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Abstract. Hyperspectral imaging technique used to capture image of an objects
in multidimensional form it uses technology of imaging and spectroscopic com-
bined to capture multidimensional images. With Hyperspectral imaging (HSI)
we can study, inspect external and internal characteristic of any Object. As each
and every characteristic of any object has a unique spectral signature which is
formed based on variations of reflectance or emittance of object material. Due to
non-destructive nature of Hyperspectral imaging (HSI) now a day it is penetrate
into food production, medical diagnosis, precision agriculture, pharmaceuticals,
recycling, and environmental monitoring industries.We are going to review differ-
ent HSI classification methods based on traditional, deep learning & pre-trained
classifier.
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1 Introduction

Classification is a fundamental technique in Hyperspectral images (HSIs) that assigns a
label to each pixel based on its properties. Hyperspectral image classification (HSI) is
a technique were similar pixels are clustered into same category. Hyperspectral image
classification can be done by either based on pixel information or based on the use of
training samples. HSI Images are categorised on the bases of pixel data as Knowledge-
based, Sub-Pixel, Per-field, Contextual, Multiple Classifiers or Per-Pixel.

The hyperspectral image classification technique still faces a number of hurdles due
to resemblance between the spectra and the mixed pixels and the multi-dimensional
properties of hyperspectral data, below are few issues that need more attention:

• Variability in Spatial for spectral data. The spectral data of hyperspectral pictures
get modified in spatial dimension as a result of factors like atmospheric conditions,
sensors, the composition and distribution of ground features, and the surrounding
environment. This results in the ground feature corresponding to each pixel not being
a single ground feature.

• Hyperspectral image data are highly dimensional. The equivalent spectral information
dimension of hyperspectral images is up to hundreds of dimensions because hyper-
spectral images are created by using spectral reflectance values gathered by airborne
or space-borne imaging spectrometers in hundreds of bands.
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• Missing samples with labels. IN real-world applications, it is quite simple to get
hyperspectral image data, but it is very challenging to acquire label information that
looks like a images. Consequently, the categorization/classification of hyperspectral
images frequently encounter a paucity of labelled samples.

• Image calibre, the interference of background elements and noise during the capture
of hyperspectral images has a significant impact on the quality of the data that is gath-
ered. The categorization/classification accuracy of hyperspectral images is directly
influenced by the images quality.

HSI images can be categorized as Supervised, Unsupervised and Semi-supervised
depending on training classification model.

2 Machine Learning Methods

2.1 Supervised Machine Learning

Building amodel from labelled training data to aid in classification or prediction of future
data is what supervised learning entails. Supervised samples are those with a known
desired output. To put it another way, data labelling is used to direct the machine’s
search for the exact desired pattern. Regression and classification are subdomains of
supervised learning.

Supervised learning tools include:

• Artificial Neural Networks
• Decision Trees
• Random Forest
• Support Vector Machines
• k-Nearest Neighbour
• Logistic Regression
• Nave Bayes
• Linear Discriminant Analysis

2.2 Unsupervised Machine Learning

Unsupervised learning entails working with unlabelled data or unknown data structures.
In the absence of a known outcome variable, it investigates the data structure to obtain
meaningful information. Using of unsupervised learning we can perform clustering and
dimensionality reduction operation.

Unsupervised learning tools include:

• k-means clustering
• Independent Component Analysis (ICA)
• Principle Component Analysis (PCA)
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2.3 Semisupervised Machine Learning

Semisupervised classification trains the classifier using both labelled and unlabelled
data. It fills in the gaps left by the absence of supervised and unsupervised learning.
The same kind of labelled and unlabelled samples on the feature space serve as the
foundation for this classification approach. Closer hypotheses, the classifier built with
these two examples has superior generalisation.Unlabelled segments of HSI data consist
of all properties of target data which is systematically capture. To increase classification
accuracy, semisupervised learning blends labelled data with unlabelled data.

Semi-supervised learning tools include:

• Semi-Supervised Support Vector Machines(SVM),
• Graph Based Semisupervised
• Self-Training
• Collaborative Training
• Triple Training

3 Hyperspectral Depiction

1 Dimension spectral and 2 Dimension spatial features combindly of a sample, is used
to define hyperspectral data. A 3 Dimension hyper cube mathematically expressed as

x ∈ Rb×(n×m) (1)

where,
b represents total number of spectral bands.
n and m are the spatial components, or breadth and height, respectively. The

hyperspectral data is represented as shown in Fig. 1.

3.1 Spectral Depiction

Spectral depiction is a process by isolating each pixel array fromother pixels a processing
is taken based on spectral signatures, it means pixel is characterised only in spectral space
xi ∈ Rb, here b represent exact count of spectral channels or just appropriate spectral
bands which are extracted by using dimension reduction (DR) technique. In order to
succeed with better class separability, without extensive loss of useful data and avoid
redundancy, a lowdimensional imageofHSI is considered instead of considering original

Fig. 1. Hyperspectral Cube.
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spectral bands while data processing. Dimension Reduction for spectral depiction of HSI
data can be supervised or unsupervised.

Unsupervised
Converting the high dimensional HSI data into a low dimensional HSI data without any
class label data, below are few unsupervised methods.

• Principle component analysis (PCA)
• Locally linear embedding

Supervised
Converting the high dimensional HSI data into a low dimensional HSI data need labelled
data to learn data distribution, below are few unsupervised methods.

• Linear discriminant analysis (LDA)
• Local Fisher discriminant analysis (LFDA),
• Local discriminant embedding
• Nonparametric weighted FE.

3.2 Spatial Depiction

Spectral Depiction has some limitation due to which classification accuracy is impacted,
to overcome this limitation, Spatial Depiction approach is evaluated by extracting the
spatial data of the HSI image elements (pixels), here HSI image elements in each band
are characterised in the form of a array, xi ∈ Rn×m Spatial data has more correlation due
to this there is greater likelihoods of image elements (pixels) neighbouring each other
belonging to same class. In spectral depiction approach neighbouring pixels data is used
and this data is extracted by using Kernel or pixel-centric window process.

Below few processes to extract spatial data from HSI cube.

Morphological Profiles
Morphological profiles are used to extract geometrical properties of spatial data from
HSI Image; there are different extensions of morphological profiles for analysis of HIS
data as below.

• Extended morphological profiles
• Multiple Structure Element morphological profiles
• Invariant attributes profiles

Texture Features
Texture features provide spatial contextual data of HSI, It can be obtained from texture
of the HSI image. Some of below methods are used for texture features extraction.

• Gabor filter: Gabor filter texture exploration method is used for various scales and
orientations data extraction.
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• Local Binary Pattern: Local Binary Pattern texture exploration method is used for
rotation invariant spatial texture image

• Gray Level Co-occurrence matrix: spatial variability of HSI by exploiting the relative
positions of neighbourhood pixels

DNN-Based Methods
DNN-based methods are also used to extract spatial data from HSI. In DNN based
approach pixels are considered image spot instead of considering it as a spectral array.

The Spatial data of HSI can also be obtained by combining above said methods.
Ex. RNN based HSI Classifier can be created by extracting local spatial sequential

features by using Gabor filter and differential morphological profiles method combined.

3.3 Spectral and Spatial Depiction

Both the spectral and spatial information of the data are utilised together in this represen-
tation. These methods process a pixel vector based on spectral properties while taking
spatial context into account. Below are two different process by which simultaneously
uses spectral and spatial representations of HSI.

• Processing the 3-Dimention HSI cube to preserve the real structure and relative
information

• Amalgamate spatial information and spectral information.

All of these HSI depiction are used extensively for HSI classification in the litera-
ture. The majority of DNNs for pixel-by-pixel classification used HSI spectral depic-
tion. However, numerous attempts have been made to include the spatial information in
order to improve the shortcomings of spectral depiction. Combining the use of spatial
and spectral information has recently become very popular and enhanced classification
accuracy.

4 Hyperspectral Image Classification Methods

4.1 Traditional HSI Classification Methods

Support vector machine (SVM), random forest, and other are conventional HSI classi-
fication techniques. The Hughes phenomenon occurs frequently in the HSI categoriza-
tion/classification because to the HSI spectrum. In order to reduce the dimensionality of
HSI, researchers offered a number of techniques, including PCA, PPCA, and ICA. By
successfully removing the redundant information in HSI data, dimensionality reduction
improves the extraction of HSI characteristics. When using the classic HSI classification
approach, the intermediate parameter selection is based on prior experience, which leads
to an inadequate classification result and robustness.



Hyperspectral Image Classification: A Review 587

4.2 Deep Learning HSI Classification Methods

In contrast to conventional approaches, deep learning techniques may quickly change
model parameters via gradient descent and automatically learn features from HSI.Most
of the popular DL method are listed below.

• Auto - encoders
• Deep - belief - networks
• Recurrent - neural - networks
• Convolutional – neural- networks

4.3 Pre-trained Model HSI Classification Methods

A stored network that has already undergone training on a sizable dataset, generally for
a sizable image-classification job, is referred to as a pre-trained model. Either applies
transfer learning to adapt the pretrained model to a specific task, or use the model as
is.below are few popular Pre-trained model.

• AlexNet
• VGG16
• GoogleNet

5 Research Gap

Below are few research area were still more work need to be done.

• Manual feature extraction is used in the majority of machine learning algorithms used
for hyperspectral data analysis, which significantly increases computation time.

• Extraction of useful information from high-dimensional hyperspectral data is difficult.
• Classification of HSI data based on only considering spectral information has not
accomplished satisfactory classification results.

6 Conclusions

HIS datasets are huge and multifaceted it require dynamic more computing power &
memory for processing and classification.Cloud computing can provide an innovative
solution for processing such data as cloud computing provide greater scalability, flex-
ibility, sustainability & cost effective. Developing classification technique/model by
combining spatial information and spectral information for hyperspectral image classi-
fication will improve the classification accuracy using DL Pre-trained techniques and
make a significant contribution in the field of HSI classification. Most researchers have
investigated HSI data classification by focusing on individual spectral information rather
than combining spectral and spatial information, and they have created spectral infor-
mation classification approaches using a) logistic regression b) random forest classifier
c) support vector machine algorithm d) neural networks algorithm,etc. but the Classifi-
cation of HSI data based on only considering spectral information has not accomplished
satisfactory classification results.
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