®

Check for
updates

Benchmarking of Various Multicore Processors
with Different Operating Systems

R. Kannadasan!, A. S. Anakach(&), N. Prabakaran', A. Krishnamoorthyl,
and S. Ambika?

1 SCOPE, VIT University, Vellore, Tamilnadu, India
{kannadasan.r,krishnamoorthy.arasu}@vit.ac.in
2 Department of Information Tecnology, E.G.S. Pillay Engineering College, Nagapattinam,
Tamilnadu, India
anakatharasan@gmail.com

Abstract. Benchmarking is the process of running programs and different heavy
operations to measure the relative performance of various systems. With this
project, we aim to design a tool and compare different systems with multicore
processors and different operating systems. We will use various python libraries
and user defined functions to perform demanding image processing and mathe-
matical tasks to stress the systems. This can be used to get an idea of how well
optimised the operating system is for the given hardware.

Keywords: Bench Marking - Multi Core Processors - Python Operating
Systems and Libraries

1 Introduction

Several benchmarking applications are available online for benchmarking a system.
One of the most popular benchmarking platforms is Geekbench. UserBenchMark is
also another known platform. However, Geekbench is a synthetic benchmark and the
results from the tests do not indicate real world performance of the system as such. Also,
it is not open source, and there are companies that have exploited the lack of visibility
of the code to make it boost the scores of their devices in the eyes of the customers.
UserBenchMark has been known to be biased towards systems that feature components
from Intel. Their scores also are largely centred around single core performance. Our aim
is to create a simple benchmarking tool that assesses the performance of the processor
(and the operating system) with the help of some tasks that stress the system. Both single
core and multi-core intensive tasks will be present. It is also important that the tool is
open source, so that the scores cannot be abused to cater to some company.

2 Literature Survey

We conducted a literature survey and analysed the results to get a better understanding
on the current and past state of benchmarking applications and techniques. The brief
summary of each of the papers are condensed into this literature survey.

© The Author(s) 2023
S. Tamane et al. (Eds.): ICAMIDA 2022, ACSR 105, pp. 439-447, 2023.
https://doi.org/10.2991/978-94-6463-136-4_37

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-136-4_37&domain=pdf
https://doi.org/10.2991/978-94-6463-136-4_37

440 R. Kannadasan et al.

[1] initially talks about how most benchmarks are weighted towards hardware and
CPU performance, rather than the operating system the test is being run on. A good
benchmarking program might be able to help developers get feedback about the changes
they make without needing to actually get real feedback from users. [1] then discusses
about some legacy benchmarks such as LMbench, UnixBench and HBench-OS, which
have not been updated since the 1990s. Some reasons are given for why it makes more
sense to use a more modern type of benchmark, with examples of suitable candidates
for the same. Finally, there is a discussion on all the performance information that an
ideal benchmark should provide.

[2] explains the meaning and importance of the word “Benchmarking”, and answer
why the research on benchmarking is still important and required in today’s modern
era. [2] showcases a generic high level benchmarking architecture. The possibilities of
different benchmarking software’s are depicted through “benchmarking cloud services”
and “benchmarking cognitive radio solutions”. [2] clarifies the meaning and reason for
benchmarking computers and computer networks in the domain of FIRE projects and
highlights several benchmarking problems and challenges still to be looked into using
the examples of “benchmarking application modelling” and “benchmarking cognitive
radio benchmarks”.

[3] uses the standard benchmark known as wPrime to measure the multithreaded
environment. wPrime benchmark suite allows the users to save the runtime score and
sends it to its own website as well. The runtime scores are used for extra evaluation
of the benchmark. Four different processors were compared in [] Intel Core i3, Intel
Core 2 Duo, Intel Pentium IV and the Asus atom processor. The runtime score under
multithreaded benchmark is obtained. The results found showed that the performance of
multi-core processors is superior in a multithreaded situation. The multi-core processors
will give superior results as compared to the single core Asus atom or Intel Pentium IV
processors. However, it was observed that when few threads were used the performance
of the Intel Core 2 Duo was superior to the Intel Core i3 processor.

[4] compares the performance achieved and results of their standardbenchmarks
executed on selected architectures for various sets of data to identify all the possible
bottlenecks. [4] discusses the most ideal practices and best suggestions for parallel
software development to aid users to make a conclusion in advance and then select
appropriate solutions to accelerate the execution of their applications. [4] analyses the
optimized benchmarks of the 2013 CPU and GPU platforms using complex methods
determined by the JPEG 2000 standard confirmed that, sometimes some parts adjust
better to GPU architecture and other parts are efficiently executed on multi-core CPUs.

[5] describes the development of a set of benchmark programs which allows an
individual to test and differentiate processors based upon the performance of the micro-
architecture itself, independent of workload characteristics. The benchmark suite is com-
prehensive in its coverage of important hardware features that impact performance. The
benchmarking programs are run directly on the hardware as opposed to processor sim-
ulators. The programs are designed to stress the system. The benchmarks were run on
systems representing a different type of micro-architectures and developed an approach
of the mathematical kind to analyse the results.

Benchmarking of Various Multicore Processors 441

[6] discusses about the history of benchmarking tools in the context of evaluation of
computer performance. Certain standard benchmark problems, synthetic jobs, workload
mapping, application benchmarking as well as the advantages and disadvantages of
various benchmarking techniques. The early benchmarking (Standard EDP Reports)
is touched upon, with the early definition of benchmarks. They had some weaknesses
such as the biases of the manufacturers claiming speeds of their products. Application
benchmarks are discussed next. The proposed systems run the routines and there is
consideration of the total throughput time. Synthetic programs attempt to mimic actual
applications. Adjustable parameters can be used to account for changes in application and
size. Finally, it moves on to the Standard Benchmark Library, which has the capability
to simplify the evaluation of computer performance and provides a cost effective and
reliable means to differentiate between the competition.

In [7], the AES algorithm was modified by removing the Mix Columns function
and it was replaced with bit permutation because of its high computational requirement.
The results of [7] show that the modified AES was able to increase the efficiency and it
also had a greater avalanche effect. [7] compared the performance of the standard (Mix
Column) and modified AES (Bit Permutation) algorithm by encrypting both text files
and images. Both algorithms were evaluated based upon the encryption time, CPU usage
and avalanche effect. [7] concluded that the modified AES has greater efficiency than
that of the standard AES as it had a faster encryption time in text files as well as images.

[8] discusses the various techniques used in benchmarking in RTOS systems. The
goal with these benchmarking techniques is to get the highest throughput and making
sure the allocation is as fair as possible. There should not be a situation in RTOS where
a lower priority task is executing when the task with a higher priority is waiting in the
Queue. RTOS differs from general operating systems in that RTOS forces a strict priority
of tasks. Higher priority tasks are given the ability to pre-empt a task with a lower priority
that is currently executing. Advanced RTOS will be capable of high-speed processing
of data. This will require high time bound processing, which is not really available
currently. This shows the need to improve real-time mechanisms for the future.

[9] provides an insight into the benchmark development criteria as employed be the
SPEC and TPC consortia. It provides a definition for benchmarks and rating tools, dif-
ferentiating between benchmarks for competitive purposes and rating tools for research
purposes, regulatory programs, or as part of a system improvement and development
approach. [9] explains the differences between the three major types of benchmarks:
specification-based, kit based, and hybrid. Finally, it describes the major quality criteria
of industrial benchmarks: relevancy, repeatability, fairness, verifiability, and usability,
including examples on how the criteria are ensured in standardized benchmarks.

[10] gives details on how to perform the Image processing tasks in Python program-
ming language, so that it becomes easy for all to understand the concepts related to it. [10]
also provides the use of Python Image Library (PIL), using which we can prominently
develop the Python based image processing software and can be useful for number of
applications like remote sensing, agriculture, space centre, satellites, medical and health
sciences, etc. Thus, it can be concluded that Python and Image processing proves to
be the better combination for learning, developing and understanding the capabilities

442 R. Kannadasan et al.

provided in it. It is also known that image processing tasks are an effective way to stress
the system and compute its performance.

3 Proposed System

Our benchmark provides a set of simple tests that range from image processing tasks
to mathematical tasks and finally ends with compression and encryption/decryption of
images and text. It also uses Streamlit to provide a simple but effective interface to
display the results from the tests. The time taken for each test as well as the total time
for the test is displayed in the window. The image processing tasks involve blending and
warping images, edge detection, gaussian blur, erosion and dilation. The mathematical
tests involve matrix multiplication and a repeated factorial test. The last two tests are
image and text encryption/decryption and image compression. There is specific emphasis
on the difference between single core and multi core systems in some tests such as matrix
multiplication, and the number of cores a system has is taken into consideration. When
the test is run on the same system running different operating systems, the results vary,
which shows how well optimised the operating system is for the given hardware. So this
benchmark is not only a test for the hardware of the system, but also a test of how the
operating system handles the tasks given to it. Tests like matrix multiplication of higher
order matrices tend to utilize 100% of the CPU cores (Fig. 1).

4 Methodology

As the program is set to run, a series of tests are conducted which perform certain
computations that are CPU intensive. These tests are specially designed to stress the
system. The time for execution is saved and used as the means to compare the systems.
The tests being used are:

1. BlendandWarp

In the blend and warp test, the program reads two pre loaded images. Then the image
is blended and stored as a temporary file. This file is read again in gray scale and then it
performs:

a) Vertical wave

b) Horizontal wave

¢) Concave effect

d) Both vertical and horizontal wave

2. Edge Detection

In the edge detection test, the program loads up a set of images that are part of a
separate folder. The program then uses algorithms to detect edges in the image (Fig. 2).

Benchmarking of Various Multicore Processors 443

START

|

‘ BLEND & WARP 1

=

‘ EDGE DETECTION |

4

‘ GAUSSIAN BLUR |
EROSION & |
DILATION

o

MATRIX
MULTIPLICATION

|

FACTORIAL

IMAGE
ENCRYPTION &

IDECRYPTION USING!
AES

v

IMAGE
COMPRESSION

v

¢ DISPLAY TOTAL "
_ TIMETAKEN)

~ 7

Fig. 1 Flow diagram of the proposed system

Fig. 2 Edge detection test

444 R. Kannadasan et al.

Fig. 3 Gaussian blur test

Fig. 4 Erosion and dilation test

3. Gaussian Blur

For the Gaussian Blur test, the program loads up a predefined image and performs
Gaussian Blur on it. This is done through functions defined in the OpenCV library for
python (Fig. 3).

4. Erosion and Dilation

For the erosion and dilation test, we once again make use of the OpenCV library
which has the necessary functions to perform the test (Fig. 4).

Benchmarking of Various Multicore Processors 445

X ax +by+cz+d
'[y _|lex+fy+gz+h
V4
1

~ & &

ix +jy + kz + 1
1

Fig. 5 Matrix multiplication test

S ~ 0 Q
O~ T
o xQ 0
-

51=5(4)(3)(2)(1)=120

Fig. 6 Factorial calculations test

5. Matrix Multiplication

The multiplication test uses Python’s multiprocessing library as well as NumPy to
perform mathematical operations that stress all CPU cores at once to determine the
multitasking capabilities of it. The multiplication is run several times as to increase the
time for computations. A large matrix size has also been used to stress the system more
(Fig. 5).

6. Factorial Calculations

The factorial test calculates the factorial of a large range of numbers. This test also
creates large arrays and uses them to calculate the factorials. The factorial is calculated
multiple times to increase execution time and stressing the system more (Fig. 6).

AES Encryption

In this test a sample text and image are encrypted and decrypted using a modified
version of the Advanced Encryption Standard algorithm. The MixColumn function has
been replaced by bit permutation. This test utilizes file handling to read sections of text
and images to encrypt and decrypt them. It has high requirements and is able to stress
the system (Fig. 7).

7. Image Compression

In this test, an image will be compressed multiple times. Python libraries will be used
to implement this. It will stress the system making it ideal to be used in a benchmark
tool (Fig. 8).

446 R. Kannadasan et al.

AES Design

128bit

192bit Secret Key Plain Text
2560 -~

128 bit
19261
256 bit

Fig. 7 AES encryption process

Compressed Original

Fig. 8 Image Compression test

When each test is performed, the time taken to run the test is recorded and the score
or total time is calculated. The sum of the scores of all the tests is saved and displayed
to the user.

5 Results and Conclusion

The benchmark tool being developed has taken several ideas from the variety of literature
papers surveyed. It will stress the CPU with different tasks such as blend and warp, edge
detection, gaussian blur, erosion and dilation, matrix multiplication, factorial calculation,
modified AES text and image encryption and decryption and image compression. Various
CPUs with different operating systems are compared to determine which configuration
performs better. It also helps illustrate how CPUs and operating systems have evolved
with time and will keep developing in the future. Benchmarking tools will also need to
keep up with the times and increase the complexity of the tests stressing the systems.

Benchmarking of Various Multicore Processors 447

References

10.

Hatt, Nicholas. “Benchmarking Operating Systems.” (2008).

. Bouckaert, Stefan &Vanhie-Van Gerwen, Jono &Moerman, Ingrid & Phillips, Stephen

&Wilander, Jerker. (2011). BONFIRE: benchmarking computers and computer networks.

. Madheswari, Neela& Banu, R.S.D.W.. (2011). Performance study of various processors using

multithreaded benchmark suite. 58. 378-383.

MitoszCiznicki, MichatKierzynka, Piotr Kopta, Krzysztof Kurowski, PawetGepner, Bench-
marking Data and Compute Intensive Applications on Modern CPU and GPU Architectures,
Procedia Computer Science, Volume 9, 2012, Pages 1900-1909, ISSN 1877-0509, https://
doi.org/10.1016/j.procs.2012.04.208.

Deshmukh, Varad, Nishchay S. Mhatre and Shrirang K. Karandikar. “Techniques for
Benchmarking of CPU MicroArchitecture for Performance Evaluation.” (2011).

. Lewis, Byron C., and Albert E. Crews. “The Evolution of Benchmarking as a Computer

Performance Evaluation Technique.” MIS Quarterly 9, no. 1 (1985): 7-16. https://doi.org/10.
2307/249270.

Gamido, Heidilyn&Sison, Ariel & Medina, Ruji. (2018). Modified AES for Text and Image
Encryption. 11. 942-948. https://doi.org/10.11591/ijeecs.v11.i3.pp942-948.

. Vetrivel, P., KittappaShanmugaShanmuga and S. S. Krishnamurthy Babu. “A Survey of

Benchmarking Techniques for Real-Time Operating System Performance Analysis.” (2014).
von Kistowski, Jéakim& Arnold, Jeremy &Huppler, Karl & Lange, Klaus-Dieter & Henning,
John & Cao, Paul. (2015). How to Build a Benchmark. ICPE 2015 - Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering. https://doi.org/10.1145/
2668930.2688819.

Harshada, Ms &Snehal, &Shitole, Sanjay &Pranaya, Mhatre &Suchita, Kadam & Shweta,
Ghanate&Kurle, Darshana. (2016). Python Based Image Processing.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.procs.2012.04.208
https://doi.org/10.2307/249270
https://doi.org/10.11591/ijeecs.v11.i3.pp942-948
https://doi.org/10.1145/2668930.2688819
http://creativecommons.org/licenses/by-nc/4.0/

	Benchmarking of Various Multicore Processors with Different Operating Systems
	1 Introduction
	2 Literature Survey
	3 Proposed System
	4 Methodology
	5 Results and Conclusion
	References

