsfield and Ringel in their
publication “Pearls in Graph Theory: A Comprehensive Introduction 3rd ed”
[3]. A graph is considered labeled antimagic if there is a bijective function
f : E(G) → {1, 2, 3, ..., |E(G)|} such that the weight of all vertices are distinct.
The weight of a vertex u is represented by w(u), which is number of the labels
from each edge associated with u and can be expressed as w(u) = Σe∈E(u)f(e).
In this context, f is referred to as antimagic labeling.

In this study, we investigate the concept of rainbow antimagic coloring,
which is an idea developed by Dafik et al. [10] which combines the notions of
antimagic labeling with rainbow coloring. We consider a connected and simple
graph G(V,E) with a vertex set V (G) and an edge set E(G). A vertex label-
ing of graph G is defined as a bijective function f : V (G) → {1, 2, 3, ..., k},
where the resulting weight for an edge uv ∈ E(G) is determined by the function
f(u) + f(v) = wf (uv). A set of edge weight functions (W (G)) is obtained from
the edge weight function (wf (uv)), and is determined by the cardinality of the
set (|W (G)|). A function f of graph G is considered a rainbow antimagic labeling
if the weight of any two edges uv and u′v′ on the path u − v are distinct. The
rainbow antimagic connection number, represented by rac(G), is established as
the least quantity of colors necessary for a rainbow coloring obtained through a
labeling of the graph G that is both rainbow and antimagic.

The idea of rainbow antimagic coloring has been explored by a number of
researchers, such as Sulistiyono et al. [6], Jabbar et al. [7], Septory et al. [8], Budi



122 S. Maghfiro et al.

et al. [9], Dafik et al. [10], Joedo et al. [11], Nisviasari et al. [12], and Septory
et al. [13]. They have established the rainbow antimagic connection numbers on
various types of graphs including simple graphs, special graphs, and operational
graphs. In order to validate the theorem that has been derived, we have employed
the following lemma as a means of support.

Lemma 1. [5] If G is a connected graph that is not trivial in size and has m
elements, the maximum distance between any two vertices in G (diam(G)) ≤
(rc(G)) ≤ (src(G)) ≤ (m).

Lemma 2. [8] Supposing G is a connected graph. If G has Δ(G) and rc(G),
then rac(G) ≥ max{rc(G),Δ(G)}.

2 Result

Through our research, we have established the values of rac(DWn) and rac(PCn)
as well as rc(DWn) and rc(PCn). The methodology used in this study is based on
the techniques previously proposed by Dafik and Septory [8], with the addition
of our own methods and techniques.

Theorem 1. It is established that a double wheel graph with n ≥ 3 has rainbow
connection numbers, namely

rc(DWn) =

⎧
⎨

⎩

2, if n = 3, 4
3, if n = 5, 6
4, if n ≥ 7

Proof. A double wheel graph has a vertex set V (DWn) = {r} ∪ {si; 1 ≤ i ≤
n} ∪ {ti; 1 ≤ i ≤ n} and an edge set E(DWn) = {rsi; 1 ≤ i ≤ n} ∪ {rti; 1 ≤ i ≤
n}∪{sisi+1; 1 ≤ i ≤ n−1}∪{sns1}∪{titi+1; 1 ≤ i ≤ n−1}∪{tnt1}. Therefore,
the set of vertices |V (DWn)| and the set of edges |E(DWn)| have cardinality of
2n+1 and 4n, respectively. The demonstration of the theorem will be separated
into three distinct cases.

Case 1. If n = 3, 4. According to Lemma 1, rc(G) ≥ diam(G), we know that
max{d(u, v)} for u = si and v = ti then diam(DWn) = 2, so rc(DWn) ≥ 2.
Next, we will prove rc(DWn) ≤ 2, defined a function c : E(DWn) → {1, 2} as
follows:

c(rsi) = 1, if 1 ≤ i ≤ n
c(sisi+1, titi+1) = 1, if 1 ≤ i ≤ n − 1

c(rti) = 2, if 1 ≤ i ≤ n
c(sns1, tnt1) = 2

The maximum value of the edge function above is c = sns1, so rc(DWn) ≤ 2.
Based on the conditions above, we get 2 ≥ rc(DWn) ≥ 2. Thus, it can be

concluded that rc(DWn) = 2 for n = 3, 4.
The following step is to examine the rainbow path of a double wheel graph

as presented in Table 1.
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Table 1. The rainbow path that connects u to v in DWn.

Case If x y Rainbow Path Condition

1 n = 3, 4 r sa r, sa 1 ≤ a ≤ n

2 n = 3, 4 r ta r, ta 1 ≤ a ≤ n

3 n = 3, 4 sa ta sa, r, ta 1 ≤ a, a ≤ n

4 n = 3 sa sb sa, sb a �= b
1 ≤ a, b ≤ n

ta tb ta, tb

5 n = 4 sa sb sa, sb a �= b
1 ≤ a, b ≤ n
a, b �= odd,
a, b �= even

ta 1tb ta, tb

6 n = 4 sa sb sa, sc, sb a �= b
1 ≤ b, a ≤ n
a, b = odd, c =
4,
b, a =
even, c = 1

ta tb ta, tc, tb

Case 2. If n = 5, 6. According to Lemma 1, rc(G) ≥ diam(G), we know that
max{d(u, v)} for u = si and v = ti then diam(DWn) = 2, so rc(DWn) ≥ 2.
Assume rc(DWn) = 2, if c(tnt1) = c(sns1) = c(sisi+1) = c(titi+1) = 2 for
i = 3 then c(s2r) = c(rs4) or c(s2s3) = c(s3s4). It’s a contradiction because the
rainbow s2 − s4 path has the same color path, so c(s3s4) = 3. Based on assume
above, thus rc(DWn) ≥ 3. Next, we will prove rc(DWn) ≤ 3, defined a function
c : E(DWn) → {1, 2, 3} as follows:

c(sisi+1, titi+1) =

⎧
⎨

⎩

1,
2,
3,

if i = 1, 4
if i = 2, 5
if i = 3

c(rsi) = 1, if 1 ≤ i ≤ n
c(rti) = 2, if 1 ≤ i ≤ n

c(sns1, tnt1) = 3

The maximum value of an edge function above is c = tnt1, so rc(DWn) ≤ 3.
Based on the conditions above, we get 3 ≥ rc(DWn) ≥ 3. Thus, it can be

concluded that rc(DWn) = 3 for n = 5, 6.
The following step is to examine the rainbow path of a double wheel graph

as presented in Table 2.
Case 3. If ≥ 7. According to Lemma 1, rc(G) ≥ diam(G), let rc(DWn) ≥ 3.

Assume rc(DWn) = 3, if c(rti) = 3 then c(t3r) = c(rt5) or c(t3t4) = c(t4t5). It’s
a contradiction because the rainbow t3 − t5 path has the same color path, so
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Table 2. The rainbow path that connects u to v in DWn.

Case If x y Rainbow Path Condition

1 n = 5, 6 r sa r, sa 1 ≤ a ≤ n

2 n = 5, 6 r ta r, ta 1 ≤ a ≤ n

3 n = 5, 6 sa ta sa, r, ta 1 ≤ a, a ≤ n

4 n = 5, 6 sa sb sa, sb a �= b
1 ≤ a, b ≤ n
b = a + 1,
b = a − 1

ta tb ta, tb

5 n = 5, 6 sa sb sa, sb a �= b
a, b = 1, n

ta tb ta, tb

6 n = 5 sa sb sa, sb a �= b
2 ≤ a, b ≤ n
a, b = odd,
a, b = even

ta tb ta, tb

7 n = 5 sa sb sa, sc, sb a �= b
a, b = 1, 3, c = 2

ta tb ta, tc, tb

8 n = 5 sa sb sa, sc, sb a �= b �= c
1 ≤ a, b ≤ n
b = a + 3, c = 1, 5,
b = a − 3, c = 1, 5

ta tb ta, tc, tb

9 n = 6 sa sb sa, sc, sb a �= b �= c
1 ≤ a, b ≤ n
b = a + 2,
a < c < b
b = a − 2,
a > c > b

ta tb ta, tc, tb

10 n = 6 sa sb sa, sc, sb a �= b �= c
1 ≤ a, b ≤ n
b = a + 4, c = 1, 6,
b = a − 4, c = 1, 6

ta tb ta, tc, tb

11 n = 6 sa sb sa, sc, sd, sb a �= b �= c
1 ≤ a, b ≤ n
b = a + 3,
a < c < d < b
b = a − 3,
a > c > d > b

ta tb ta, tc, td, tb
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Table 3. The rainbow path that connects u to v in DWn.

Case x y Rainbow Path Condition

1 r sa r, sa 1 ≤ a ≤ n

2 r ta r, ta 1 ≤ a ≤ n

3 sa ta sa, r, ta 1 ≤ a, a ≤ n

4 sa sb sa, r, sb a �= b �= c, 1 ≤
a, b ≤ n
b = even, a = odd
a = even, b = odd

ta tb ta, r, tb

5 sa sb sa, sc, r, sb b �= c �= a, 1 ≤
a, b ≤ n
b, a = even ⇐⇒
a, b = odd
c = a + 1, 1 ≤ a ≤
n − 1
c = a − 1, a = n

ta tb ta, tc, r, tb

c(rti) = 4 if i even. Based on assume above, thus rc(DWn) ≥ 4. Next, we will
prove rc(DWn) ≤ 4, defined a function c : E(DWn) → {1, 2, 3, 4} as follows:

c(rsi) =
{

1, if i = odd
2, if i = even

c(rti) =
{

3, if i = odd
4, if i = even

c(sisi+1, sns1) = 3
c(titi+1, tnt1) = 1

The maximum value of the edge function above is c = rti if i even, so rc(DWn) ≤
4.

Based on the conditions above, we get 4 ≥ rc(DWn) ≥ 4. Thus, it can be
concluded that rc(DWn) = 4 for n ≥ 7.

The following step is to examine the rainbow path of a double wheel graph
as presented in Table 3.

Theorem 2. It is established that a double wheel graph with n ≥ 3 has rainbow
connection numbers, rac(DWn) = 2n.

Proof. A double wheel graph has a vertex set V (DWn) = {r} ∪ {si; 1 ≤ i ≤
n} ∪ {ti; 1 ≤ i ≤ n} and an edge set E(DWn) = {rsi; 1 ≤ i ≤ n} ∪ {rti; 1 ≤ i ≤
n}∪{sisi+1; 1 ≤ i ≤ n−1}∪{sns1}∪{titi+1; 1 ≤ i ≤ n−1}∪{tnt1}. Therefore,
the set of vertices |V (DWn)| and the set of edges |E(DWn)| have cardinality of
2n + 1 and 4n, respectively.



126 S. Maghfiro et al.

We aim to demonstrate that rac(DWn) = 2n for n ≥ 3 by utilizing the lower
and upper bounds. Initially, we demonstrate the validity of the lower bound
rac(DWn) ≥ 2n with the aid of Lemma 2, as follows:

rac(DWn) ≥ max{rc(DWn),Δ(DWn)}
2n = max{4, 2n} = 2n

So the lower bound of a double wheel graph is rac(DWn) ≥ 2n.
Next, we will prove the upper bound rac(DWn) ≤ 2n. A function f :

V (DWn) → {1, 2, 3, ..., |V (DWn)|} in the graph is defined as follows:

f(r) = n + 1

f(si) =

⎧
⎨

⎩

i+1
2 , if i odd, 1 ≤ i ≤ n − 1

3+3i
2 , if i odd, i = n

2n+i+2
2 , if i even, 1 ≤ i ≤ n

f(ti) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2i + 1, if i = n
i + 1, if i = n − 1
n+i
2 , if i odd, n odd

n+i+1
2 , if i odd, n even

3n+i+3
2 , if i even, n odd

3n+i+2
2 , if i even, n even

Based on a vertex function, the edge weight of a double wheel graph is as
follows:

wf (rsi) =

⎧
⎨

⎩

2n+i+3
2 , if i odd, 1 ≤ i ≤ n − 1

5n+5
2 , if i odd, i = n

4n+i+4
2 , if i even, 1 ≤ i ≤ n

wf (rti) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3i + 2, if i = n
2i + 3, if i = n − 1
3n+i+2

2 , if i odd, n odd
3n+i+3

2 , if i odd, n even
5n+i+5

2 , if i even, n odd
5n+i+4

2 , if i even, n even

wf (sisi+1) =

⎧
⎨

⎩

3i + 5, if i = n − 1, n odd
n + i + 2, if i = odd, 1 ≤ i ≤ n − 1
n + i + 2, if i = even, 1 ≤ i ≤ n − 2

wf (sns1) =
{

3n+5
2 , if n = odd

3n+4
2 , if n = even

wf (titi+1) =

⎧
⎪⎪⎨

⎪⎪⎩

2i + 3, if i = n − 2, n odd
3i + 4, if i = n − 1, n even
2n + 2 + i, if i even, 1 ≤ i ≤ n − 1
2n + 2 + i, if i odd, 1 ≤ i ≤ n − 3

wf (tnt1) =
{

5n+3
2 , if n = odd

5n+4
2 , if n = even
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Table 4. The rainbow path that connects u to v in DWn.

Case x y Rainbow Path Condition

1 r sa r, sa 1 ≤ a ≤ n

2 r ta r, ta 1 ≤ a ≤ n

3 sa ta sa, r, ta 1 ≤ a, a ≤ n

4 sa sb sa, r, sb a �= b, 1 ≤ a, b ≤ n

5 ta tb ta, r, tb b �= a, 1 ≤ a, b ≤ n

Fig. 1. Rainbow antimagic coloring of DW7.

The edge weight function above produces the sets edge weight as follows:

W (DWn) = { 2n+4
2 , ..., 3n+4

2 , ..., 4n+3
2 },{

4n+6
2 , ..., 5n+7

2 , ..., 6n+5
2

}

= n + n
|W (DWn)| = 2n

The number of edge weights is 2n based on the sets of edge weights, so
rac(DWn) ≤ 2n.

Based on the lower bound and upper bound, we get 2n ≥ rac(DWn) ≥ 2n.
Thus, it can be concluded that rac(DWn) = 2n for n ≥ 3.

The following step is to examine the rainbow path of a double wheel graph
as presented in Table 4.

An illustration of rac(DWn) for n = 7 can be observed in Fig. 1.

Theorem 3. It is established that the value rc(PCn) = 3 where n ≥ 2.
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Table 5. The rainbow path that connects u to v in PCn.

Case x y Rainbow Path Condition

1 r s r, s

2 r ta r, s, ta 1 ≤ a ≤ n

3 r u r, s, ta, u 1 ≤ a ≤ n

4 s ta s, ta 1 ≤ a ≤ n

5 s u s, ta, u 1 ≤ a ≤ n

6 ta u ta, u 1 ≤ a ≤ n

7 ta tb ta, s, tb

b �= a, 1 ≤ a, b ≤ n

b even, a odd

a even, b odd

8 ta tb ta, s, tc, tb

b �= a, 1 ≤ a, b ≤ n

a, b = odd ⇐⇒ b, a = even

c = b − 1, b > a

c = b + 1, b < a

Proof. A parachute graph has a vertex set V (PCn) = {r} ∪ {s} ∪ {u} ∪ {ti; 1 ≤
i ≤ n} and an edge set E(PCn) = {rs} ∪ {sti; 1 ≤ i ≤ n} ∪ {uti; 1 ≤ i ≤
n} ∪ {titi+1; 1 ≤ i ≤ n− 1}. Therefore, the set of vertices |V (PCn)| and the set
of edges |E(PCn)| have cardinality of n + 3 and 3n.

According to Lemma 1, rc(G) ≥ diam(G), where max{d(u, v)} is calculated
for v = u and u = r then diam(PCn) = 3, so rc(PCn) ≥ 3. Next, we will prove
rc(PCn) ≤ 3, defined the function c : E(PCn) → {1, 2, 3} as follows:

c(rs) = 1

c(sti) =
{

2,
3,

if i odd
if i even

c(uti) =
{

2,
3,

if i even
if i odd

c(titi+1) = 2, if 1 ≤ i ≤ n − 1

The highest value that can be obtained from the edge function c = sti if i
odd, so rc(PCn) ≤ 3.

Based on the conditions above, we get 3 ≥ rc(PCn) ≥ 3. Thus, it can be
concluded that rc(PCn) = 3 for n ≥ 2.

The following step is to examine the rainbow path of a parachute graph as
presented in Table 5.

Theorem 4. It is established that the value rac(PCn) = n + 2 where n ≥ 2.

Proof. A parachute graph has a vertex set V (PCn) = {r} ∪ {s} ∪ {u} ∪ {ti; 1 ≤
i ≤ n} and an edge set E(PCn) = {rs} ∪ {sti; 1 ≤ i ≤ n} ∪ {uti; 1 ≤ i ≤
n} ∪ {titi+1; 1 ≤ i ≤ n− 1}. Therefore, the set of vertices |V (PCn)| and the set
of edges |E(PCn)| have cardinality of n + 3 and 3n.
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We aim to demonstrate that rac(PCn) = n + 2 for n ≥ 2 by utilizing the
lower and upper bounds. Initially, we demonstrate the validity of the lower bound
rac(PCn) ≥ n + 2 with the aid of Lemma 2, as follows:

rac(PCn) ≥ max{rc(PCn),Δ(PCn)}
n + 2 = max{3, n + 1}
n + 2 = (n + 1) + 1

Assume rac(PCn) = n + 1, if there are possible permutations of vertex labels
that result in n + 1 edge weights, then there are the same vertex labels. This
contradicts the definition of antimagic labeling, where all dot labels must be dis-
tinct. Furthermore, edge weight numbers produce n+n weights, and these edge
weight numbers are not on the degree edge. So the lower bound of a parachute
graph is rac(PCn) ≥ n + 2.

Subsequently, we will demonstrate the upper bound of rac(PCn) ≤ n+ 2. A
function f : V (PCn) → {1, 2, 3, ..., |V (PCn)|} in the graph is defined as follows:

f(r) = n + 3
f(s) = n
f(u) = n + 2

f(ti) =

⎧
⎨

⎩

i+1
2 , if i = odd

n + 1, if i = 2
2n−i+2

2 , if i = even, i ≥ 4

Based on a vertex function, the edge weight of a parachute graph is as follows:

wf (rs) = 2n + 3

wf (sti) =

⎧
⎨

⎩

2n+i+1
2 ,

2n + 1,
4n−i+2

2 ,

if i = odd
if i = 2
if i = even, i ≥ 4

wf (uti) =

⎧
⎨

⎩

2n+i+5
2 ,

2n + 3,
4n−i+6

2

if i = odd
if i = 2
if i = even, i ≥ 4

wf (titi+1) =

⎧
⎪⎪⎨

⎪⎪⎩

n + 2,
n + 3,
n + 1,
n + 2,

i = 1
i = 2
i = odd, i ≥ 3
i = even, i ≥ 4

The edge weight function above produces the sets edge weight as follows:

W (PCn) = { 2n+2
2 , ..., 3n+2

2 , ..., 4n−2
2 },

{2n, 2n + 1, 2n + 3}
= n − 1 + 3

|W (PCn)| = n + 2

The number of edge weights is 2n based on the sets of edge weights, so
rac(PCn) ≤ n + 2.
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Table 6. The rainbow path that connects u to v in PCn.

Case x y Rainbow Path Condition

1 r s r, s

2 r ta r, s, ta 1 ≤ a ≤ n

3 r u r, s, t1, u

4 s ta s, ta 1 ≤ a ≤ n

5 s u s, t1, u

6 ta u ta, u 1 ≤ a ≤ n

7 ta tb ta, s, tb a �= b, 1 ≤ a, b ≤ n

Fig. 2. Rainbow antimagic coloring of PC7.

Based on the upper and lower bound , we get n + 2 ≤ rac(PCn) ≤ n + 2.
Thus, it can be concluded that rac(PCn) = n + 2 for n ≥ 2.

The following step is to examine the rainbow path of a parachute graph as
presented in Table 6.

An illustration of rac(PCn) for n = 7 can be observed in Fig. 2.

Previous researchers have found results related to rainbow antimagic coloring,
such as Sulistiyono et al. [6], who obtained the findings of rainbow antimagic
connection numbers for path graph, ladder graph, triangular ladder graph, and
diamond graph. Additionally, Jabbar et al. [7] found the rainbow antimagic
connection numbers for book graph, triangular book graph, and generalized book
graph. Septory et al. [8] also found the rainbow antimagic connection numbers
for complete bipartite graph, jahangir graph, lemon graph, firecracker graph,
and double star graph. Budi et al. [9] found the rainbow antimagic connection
numbers for lollipop graph, dutch windmill graph, dragonfly graph, flowerpot
graph, and stacked book graph. The rainbow antimagic connection numbers for



A Study of the Rainbow Antimagic Coloring of Double Wheel 131

the cycle graph, complete graph, fan graph, friendship graph, wheel graph, and
tree graph were discovered by Dafik et al. [10]. For vertex amalgamations of the
path graph, broom graph, star graph, fan graph, paw graph, and triangular book
graph, Joedo et al. [11] discovered the rainbow antimagic connection numbers.
Nisviasari et al. [12] found the rainbow antimagic connection numbers for tadpole
graph. Septory et al. [13] found rac(G) for the comb product of friendship graph
with path, broom, star, and double star graphs.

Based on previous research, we have found the rainbow antimagic connection
numbers for double wheel graph and parachute graph, which are rac(DWn) = 2n
if n ≥ 3 and rac(PCn) = n + 2 if n ≥ 2.

3 Conclusion

Based on our own research findings, four new theorems were developed for rain-
bow coloring and antimagic rainbow coloring on double wheel and parachute
graph. Our research has been established that the value of rac(DWn) = 2n
with n ≥ 3, and established that the value of rac(PCn) = n + 2 with n ≥ 2.
Additionally, it has been established that the value of rc(DWn) = 2 if n = 3, 4,
rc(DWn) = 3 if n = 5, 6, and rc(DWn) = 4 if n ≥ 7. Furthermore, it has been
established that the value of rc(PCn) = 3 when n ≥ 2.

Open Problem 1. Investigate the rainbow antimagic connection number of a
different special graph or a graph formed by some operation.
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