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Abstract. Senescence is associated with various degenerative diseases, such as
cardiovascular disease (CVD). The community must bear the economic burden
due toCVD, not only from the prohibitivemedical costs but also from the decline in
people’s work productivity due to suffering from CVD. Various efforts have been
made to prevent premature senescence. Sirtuin-1 (SIRT-1) is essential in main-
taining vascular homeostasis through the modulation of senescence-associated
signaling pathways. Vascular homeostasis is highly dependent on the quality of
endothelial cells as the primary vascular component. Good vascular regenera-
tion is primarily determined by the Endothelial Progenitor Cell (EPC). Expo-
sure to CVD risk factors is thought to trigger premature senescence of EPC.
The molecular mechanism of premature EPC senescence associated with CVD
is still unclear. This study aimed to test whether the specific activator of SIRT-1
could inhibit the senescence of EPCs exposed to Asymmetric Dimethylarginine
(ADMA) by decreasing P16INK4a, which is one of the markers of cell senes-
cence. True-experimental research method in vitro using EPC culture obtained
from PBMNC. This study has three groups: the EPC group, the EPC group with
exposure to ADMA, and the EPC group receiving SIRT-1 before exposure to
ADMA. The results showed that the intensity of P16INK4a expression increased
dramatically in EPCs exposed to ADMA compared to controls. In addition, the
study results also showed a decrease in the expression of P16INK4a in EPCs given
SIRT-1 before exposure to ADMA compared to EPCs exposed to ADMA with-
out SIRT-1 administration. The decrease indicates the protective effect of SIRT-1
against EPC senescence due to ADMA exposure.
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1 Introduction

Senescence is associated with various degenerative diseases, such as cardiovascular dis-
ease (CVD). The community must bear the economic burden due to CVD, not only
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from the prohibitive medical costs but also from the decline in people’s work produc-
tivity due to suffering from CVD. Various efforts have been made to prevent premature
senescence. Sirtuin-1 (SIRT-1) is essential in maintaining vascular homeostasis through
the modulation of senescence-associated signaling pathways. Vascular homeostasis is
highly dependent on the quality of endothelial cells as the primary vascular component.
Good vascular regeneration is primarily determined by the Endothelial Progenitor Cell
(EPC). Exposure to CVD risk factors is thought to trigger premature senescence of EPC.
The molecular mechanism of premature EPC senescence associated with CVD is still
unclear.

Cell senescence is characterized by irreversible cessation of the cell cycle due to stress
induction, which is widely associated with organ dysfunction and diseases associated
with senescence [1]. Under normal physiological conditions, old cells can be eliminated
by the immune system. However, with increasing age or chronic disease, senescent
cells accumulate in tissues, interfere with functional maintenance, increase pathological
conditions, and cause maladaptive responses [2].

Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide
synthase (NOS), is associated with impaired endothelial function in humans [3]. In
addition, clinical evidence suggests that plasma ADMA levels increase with age or in
people with hypercholesterolemia, atherosclerosis, hypertension, chronic heart failure,
diabetes mellitus, and chronic renal failure, all of which are significant contributors to
endothelial dysfunction and vascular disorders [4, 5]. Our previous study proved that
ADMA exposure could induce senescence effector activity in vitro, characterized by an
increase in the number of progenitor endothelial cells expressing P16INK4a [6].

The results of previous studies in mammalian cells showed that SIRT-1 decreased
the expression of P16INK4a mRNA, a molecular marker of cell senescence and DNA
damage [7]. SIRT-1 is said to be involved in inflammatory processes, premature senes-
cence, telomere irritation, secretion of senescence-associated substances, and responses
to DNA damage [8]. Based on these exposures, this study aimed to test whether the
specific activator of SIRT-1 could inhibit the senescence of EPCs exposed to ADMA
by decreasing the expression of P16INK4a. It is hoped that the results of this study can
strengthen the evidence for the role of SIRT-1 in anti-premature senescence, especially
in EPC, to reduce the risk of CVD. SIRT-1 is naturally contained in many vegetables and
fruits. Finally, this research can also be the basis for an exploratory study of vegetable
and fruit ingredients in Indonesia that have the potential as natural SIRT-1 activators as
candidates for an herbal drug to prevent premature vascular senescence.

2 Method

2.1 Study Design

This study uses a true-experimental laboratory design in vitro, carried out at the Cen-
tral Laboratory of Biological Sciences, Universitas Brawijaya. This research procedure
has obtained ethical feasibility from the Bioscience ethics committee of Universitas
Brawijaya No 1206-KEP-UB.
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2.2 Sample Collection and Preparation

The procedure for taking peripheral blood and isolating peripheral blood mononuclear
cells (PBMNC) in this study is the same as the previous procedure [6, 9].

2.3 EPC Cell Culture, SIRT-1 Administration, and Induction of Cell Senescence

PBMNCs were cultured in Endothelial Growth Medium (EGM) plus 10% FBS at 37 °C
with a mixture of 95%: 5% (v/v) moistened with air and CO2. EPC cultures were
given SIRT-1 (Select, Shanghai, China) for 24 h to prevent cell senescence. SIRT-1 was
previously dissolved in DMSO and applied to reach a final concentration of 10M. To
induce senescence of EPC cells, PBMNCs were exposed to ADMA (Sigma, St. Louis)
for 24 h. Previously ADMAwas dissolved In Phosphate-Buffered Saline (PBS) and used
at a concentration of 300 M.

2.4 Identification of P16INK4a

After exposure to SIRT-1 and ADMA, cells were washed twice with PBS, then fixed
and stained with P16INK4a Staining Kit (Beyotime Institute of Biotechnology, Shanghai,
China), and then analyzed with a confocal laser scanning microscope.

2.5 Data Analysis

The researcher tested the hypothesis using the Kruskal–Wallis and followed by a Bonfer-
roni post-hoc test to identify differences between groups (p-Value< 0.05was considered
significant). All data analysis was carried out using STATA software version 14.

3 Results and Discussion

Efforts to delay the incidence of diseases due to premature aging can increase life
expectancy. Improving the quality of human life will reduce the burden on the health
care system so that people’s productivity to support the economy will increase. SIRT-1
increases metabolic activity and protects against physiological disorders due to aging
[10, 11], thereby inhibiting EPC aging and reducing the risk of vascular dysregulation,
atherosclerosis, and CVD [12–14]. We administered SIRT-1 before 300MADMA expo-
sure to prove the protective effect of SIRT-1 on ADMA-exposed EPCs. The intensity of
P16INK4a expression was significantly decreased in EPCs compared to EPCs not treated
with SIRT-1.

3.1 ADMA Exposure Leads to Increased Intracellular P16ink4a Expression

PBMNCswere seeded in culture media for seven days, then labeled into three groups, (i)
untreated cells, (ii) cells treated with ADMA for 24 h, and (iii) group given pretreatment
activator SIRT1 (SIRT1720) for 3 h before exposure to ADMA for 24 h. As shown in
Fig. 1, the expression intensity of p16INK4a increased dramatically in cells exposed to
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Fig. 1. Representative results of quantification of intracellular p16INK4a expression intensity in
EPC. (A) Differences in the average intensity of p16INK4a in each EPC group were observed; (B)
Rhodamine staining representing the intensity of p16INK4a in the untreated cell group (control),
the cell group exposed to ADMA and the cell group given SIRT1 activator followed by ADMA
exposure. Quantification of p16INK4a intensity was validated through a confocal laser scanning
microscope. *p-Value < 0.001.

ADMA compared to controls (Fig. 1A), and the condition was improved by pretreatment
of the SIRT-1 activator.

ADMA exposure leads to increased intracellular P16INK4a expression. Figure 1(B)
shows the proportion of the intensity of P16INK4a expression, which dramatically
increased in progenitor endothelial cells exposed to ADMA compared to con-
trol/Fig. 1(A).

3.2 Protective Effect of SRT-1 Against ADMA Exposure on EPC

To prove the protective effect of SIRT-1 onADMA-exposedEPC,we administered SIRT-
1 before exposure to 300M ADMA. The expression intensity of p16INK4a decreased
significantly in EPC compared to EPC that was not given SIRT-1. The study’s results
prove that exposure to a 300 M dose of ADMA induces aging effector acceleration in
EPC. Several longitudinal studies have revealed that ADMA as an NO inhibitor causes
a decrease in telomerase activity which physiologically plays a role in maintaining
genomic stability by protecting against chromosome degradation [15–17]. Decreased
telomerase activity is associated with telomere irritation, inhibition of cell proliferative
capacity through activation of p53-p21 or p16INK4a-Rb, and DNA Damage Response
(DDR) consistent with features of cellular senescence [18–20]. In our study, the SIRT-1
activator significantly suppressed p16INK4a expression in ADMA-exposed EPCs. This
result suggests that activation of SIRT-1 through SIRT1720 is known to fight EPC aging
due to ADMA induction. Recent studies have shown that eNOS-derived NO/SIRT1
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cross-talk plays a role in maintaining mitochondrial biogenesis and may play a role in
inhibiting SIRT-1-induced senescence [21, 22].

SIRT-1 exhibits an inhibitory effect on EPC aging by increasing telomerase activa-
tion via the PI3K-Akt signaling pathway. Inhibition of aging by activator SIRT-1 can
protect EPC from dysfunction caused by pathological factors and increase the functional
activity of EPC, which may be necessary for cell therapy applications [23]. Activating
p16INK4a in response to stress results in progressive damage to several self-renewing
tissues, including stem cells, while deletion of p16INK4a enhances cellular survival and
regeneration potential. In line with the results of this study, the mechanism underly-
ing the p16INK4a-mediated cellular disruption in hematopoietic stem cells may be due
to the upregulation of p16INK4a by chronic DNA damage due to progressive telomere
dysfunction, which limits stem cell self-regeneration capacity [24].

4 Conclusion

In conclusion, our study successfully validated the role of ADMA in increasing P16INK4a

expression in EPCs. In addition, this study has also proved that the SIRT-1 activator
can inhibit senescence by decreasing P16INK4a expression in ADMA-exposed EPCs.
The exposure indicates the protective effect of SIRT-1 against EPC senescence due to
ADMA exposure.
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