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Abstract. All graphs considered in this paper are simple, finite and
connected graph. Let G(V, E) be a graph with the vertex set V and the
edge set E, and let w be the edge weight of graph G. with |V (G)| = m
and |E(G)| = n. A labeling of a graph G is a bijection f from V (G)
to the set {1, 2, ..., |V (G)|}. The bijection f is called an edge antimagic
labeling of graph if for any two vertex u and v in path x−y,u �= v, where
{w(uv) : w(uv) = f(u) + f(v), uv ∈ E}, are distinct. Any local edge
antimagic labeling induces a proper edge coloring of G where the edge
uv is assigned the color w(uv). The local edge antimagic coloring of graph
is said to be a local (a, d)-edge antimagic coloring of G if the set of their
edge colors form an arithmetic sequence with initial value a and different
d. The local (a, d)-edge antimagic chromatic number χla(a, d)(G) is the
minimum number of colors needed to color G such that a graph G admits
the local (a, d)-edge antimagic coloring. Furthermore, In this paper, we
will obtain the lower and upper bound of χla(a, d)(G). The results of this
research are the exact value of the local (a, d)-edge antimagic chromatic
number of some graphs.

Keywords: local (a, d) antimagic coloring · edge antimagic coloring ·
spacial graph

1 Introduction

G = (V,E) is a graph where V (G) is the set of vertices and E(G) is the set
of edges, the definition of graph can be see in [12,13]. With |V (G)| = m is the
number of vertices of G and |E(G)| = n is the number of sides of G. labeling
graph is a bijection mapping that assigns natural numbers to the vertices and
edges of graph G. labeling is called vertex labeling or edge labeling depending
on the domain located on the vertex or edge, if the labeling domain is a vertex
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then it is called vertex labeling, if the labeling domain is an edge then it is called
side labeling. Labeling is called antimagic if all the side weights have different
values [14].

The concept of antimagic graph labeling can be seen in [10,11]. The local
antimagic labeling on graph G with |V | vertices and |E| edges are defined to
f : E → {1, 2, ...., k} so that the weights of any two adjacent vertices are dif-
ferent, that is, w(u) �= w(v) where w(u) =

∑
eεE(u) f(e) and E(u) are the sets

of edges that incident to u. Therefore, any local antimagic labeling induces a
proper vertex coloring of G where vertex u is assigned the color w(u). The local
antimagic labeling have been studied by [5–8,15]. The local antimagic chromatic
number is denoted by χla(G), the local antimagic chromatic number is the min-
imum number of colors taken from all stains induced by local antimagic labeling
of G [15].

Furthermore, introduces the concept of local edge antimagic coloring of
graphs. Defined as a bijection f : V (G) → {1, 2, 3, ..., |V (G)|}, is called local
edge antimagic labeling if any two adjaction edges e1 and e2, w(e1) �= w(e2),
where for e = uvεG,w(e) = f(u) + f(v). Therefore, local edge antimagic label-
ing induces a proper edge coloring of G if any edge is assigned the color w(e).The
color of each edge e = uv is assigned by (e) which is determined by the sum of
the two labels and the sum of vertices f(u) and f(v). The local edge antimagica
chromatic number, denoted by χlea(G) is the minimum number of colors that
are taken over by all staining induced by the local edge antimagic labeling of
graph G. The concept of local edge antimagic coloring of graphs can be seen in
[1,2,4].

A (a, d)-edge antimagic and super (a, d)-edge total antimagic we refer all def-
initions to [9]. Local (a, d)-antimagic coloring of a graph a bijection f : V (G) →
{1, 2, 3, ..., |V |} is called an edge antimagic labeling of graph if the element of
the edge weight set w(uv) = f(u) + f(v), where uvεE(G), are distinct. Edge
antimagic labeling induces a local edge antimagic coloring of G if each edge of
G is colored with a weight of w(e). The antimagic coloring of a graph is said
to be a local (a, d)-edge antimagic coloring of G if the set of edge colors forms
an arithmetic sequence with initial values of a and different d. Furthermore, the
local (a, d)-antimagic chromatic number χle(a, d)(G) is the minimum number of
colors needed to color G such that a graph G admits the local (a, d)-antimagic
coloring [3].

Observation 1.1. [1]. For any graph G, χlea(G) ≥ χ(G), where χ(G) is a
chromatic number of vertex coloring of G.

Observation 1.2. [3]. For any graph G, χle(a, d)(G) ≥ χlea(G) ≥ χ(G)

Observation 1.3. [1]. For any graph G, χlea(G) ≥ Δ(G), where Δ(G) is max-
imum degrees of G



32 R. Izza et al.

2 Main Result

In this paper, we will studied the existence of local (a, d)-edge antimagic color-
ing of a some graph, and determine the chromatic number of local (a, d)- edge
antimagic coloring of some graph include broom graph Brn,m, book graph Bn,
firecraker Fn,3, complete graph Kn and the dragon graph Dgn. We also analyse
the lower bound of the local (a, d)-edge antimagic coloring of the graphs.

Observation 2.1. For any graph G,

χle(a, d)(G) ≥ χlea(G) ≥ Δ(G),

where χlea(G) is a chromatic number of local edge coloring of G and Δ(G) is
maximum degrees of G

Theorem 2.1. For Brn,m be a broom graph with m ≥ 3, n ≥ 3,
χle(n+1,1)(Brn,m) = m + 1.

Proof. Let Brn,m be a broom graph with V (Brn,m) = {xt; 1 ≤ t ≤ m}∪{yt; 1 ≤
t ≤ n} and E(Brn,m) = {xty1; 1 ≤ t ≤ n − 1} ∪ {ytyt+1; 1 ≤ t ≤ n − 1}. The
cardinality of the vertices set of |V (Brn,m| = m + n, and the cardinality of the
edges set of |E(Brn,m| = m+n−1. The local (a, d)-antimagic chromatic number
of Brn,m is χle(n+1,1)(Brn,m) = m + 1.

To prove χle(n+1,1)(Brn,m) = m + 1 first, we will prove that Δ(Brn,m) ≥
m+1. Based on Observation 1.3 we have χle(a,d)(Brn,m) ≥ Δ(Brn,m). In Agustin
et al. [1] If Δ(G) is maximum degrees of G, then we have χlea(G) ≥ Δ(G).
Based on these results, it can be concluded that χle(a,d)(Brn,m) ≥ m + 1.
To show χle(a,d)(Brn,m) ≤ m + 1, by defining the bijection f : V (Brn,m) →
{1, 2, 3..., |V (Brn,m)|}

f(yt) =
{

t+1
2 , for t ≡ 1(mod 2)

n + 1 − t
2 , for t ≡ 0(mod2)

f(xt) =

⎧
⎪⎪⎨

⎪⎪⎩

n + m+1
2 + t+1

2 − 1, for t, m ≡ 1(mod 2)
n + m+2

2 + t+1
2 − 1, for t ≡ 1(mod 2)

and m ≡ 0(mod 2)
n + m+2

2 + t+1
2 , for t ≡ 0(mod 2)

the following is a way to see that f is the local (a, d)-antimagic labeling of
Brn,m and the edge weights

w(xtyt) =
{

n + m+1
2 + t+1

2 , for m ≡ 1(mod 2)
n + m+2

2 + t+1
2 , for m ≡ 0(mod 2)

w(ytyt+1) =
{

n + 1, for t ≡ 1(mod 2)
n + 2, for t ≡ 0(mod 2)
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The set of edge weights based on the edge weights obtained is W = {n +
1, n + 2, n + 3, ..., n + m + 1}. We can determine the value of the smallest weight
of the edge is a = n− 1 and d = 1, then we will have χle(n+1,1)(Brn,m) ≤ m+1.
it can be concluded that χle(n+1,1)(Brn,m) = m + 1 (Fig. 1).

Fig. 1. The local (a.d)-edge antimagic coloring of Br11,5

Theorem 2.2. For Bn be a Book graph with n ≥ 2, for n ≡ 1(mod 2)
χle(n+3,1)(Bn) = n + 2, for n ≡ 0(mod 2) χle(3+ 3n

2 ,1)(Bn) = n + 1.

Proof. Let Bn be a Book graph with V (Wn) = {xy} ∪ {xt; 1 ≤ t ≤ n} ∪ {yt; 1 ≤
t ≤ n} and E(Wn) = {yx} ∪ {xxt; 1 ≤ t ≤ n} ∪ {yyt; 1 ≤ t ≤ n} ∪ {xtyt; 1 ≤ t ≤
n}. The cardinality of the vertices set of |V (Bn| = 2n+2, and the cardinality of
the edges set of |E(Bn| = 3n + 1. The local (a, d)-antimagic chromatic number
of Bn is χle(n+3,1)(Bn) = n + 2 for n ≡ 1(mod 2), χle(3+ 3n

2 ,1)(Bn) = n + 1
for n ≡ 0(mod 2)

Case 1. For n ≡ 1(mod 2)

To prove χle(n+3,1)(Bn) = n+2 first, we will prove that Δ(Bn) ≥ n+1. Based
on Observation 1.3 we have χle(a,d)(Bn) ≥ Δ(Bn). in Agustin et al. [1] If Δ(G)
is maximum degrees of G, then we have χlea(G) ≥ Δ(G). Based on these results,
it can be concluded that χle(a,d)(Bn) ≥ n + 2. To show χle(a,d)(Bn) ≤ n + 2, by
defining the bijection f : V (Bn) → {1, 2, 3..., |V (Bn)|}

f(xt) = t + 1
f(yt) = 2n + 3 − t
f(x) = n + 2
f(y) = 1
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the following is a way to see that f is the local (a, d)-antimagic labeling of
Bn and the edge weights

w(xy) = n + 3
w(xxt) = n + 3 + t
w(yyt) = 2n + 4 − t
w(xtyt) = 2n + 4

The set of edge weights based on the edge weights obtained is W = {2n +
1, 2n, 2n − 1, ..., 2n + 4}. We can determine the value of the smallest weight of
the edge is a = n+3 and d = 1, then we will have χle(n+3,1)(Bn) ≤ n+2. it can
be concluded that χle(n+3,1)(Bn) = n + 2 for n ≡ 1(mod 2).

Case 2. For n ≡ 0(mod 2)

To prove χle(3+ 3n
2 ,1)(Bn) = n + 1 first, we will prove that Δ(Bn) ≥ n + 1.

Based on Observation 1.3 we have χle(a,d)(Bn) ≥ Δ(Bn). in Agustin et al. [1] If
Δ(G) is maximum degrees of G, then we have χlea(G) ≥ Δ(G). Based on these
results, it can be concluded that χle(a,d)(Bn) ≥ n + 1. To show χle(a,d)(Bn) ≤
n + 1, by defining the bijection f : V (Bn) → {1, 2, 3..., |V (Bn)|}.

f(x) = 2 +
3n

2

f(y) = 1 +
n

2

f(xt) =
{

t, for 1 ≤ t ≤ n
2

1 + t, for n
2 + 1 ≤ t ≤ n

f(yt) =
{

2n + 3 − t, for 1 ≤ t ≤ n
2

2n + 2 − t, for n
2 + 1 ≤ t ≤ n

the following is a way to see that f is the local (a, d)-antimagic labeling of
Bn and the edge weights

w(x) = 2n + 3

w(xxt) =
{

2 + 3n
2 + t, for 1 ≤ t ≤ n

2
3 + 3n

2 + t, for n
2 + 1 ≤ t ≤ n

w(yyt) =
{

4 + 5n
2 − t, for 1 ≤ t ≤ n

2
3 + 5n

2 − t, for n
2 + 1 ≤ t ≤ n

w(xtyt) = 2n + 3

The set of edge weights based on the edge weights obtained is W = {3n
2 +

3, 3n
2 + 4, 3n

2 + 5, ..., 3 + 5n
2 }. We can determine the value of the smallest weight

of the edge is a = 3 + 3n
2 and d = 1, then we will have χle(3+ 3n

2 ,1)(Bn) ≤ n + 1.
it can be concluded that χle(3+ 3n

2 ,1)(Bn) = n+1 for n ≡ 0(mod 2) (Figs. 2 and
3).
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Fig. 2. The local (a.d)-edge antimagic coloring of B3

Fig. 3. The local (a.d)-edge antimagic coloring of B4

Theorem 2.3. For Fm,3, be a firecraker graph with n ≥ 3, χle(3m,1)(Fm,3) = 4.

Proof. Let Fm,3 be a firecraker graph with V (Fm,3) = {xt, yt, zt; 1 ≤ t ≤ m}
and E(Fm,3) = {xtxt+1; 1 ≤ t ≤ m − 1} ∪ {xtyt; 1 ≤ t ≤ m} ∪ {ytzt; 1 ≤ t ≤ m}.
The cardinality of the vertices set of |V (Fm,3| = 3m, and the cardinality of the
edges set of |E(Fm,3| = 3m − 1. The local (a, d)-antimagic chromatic number of
Fm,3 is χle(3m,1)(Fm,3) = 4.

To prove χle(3m,1)(Fm,3) = 4 first, we will prove that χlea(Pn � Pm) ≥ 4.
Based on Observation 1.2 we have χle(a,d)(Fm,3) ≥ χlea(Pn � Pm). in Agustin
et al. [2] For n,m ≥ 3, the local edge antimagic chromatic number of Pn � Pm

with grafting pendant vertex xεV (Pm) is χlea(Pn � Pm) = 4. then we have
χle(a, d)(Fm,3) ≥ χlea(Pn � Pm). Based on these results, it can be concluded
that χle(a,d)(Fm,3) ≥ 4. To show χle(a,d)(Fm,3) ≤ 4, by defining the bijection
f : V (Fm,3) → {1, 2, 3..., |V (Fm,3)|}

f(xt) =

⎧
⎨

⎩

2, for t ≡ 1
3t+3
2 − 2, for t ≡ 3(mod 2)

3m − 3t
2 + 2, for t ≡ 0(mod 2)
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f(yt) =
{

3m + 3 − 3t+3
2 , for t ≡ 1(mod 2)

3t
2 , for t ≡ 0(mod 2)

f(zt) =

⎧
⎨

⎩

1, for t ≡ 1
3t+3
2 − 1, for t ≡ 3(mod 2)

3m + 1 − 3t
2 , for t ≡ 0(mod 2)

the following is a way to see that f is the local (a, d)-antimagic labeling of
Fm,3 and the edge weights

w(xtxt+1) =

⎧
⎨

⎩

3m + 1, for t ≡ 1
3m, for t ≡ 3(mod 2)
3m + 3, for t ≡ 0(mod 2)

w(xtyt) =

⎧
⎨

⎩

3m + 2, for t ≡ 1
3m + 1, for t ≡ 3(mod 2)
3m + 2, for t ≡ 0(mod 2)

w(ytzt) =

⎧
⎨

⎩

3m + 1, for t ≡ 1
3m + 2, for t ≡ 3(mod 2)
3m + 1, for t ≡ 0(mod 2)

The set of edge weights based on the edge weights obtained is W = {3m, 3m+
1, 3m+2, 3m+4}. We can determine the value of the smallest weight of the edge
is a = 3m and d = 1, then we will have χle(3m,1)(Fm,3) ≤ 4. it can be concluded
that χle(3m,1)(Fm,3) = 4 (Fig. 4).

Fig. 4. The local (a.d)-edge antimagic coloring of F5,3
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Proof. Let Kn be a complete graph with E(Kn) = {xtxs; 1 ≤ t ≤ n, 1 ≤ s ≤
n, t �= s} and V (Kn) = {xt; 1 ≤ t ≤ n}. The cardinality of the vertices set of
|E(Kn| = n2 − n, and the cardinality of the edges set of |V (Kn| = n. The local
(a, d)-antimagic chromatic number of Kn is χle(3,1)(Kn) = 2n − 3.

To prove χle(3,1)(Kn) = 2n−3 first, we will prove that χlea(Kn) ≥ 2n−3. Based
on Observation 1.2 we have χle(a,d)(Kn) ≥ χlea(Kn). in Agustin et al. [1] For n ≥
3, the local edge antimagic chromatic number of Kn is χlea(Kn) = 2n−3. Based
on these results, it can be concluded that Kn is χle(a,d)(Kn) ≥ 2n − 3. To show

χle(a,d)(Kn) ≤ 2n−3, by defining the bijection f : V (Kn) → {1, 2, 3..., |V (Kn)|}

f(xt) =
{

t+1
2 , for t ≡ 1(mod 2)

n − t
2 + 1, for t ≡ 0(mod 2)

the following is a way to see that f is the local (a, d)-antimagic labeling of
Kn and the edge weights

w(xtxs; 1 ≤ t ≤ n, 1 ≤ s ≤ n, t �= s) = {3, 4, 5, ..., 2n − 1}.

The set of edge weights based on the edge weights obtained is W =
{3, 4, 5, ..., 2n − 1}. We can determine the value of the smallest weight of the
edge is a = 3 and d = 1, then we will have χle(3,1)(Wn) ≤ n + 2. it can be
concluded that χle(3,1)(Kn) = 2n − 3 (Figs. 5 and 6).

Fig. 5. The local (a.d)-edge antimagic coloring of K5
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Fig. 6. The local (a.d)-edge antimagic coloring of K8

Theorem 2.4. For Dgn be a dragon graph with n ≥ 2, χle(3,1)(Dgn) = 2n + 6.

Proof. Let Dgn be a dragon graph with V (Dgn) = {xt; 1 ≤ t ≤ n+2}∪{yt; 1 ≤
t ≤ n+2}∪{zt; 1 ≤ t ≤ n} and E(Dgn) = {xtxt+1; 1 ≤ t ≤ n+1}∪{ytyt+1; 1 ≤
t ≤ n+1}∪{ztzt+1; 1 ≤ t ≤ n−1}∪{ztyt; 1 ≤ t ≤ n+2}∪{ztxt; 1 ≤ t ≤ n+2}.
The cardinality of the vertices set of |V (Dgn| = 3n + 4, and the cardinality of
the edges set of |E(Dgn| = 2n + 6. The local (a, d)-antimagic chromatic number
of Dgn is χle(3,1)(Dgn) = 2n + 6.

To prove χle(3,1)(Dgn) = 2n+6 first, we will prove that Δ(Dgn) ≥ 2n+6. Based
on Observation 1.3 we have χle(a,d)(Dgn) ≥ Δ(Dgn). in Agustin et al. [1] If Δ(G)
is maximum degrees of G, then we have χlea(G) ≥ Δ(G). Based on these results,
it can be concluded that χle(a,d)(Dgn) ≥ 2n+6. To show χle(a,d)(Dgn) ≤ 2n+6,
by defining the bijection f : V (Dgn) → {1, 2, 3..., |V (Dgn)|}

f(xt) =
{

n + 3 + t+1
2 , for t ≡ 1(mod 2)

n + 1 − t−2
2 + 1, for t ≡ 0(mod 2)

f(yt) =
{

1 + t+1
2 , for t ≡ 1(mod 2)

6 + t
2 + 2n for t ≡ 0(mod 2)

f(zt) =

⎧
⎨

⎩

1, for i ≡ 2
6 + 2n, for i ≡ 1
7 + 2n, for i ≡ 3

the following is a way to see that f is the local (a, d)-antimagic labeling of
Dgn and the edge weights

w(xtxt+1) =
{

2n + 7, for t ≡ 1(mod 2)
2n + 8, for t ≡ 0(mod 2)
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w(ytyt+1) =
{

7 + 2n, for t ≡ 1(mod 2)
8 + 2n, for t ≡ 0(mod 2)

w(ztzt+1) =
{

2n + 7, for t ≡ 1(mod 2)
2n + 8, for t ≡ 0(mod 2)

w(ztyt) =
{

2 + t+1
2 , for t ≡ 1(mod 2)

2n + 7 − t
2 , for t ≡ 0(mod 2)

w(ztxt) =
{

4 + n + t+1
2 , for t ≡ 1(mod 2)

n + 5 − t
2 , for t ≡ 0(mod 2)

The set of edge weights based on the edge weights obtained is W =
{3, 4, 5, ..., 2n + 8}. We can determine the value of the smallest weight of the
edge is a = 3 and d = 1, then we will have χle(3,1)(Dgn) ≤ 2n + 6. it can be
concluded that χle(3,1)(Dgn) = 2n + 6 (Fig. 7).

Fig. 7. The local (a.d)-edge antimagic coloring of D3

3 Concluding Remarks

In this paper, we have studied the local (a, d)-edge antimagic coloring of special
graph, namely broom graph, book graph, firecracker graph, complete graph,
and dragon graph. We have found that most of the local (a, d)-edge chromatic
numbers attain the best lower bound. However, due to there is still little research
related to the topic local (a, d)-edge antimagic coloring. So we propose open
problem.
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Open Problem 3.1. Determine the exact value of the local (a, d)-edge
antimagical chromatic number of all types of graphs regardless of what has been
researched.

Acknowledgment. We would like to say thanks to PUI-PT Combinatorics and
Graph, CGANT, University of Jember of year 2023 for the support in this project.

References

1. I. H. Agustin, M. Hasan, Dafik, R. Alfarisi, R. M. Prihandini, “local edge antimagic
coloring of graphs”, Far East Journal of Mathematical Sciences (FJMS). vol. 102,
2017 pp. 1925–1941.

2. I. H. Agustin, M. vHasan, Dafik, R. Alfarisi, A.I. Kristiana, R. M. Prihandini,
“Local Edge Antimagic Coloring of Comb Product of Graphs”, Journal of Physics:
Conference Series. 2018 .

3. I. H. Agustin, Dafik, E. Y. Kurniawati, Marsidi, N. Mohanapriya, A. I. Kristiana,
“On the local (a, d)-antimagic coloring of graphs”. 2022.

4. S. Aisyah, R. Alfarisi, R. M. Prihandini, A. I. Kristiana, R. Dwi, “On the Local
Edge Antimagic Coloring of Corona Product of Path and Cycle”, CAUCHY -Jurnal
Matematika Murni dan Aplikasi. vol. 6, 2019. pp. 40–48.

5. S.Arumugam, K. Premalatha, M. Baca, A. S. Fenovcikova, “Local Antimagic Ver-
tex Coloring of a Graph”, Graphs and Combinatorics. vol. 33 pp. 275–285.

6. S. Arumugam, Y. C. Lee, K. Permalatha, T. M. Wang, “On Local Antimagic
Vertex Coloring for Corona Products of Graphs”, 2018.

7. Dafik, I. H. Agustin, Marsidi, E. Y. Kurniawati, “On the local antimagic vertex
coloring of sub-devided some special graph” Journal of Physics: Conference Series,
2020. 1538 012021.

8. Dafik, I. H. Agustin, Slamin, R. Adawiyah, E. Y. Kurniawati, “On the study of
local antimagic vertex coloring of graphs and their operations”, Journal of Physics:
Conference Series, 2021, 1836 012018.

9. Dafik, Miller M, Ryan J, Baca M 2009 On super (a, d)-edge-antimagic total labeling
of disconnected graphs Discrete Mathematics, 309 4909-4915.

10. Dafik, M. Miller, J. Ryan, and M. Baca, “Super edge-antimagic total labelings of
mKn,n Ars Combinatoria”, vol. 101, 2011 97-107.

11. Dafik, M Mirka, R. Joe, and M. Baca, “Super edge-antimagicness for a class of
disconnected graphs” 2006.

12. J. L. Gross, J. Yellen, and P. Zhang, “Handbook of graph Theory Second Edition
CRC Press Taylor and Francis Group” 2014.

13. N. Hartsfield, dan G. Ringel, “Pearls in Graph Theory Academic Press”. 1994.
United Kingdom.

14. E. Y. Kurniawati, I. H. Agustin, Dafik, R. Alfarisi, Marsidi, ”On the local antimagic
total edge chromatic number of amalgamation of graphs”, Cite as: AIP Conference
Proceedings, 2018, 978-0-7354-1730-4.

15. N. H. Nazula, Slamin, Dafik, “Local antimagic vertex coloring of unicyclic
graphs(Local antimagic vertex coloring of unicyclic graphs”, Indonesian Journal
of Combinatorics, vol. 2 pp. 30–34.



On Local (a, d)-Edge Antimagic Coloring of Some Graphs 41

Open Access This book is licensed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s
Creative Commons license, unless indicated otherwise in a credit line to the material.
If material is not included in the book’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

	On Local (a, d)-Edge Antimagic Coloring of Some Graphs
	1 Introduction
	2 Main Result
	3 Concluding Remarks
	References




