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Abstract. Design patterns are useful Software Engineering tools that enable the
reuse of expert solutions to recurring problems. There are a large number of pat-
terns, spread in multiple catalogs and in heterogeneous formats. Selecting and
applying the right design pattern requires an in-depth understanding of patterns
and their classification. The solution architects must either rely on the advice of
experts or laboriously go through the available literature to find the relevant pat-
terns. Pattern applicability will improve if the entire pattern knowledge is avail-
able in one place and in a standard format. If the pattern data is augmented with
additional knowledge to guide the architect on choosing the right patterns for a
particular requirement, it will be immensely useful and productive. The objective
of the knowledge discovery process on the design pattern landscape is to extract
useful relations and groups of patterns to enable users to select and apply patterns
effectively. The present work discusses a model for analyzing existing pattern
data, extracting knowledge thereof, and representing this knowledge in a format
to enable pattern search and its application.

Keywords: Design Pattern - Knowledge Discovery - Clustering - Software
Engineering

1 Introduction

Our society is becoming increasingly dependent on software intensive systems in all
areas. Information systems today are large-scale, complex, and distributed. This com-
plexity makes it necessary to design their architecture based on standard practices, Soft-
ware Engineering principles, and expert knowledge. Design patterns are useful Software
Engineering tools that enable the reuse of expert solutions to recurring problems [1, 2].
The concept of design patterns was introduced for computer science by Gamma et al.,
[1]. Subsequently, a large number of patterns have been developed to solve a variety of
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software problems. Applying the right design pattern requires an in-depth understand-
ing of patterns and their classification. The solution architects must either rely on the
advice of domain experts or laboriously go through the available literature to find the
relevant patterns. Therefore, pattern selection is primarily done by experienced software
engineers who have a deep knowledge of patterns. This is extremely hard for the novice
[3].

If the entire pattern knowledge is available in a common pattern repository and in a
standard format, it will help the architects. This still requires the architects to understand
all patterns to make a selection. If the pattern data is augmented with additional knowl-
edge to guide the architect on choosing the right patterns, it will be immensely useful
and productive. This augmented knowledge is usually acquired from domain experts or
practitioners. In the absence of such experts, the knowledge can be extracted from the
pattern data itself by applying data mining tools and techniques.

This paper presents a novel approach for pattern selection by analyzing existing
pattern data, extracting knowledge thereof, and representing this knowledge to enable
pattern selection. The promising results of the work on security design patterns encourage
the applicability of the proposed model for design patterns in any domain to aid pattern
organization and selection.

2 The Pattern Selection Problem

The most crucial task in pattern-based software engineering is the selection of the right
pattern to solve a particular problem. The pattern selection problem can be divided into
two stages: Pattern search and Pattern selection. Pattern search means getting infor-
mation about existing patterns from repositories, the literature or the Internet. Pattern
selection involves choosing patterns from the set of patterns after the stage of pattern
search. The simplified process [4] of selecting and applying patterns to solve a problem
is shown in Fig. 1.

The process starts with the problem and its description. Based on the problem descrip-
tion, the pattern search is applied to find a set of patterns that can potentially solve the
problem.

Pattern search requires significant effort and time for the following reasons:

1. The number of existing patterns is very large.

Problem not resolved

Problem
description

Search

Problem Problem

resolved

Pattern

Fig. 1. The simplified process for pattern search and selection
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2. The information of all patterns is not available at one place.

3. Pattern information is in a variety of formats including documents, images, HTML
pages, research papers, and books.

4. All patterns are not described in a uniform manner.

5. The pattern landscape is complex and highly disorganized.

The pattern search yields multiple patterns. Not all these patterns give the solution to
the problem. Pattern selection selects a pattern or patterns from the set of found/existing
patterns. The last step is to apply the selected pattern in the software design to solve the
problem. If the selected patterns do not solve the problem, the process is repeated.

Researchers have proposed various strategies and methods to solve the pattern selec-
tion problem which is discussed in the next section. This section also presents a brief
background on design patterns and related work.

3 Background and Related Work

Christopher Alexander introduced patterns in the book, A Pattern Language: towns,
buildings, construction [5]. Gamma et al., popularly known as the “Gang of Four” (GoF),
first presented patterns for software design in their book ‘Design Patterns: Elements of
Reusable Object-Oriented Software’ [1]. As new technologies, computing paradigms,
and architectural styles emerged, design patterns continued to evolve. The pattern land-
scape has been enriched by the addition of several patterns, pattern catalogues, pattern
repositories, and pattern books. These include object oriented patterns [6], patterns for a
specific domain such as patterns for enterprise application architecture [7], patterns for
security [8, 9], J2EE web services patterns [10], patterns for context awareness [11, 12],
patterns for embedded systems [13], IoT design patterns [14], Service Oriented Archi-
tecture patterns [15], Mobile design patterns [16], Cloud design patterns [17], Machine
learning design patterns [18], patterns for digital platforms [19], Al systems [20] and
many more. Analytical studies on the impact of applying design patterns on the software
design, architecture and quality conclude that the software quality is greatly enhanced
by applying the right patterns [21, 22].

Although there is a large volume of work on patterns themselves, the problem of pat-
tern search and selection has not been addressed enough in literature. Various approaches
to aid pattern selection are discussed here.

1. Online Pattern Repositories

To make pattern data more accessible various online pattern repositories were created.
PatternForge [23] offers a centralized online location to control and manage design pat-
terns and other software engineering instruments. PatternShare was a computer software
design pattern web resource, hosted by Microsoft (upto 2009). Kienzle et al., created a
repository of security patterns [24]. Open Pattern Repository [25] and Weiss and Birukou
[26] have proposed the use of wiki’s for building pattern repositories. The problem with
repositories is that some repositories are not functional while others are not updated and
maintained.
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2. By classifying patterns

Efforts towards the organization of the design pattern landscape have led to pattern
classification. A classification scheme identifies useful criteria based on which patterns
can be classified. Some pattern classifications are based on the phases in the software
development lifecycle by Buschmann et al. [2], Creational, structural and behavioral
by Gamma et al. [1], According to the relationship between patterns [27], according
to Software Design Level (Scalability) model [28], based on domain or technology:
Microsoft patterns [29], J2EE/web services [10], Threat model, Core security principles
etc. for security patterns [30, 31].

The problems with existing classification schemes are that most of them cover only
a few patterns. Also, a pattern is not classified by all schemes.

3. Automated pattern selection and recommendation systems

The framework developed by Smith and Plante [32] detects design anti-patterns and
makes dynamic recommendations to the programmers. Birukou et al. [33] present an
implicit culture(IC) approach to select the appropriate patterns for a specific design prob-
lem. Dong et al. [34] proposed the DP-Miner tool to identify the design patterns based on
the description of their structure including pattern matrix and weight. Kampffmeyer and
Zschaler [35] formally described the GoF patterns by a Design Pattern Intent Ontology
(DPIO) that is an extensible knowledge base of design patterns classified by their intent.
Berghe et al. [36] use inductive logic programming techniques to choose the appropriate
software patterns. Hasheminejad and Jalili [37] apply text classification on the patterns
and the problem and then propose the best matching patterns from the classes. Hus-
sain et al. [38] apply text categorization, feature selection and unsupervised learning
techniques on the pattern descriptions for pattern recommendation.

Most of the approaches have been applied to only a few patterns or catalogs.
Approaches based on Ontology or formal specification of patterns are highly complex
[36]. Text categorization approaches require the pattern intent and description to be
complete and in a standard format. In the following section, the knowledge discovery
approach on pattern data is discussed.

4 Knowledge Discovery on Pattern Data

Knowledge discovery is a process that intelligently extracts valid and useful knowledge
from raw information. The goal of the knowledge discovery process on patterns is to
extract inherent inter-relationships between patterns and their attributes to aid pattern
organization and selection. The knowledge discovery model proposed by Fayyad et al.
[39] is one of the leading process models. The adoption of this model to the present work
is shown in Fig. 2.

1. Understanding the application domain

There are many patterns for different domains. It is necessary to have a clear
understanding of the domain for which pattern search is to be carried out.
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Fig. 2. Knowledge discovery model on pattern data

2. Pattern search

Pattern information is not available at one place. Pattern search involves collection of
pattern information from various catalogs, repositories, books, research papers, and
interaction with experts.

3. Pattern filtering

The pattern search yields multiple patterns. Not all patterns are useful in a particular
context. Pattern filtering removes all unrelated and unwanted patterns.

4. Preprocessing

Pattern data collected from multiple sources must be collated, cleaned and preprocessed.
To extract useful knowledge from patterns, patterns must be represented in a common
format. The adoption of standard template for describing patterns will maintain unifor-
mity and help improve the quality of patterns. This paper recommends the adoption of
the following template by Buschmann et al. [2] (Table 1).

5. Reduction: Pattern-attribute table

The above pattern template is descriptive in nature. Pattern selection will be easier if the
pattern information is augmented by a set of attributes. Several classification schemes
exist which do the needful. However, there are overlaps in the existing schemes and all
patterns are not classified using the same scheme. This paper encourages that a common
set of domain-specific attributes must be applied to all the patterns. Pattern classification
is represented as a two dimensional table of Patterns and Attributes (or criteria) as shown
in Fig. 3. This table encapsulates the pattern knowledge and also captures the essence
of the pattern domain.

6. Pattern data mining

To bring out hidden knowledge and inter-relationships between patterns, clustering is
carried out. Clustering is an unsupervised data mining technique that groups similar
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Table 1. Pattern description template

Element Description

Name The pattern name.

Context Description of the circumstances in which the problem occurs.

Problem Description of the problem arising in the context.

Forces Description of the concerns and constraints that make the problem difficult
to solve.

Solution Description of the proven solution to the problem.

Also Known As | Aliases - other names for the pattern.

Example A real world example which brings out the need for the pattern.

Structure A specification of the composition of the pattern.

Dynamics Description of the run-time behavior of the pattern.

Implementation | Description of how the pattern can be implemented.

Known Uses Examples of pattern implementation in existing systems.

Consequences The benefits and potential liabilities of using the pattern.

Variants Description of specialized forms of the pattern

Related Patterns

A list of related patterns.

See Also

Resources to other patterns that address the similar problem.

Al | A2 | A3 | A4
Pl v v
PR|v v
P3 v v v
P4 v
P5 | v v v

Fig. 3. Pattern-attribute table

objects without any prior knowledge of target classes [40]. Clustering will give a core
set of pattern groups with related patterns. The extracted knowledge elements are in the
form of clusters and their constituent patterns.

7. Cluster interpretation

Clusters contain a set of patterns that have some similarity. To identify the important
attributes of the cluster, the concept of ‘dominant cluster attributes’ (having a percentage
more than min-supp) is introduced by Ponde et al. [41]. The dominant attributes of a
cluster reveal important characteristics of the cluster. These attributes play a crucial role
in pattern selection.
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8. Knowledge representation

The knowledge elements after the clustering process are: Patterns, Clusters and their
patterns, and Dominant attributes of each cluster. These knowledge elements must
be represented in a uniform format. A structured representation (such as XML) that
is independent of underlying infrastructures will enable efficient storage and search
operations.

9. Utilizing and sharing the discovered knowledge

The discovered knowledge is used for pattern selection in the following manner:

a. Identify attributes from the problem description.
b. Search the matching cluster having the problem attributes as dominant attributes.
c. Select patterns from the cluster to solve the problem.

5 Case Study: Knowledge Discovery on Security Patterns

Security is a critical requirement in software systems. There are more than 200 design
patterns for security with multiple classification schemes [42]. This makes security
design pattern selection a complex and time-consuming task. The proposed knowledge
discovery model was applied on the security design patterns.

Pattern search yielded a large number of security patterns. For analysis, a filtered
set of 211 patterns was used. Each pattern was classified by applying a core set of 23
classification attributes after careful consideration. These are:

Lifecycle stages: Architectural, Requirement, Design, Implementation

— Core: Authentication, Authorization, Confidentiality, Availability, Non-Repudiation,
Accountability, Key management

— Threat model: Spoofing, Tampering, Information Disclosure, Denial of Service,

Elevation of privilege

Trust boundary: Core, Perimeter, Exterior

— Type: Structural, Behavioral, Generic

The pattern-attribute table contains 211 rows and 23 columns. Each row represents
a pattern with attributes as columns. To extract pattern relationships, clustering is car-
ried out. The implementation is carried out in Python. The pattern-attribute table is
represented in the.csv format for analysis. The Python code is:

import pandas as pd
dataset = pd.read csv('PatternAttributeTable.csv')
X = dataset.iloc[:, 1:].values

To extract useful knowledge from this dataset, clustering is carried out. The clustering
of unlabeled data can be performed with the Python module sklearn.cluster. This
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module contains various clustering methods such as AgglomerativeClustering, KMeans
etc. Since the data is binary, the Agglomerative Hierarchical clustering algorithm is
applied. The clustering process requires the selection of Linkage method and Distance
metric [40].

The commonly used linkage methods are:

1. Single Linkage: Gives shortest distance between a pair of observations i and j in two
clusters A and B.

L(A, B) = min(D(@, j)), i€ A, jeB (1)

2. Complete Linkage: Gives the maximum distance between a pair of observations i
and j in two clusters A and B.

L(A, B) = max(D(, j)), i€ A, j€B 2)

3. Average linkage: The sum of distances between each pair of observations in each
cluster are divided by the number of pairs to get the average inter-cluster distance.

1 . - .
L(A,B) = AT Zi’jD(l,])l €A, jeB (3)

4. Ward linkage: This is similar to average linkage except it calculates the sum of
squares of distances.

R oo
LAB) = Zi,jD(l’ Niie AjeB 4)

The various distance metrics are:

1. Euclidean: It is the most common distance measure which can be considered as the
length of segment connecting two points using the Pythagorean theorem.

n
D(x,y)=,/) . i~y 5)
2. Manhattan: It is the sum of absolute differences between points.
n . .
D(x,y) = lxi—yil (©)
3. Minkowski: It is the generalized form of Euclidean and Manhattan distance.
. n . .pilp
DG,y =D i - yil )

where, p is the norm.
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Jaccard index: This is often used in applications with binary data. It measures the
similarity between two sets of data to see which members are shared and distinct.

xNy

D, y)=1—
(x,y) YUx

®)

Jaccard distance is recommended for binary data [40] and hence, the present work
uses this metric. To choose the linkage method, the Cophenetic correlation coefficient is
calculated. It gives the relation between raw data distances and dendrogram distances.

The scipy.cluster.hierarchymodule provides the ‘linkage’ and
‘cophenet’ methods based on which the linkage and metric combination is chosen. The
Jaccard metric with average linkage and Euclidean metric with Ward linkage gives the
highest values i.e. 0.64.

The sample Python code for the same is:

from scipy.cluster.hierarchy import single, cophenet
from scipy.spatial.distance import pdist
z=sch.linkage (X, method='average', metric='jaccard')

cophenet (z, pdist (X))

The dendrogram obtained as a result of clustering is shown in Fig. 4. Clustering
being an unsupervised technique, does not give any indication about the actual number
of clusters. For hierarchical clustering, this number is obtained by observing the den-
drogram and cutting the dendrogram to extract the clusters. The longest vertical line is
cut to obtain 9 high level clusters. Each cluster further has its sub-clusters.

Constituent patterns are identified for each cluster. The defining attributes of each
cluster are identified by calculating the percentage contribution of each attribute in the
cluster. The attributes having a value > minsupp are the dominant attributes. They aid
in security pattern selection for a specific security problem. A sample cluster with the
dominant attributes and its patterns is shown in Table 2.

For pattern selection, the security attributes are first identified from the problem
specification. The high level cluster having the dominant attributes = security attributes
is first selected. If it is a high level cluster, then its sub-clusters are recursively searched
till the desired patterns are found.

6 Validation of Results

It is necessary to validate the quality of the output after clustering. Cluster validation is a
quantitative evaluation to assess the quality and reliability of clustering results. Cluster
validation measures are of the following types:

i. Internal validation by evaluating the quality of clusters using only the data and
without reference to external information.
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Table 2. Sample cluster details

Patterns | Dominant attributes
Lifecycle Stage | Quality Attribute | Threat Trust Boundary | Type
12 Design Availability Denial of Service | Core Generic
58.33% 91.67% 100% 66.7% 83.33%

COMPARATOR CHECKED FAULT TOLERANT SYSTEM, LOAD BALANCER,
TANDEM SYSTEM, TEST ON A STAGING SERVER, FAIL SECURELY, KEEP
SESSION DATA IN CLIENT, KEEP SESSION DATA IN SERVER, PATCH
PROACTIVELY, SAFE DATA STRUCTURE, SECURE ASSERTION, SESSION
FAILOVER, SMALL PROCESSES

ii. External validation measures the results of the clustering with externally supplied
results such as class labels.

Since there are no class labels available, it is not possible to carry out external
validation. Internal validation measures the “cohesion” and “separation” of clusters.
Cohesion (Within-cluster Sum of Squares or WSS) measures how close the data points
are within a cluster while Separation (Between-cluster Sum of Squares or BSS) measures
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how distinct the clusters are from one another.

WSS = Zi Zxa_ (x —m;)? 9)

BSS = Zi [Ci|((m — m;)? (10)

where |Cil is the total number of points in cluster Ci, m; is the centroid of Ci and m is the
centroid of the data set. The Silhouette coefficient combines cohesion and separation.
The Silhouette Coefficient s for a single sample is given as:
b—a
§ = ——— (11)
max(a, b)

Here, ‘a’ is the mean distance between a sample and all other points in the same cluster
and ‘b’ is the mean distance between a sample and all other points in the next nearest
cluster. The Silhouette Coefficient for the dataset is the mean of the Silhouette Coefficient
for each sample. The desired value is 1 and the worst value is —1. Values near 0 indicate
overlapping clusters. Negative values indicate that a sample has been assigned to the
wrong cluster.

The Python sklearn.metrics.silhouette_scoregijves the Silhouette
coefficient for the given clustering. The sample code is:

from sklearn import metrics
metrics.silhouette score (X, clustering.labels , met-
ric="'jaccard')

For the present work, the Silhouette coefficient value is 0.53797650221983363 which
indicates fairly good clusters.

7 Conclusion

Design patterns present solutions to frequently occurring problems in software design.
It is crucial to select and apply the right design patterns to solve a problem. The unorga-
nized pattern landscape makes this task very complex. This paper presents a knowledge
discovery approach to facilitate fast navigation through the pattern landscape and retrieve
patterns which satisfy specific requirements. The model uses the process of knowledge
discovery on the pattern data to extract useful relations and groups of patterns to enable
users to select and apply patterns. The above model applied to security pattern data yields
promising results in the form of pattern clusters and their dominant attributes which aid
in pattern selection. As a future direction, the model will be applied on other design
patterns.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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