
Jupyter Notebooks as Computational Thinking
Tools for Teaching and Lifelong Learning

in Biotechnology

R. Lebrón1(B), A. Ortiz-Atienza1, S. Bretones1, C. Capel1, F. J. Yuste-Lisbona1,
and A. Cámara-Artigas2

1 Center for Research in Agri-Food Biotechnology (CIAIMBITAL), University of Almeria,
04120 Almería, Spain
rlebron@ual.es

2 Dept. Chemistry and Physics, ceiA3, University of Almeria, 04120 Almería, Spain

Abstract. To remain operational during the COVID-19 pandemic, educational
institutions had to rapidly migrate to online learning, affecting 1.6 billion students
worldwide. This unexpected scenario required extra effort for teachers and stu-
dents, but it also provided an opportunity to encourage students to develop new
skills, such as computational thinking, and to foster lifelong and autonomous learn-
ing. Computational thinking is not only one of the cornerstones of programming,
but scientists from all disciplines use it to solve problems even when they are not
programming. Literate programming is a paradigm that facilitates the acquisition
of these skills by combining explanatory texts in natural language with executable
code snippets and their output to familiarize a broad public with how code works
and the reasoning behind it. These tools are known as interactive notebooks, with
the Jupyter Notebook platform standing out for its simplicity, support for multiple
programming languages, and ability to be used online. In this paper, we share our
experience with Jupyter notebooks for teaching biotechnology, highlighting the
pedagogical patterns we have found most useful to foster computational thinking
among students with no prior programming background and providing tips to help
extend the use of these tools in teaching.

Research Contribution: In fast-paced, ever-changing research and industries,
the ability to face new challenges is essential. To assist biotechnology students in
becoming problem solvers and critical thinkers, we propose an approach based on
the development of computational thinking skills using interactive notebooks as
training materials.

Keywords: Literate programming · Computational thinking · Lifelong
learning · Online teaching · Biotechnology

1 Introduction

The onset of the COVID-19 pandemic in 2020 meant the disruption of educational sys-
tems in virtually every country, as the rapid spread of SARS-CoV-2 forced the decision

© The Author(s) 2023
L. Daadaoui et al. (Eds.): ICESD 2022, AHSSEH 5, pp. 167–175, 2023.
https://doi.org/10.2991/978-2-38476-036-7_16

http://crossmark.crossref.org/dialog/?doi=10.2991/978-2-38476-036-7_16&domain=pdf
https://doi.org/10.2991/978-2-38476-036-7_16


168 R. Lebrón et al.

to close universities and schools, affecting nearly 1.6 billion students in over 190 coun-
tries (i.e., 94% of the world’s students) [1]. This unexpected situation resulted in a quick
migration to online education via various platforms such as Blackboard (https://www.
blackboard.com/),GoogleClassroom(https://classroom.google.com/),MicrosoftTeams
(https://www.microsoft.com/microsoft-teams/), Canvas (https://www.instructure.com/),
and VEDAMO (https://www.vedamo.com/). Adapting to this new educational environ-
ment was a challenge for educational institutions [2], but also provided a chance to
encourage students to gain new abilities, such as computational thinking [3], and to
foster lifelong and autonomous learning [4].

Computational thinking has been highlighted as a set of problem-solving skills that
everyone should learn and use [5], and somenon-profit organizations, such as the Interna-
tional Society for Technology in Education (ISTE) and the Computer Science Teachers
Association (CSTA), promote its use in K-12 education [6]. These skills are founded on
the following principles [7]:

• Abstraction: representing only the essential aspects of reality that are required to solve
a problem.

• Pattern recognition: identifying and generalizing different cases.
• Decomposition: breaking down problems into simpler ones that can be solved
separately.

• Algorithm design: defining each task as a set of step-by-step instructions.

Although these skills are tightly linked to programming, having a programming
background is not required to put them into practice, and they should be understood
as a cognitive process that can benefit virtually any human activity [8]. Computational
thinking has been supporting the development of molecular biology for decades, with
the discovery of the genetic code in the 1960s [9] likely being one of the first milestones
involving it, because the step-by-step explanation of how the sequence of a mature
messenger RNA is translated into a protein sequence is, in fact, an algorithm. Of course,
computational thinking is one of the foundations around which programming is built
and is an excellent spot to start learning it. Furthermore, it is preferable to have tools
that bring the reasoning behind programming closer to the broad public to facilitate the
learning of computational thinking. We believe that literate programming tools can meet
this need.

Literate programming is a paradigm that aims to make program code more under-
standable by providing detailed explanations of how it works. Literate programming
tools are used to generate what are known as interactive notebooks, which interleave
explanatory text in natural language (often accompanied by mathematical notation,
images, audio, or video) with executable code snippets and their output, which may
include text, images, or tables among others (Fig. 1) [10]. Jupyter Notebook (https://jup
yter.org/) is the most extensively used literate programming tool among programmers
and scientists worldwide, and it is renowned for supporting many prominent program-
ming languages, including Python (https://www.python.org/), R (https://www.r-project.
org/), Julia (https://julialang.org/), JavaScript (https://www.javascript.com/), and C/C++
(https://isocpp.org/) [11]. The explanatory text can be enriched by using different for-
mats and structuring it in sections thanks to the use of theMarkdown lightweight markup

https://www.blackboard.com/
https://classroom.google.com/
https://www.microsoft.com/microsoft-teams/
https://www.instructure.com/
https://www.vedamo.com/
https://jupyter.org/
https://www.python.org/
https://www.r-project.org/
https://julialang.org/
https://www.javascript.com/
https://isocpp.org/


Jupyter Notebooks as Computational Thinking Tools 169

language (https://daringfireball.net/projects/markdown/). It can be written in any human
language that can be transcribed into one of the 161 writing systems currently supported
by the Unicode encoding standard (https://unicode.org/), and it can even include emoji.
In addition, code snippets written in the LaTeX document markup language (https://
www.latex-project.org/), such as formulas and vector graphics, can be included in the
explanatory text. Users can access Jupyter notebooks online without installing anything
on their computers by using a modern web browser and regardless of the operating
system, thanks to platforms such as JupyterHub (https://jupyter.org/hub) and Binder
(https://mybinder.org/). Furthermore, a modified version of Jupyter Notebook called
Google Colab (https://colab.research.google.com/), which is available online for free,
allows users to access files hosted in their Google Drive (https://drive.google.com/)
accounts and perform version control of their notebooks through GitHub (https://github.
com/). Since it is a cloud computing service, Google Colab is probably one of the most
suitable options for teaching, as educational institutions do not need to have their own
Jupyter servers (e.g., their own JupyterHub servers). In addition, the loading times of
this platform are much shorter than those of Binder (which is also a cloud computing
service), and it has the extra advantage of being able to store both notebooks and input
and output files in Google Drive.

As biotechnology teachers and researchers, we are aware of the rapid growth of our
field in recent decades, as well as the fact that no single curriculum can cover all the
current or future skills in demand in industry, and we strive to help students become
lifelong learners, critical thinkers, and problem solvers. Our students do not take any
courses with significant computational content until the bioinformatics subject in the
third year of their biotechnology degree, and most students take this course with no
prior programming knowledge. For this reason, we have to make an extra effort to help
our students develop mathematical and computational skills, which are increasingly
in demand in both research and industry but which have historically been neglected
in biotechnology education [12]. We found Jupyter notebooks to be useful tools for
teaching computational thinking skills and have developed our own notebooks as well
as adapted third-party notebooks to enrich our students’ training in mathematical and
computational skills applied to the field of biotechnology. Some examples include our
in-house notebook for detecting DNA mutations that cause phenotypes of interest using
mapping-by-sequencing methodology [13] as well as our simplified and adapted version
of the third-party notebook ColabFold [14] for predicting the 3D structure of proteins
using deep learningmodels based on their amino acid sequence.We designed these note-
books to be self-contained, so that students always have explanations of key concepts,
objectives, and methodology at their disposal, and so that the notebooks can be used in
both face-to-face and online sessions, as well as for autonomous learning. Using Jupyter
notebooks is also a good opportunity to introduce our students to both Python pro-
gramming (an easy-to-learn, high-level, general-purpose programming language) and
lifelong learning, as there is a wealth of free educational resources that are available in
this format.

https://daringfireball.net/projects/markdown/
https://unicode.org/
https://www.latex-project.org/
https://jupyter.org/hub
https://mybinder.org/
https://colab.research.google.com/
https://drive.google.com/
https://github.com/


170 R. Lebrón et al.

Fig. 1. A notebook example with text, code, and output cells.

Here, we share our experience with Jupyter notebooks for teaching biotechnology,
indicating the pedagogical patternswehave foundmost helpful in promoting active learn-
ing of computational thinking among our students with no prior programming knowl-
edge, and providing a collection of tips to assist other teachers who want to incorporate
these tools into their lessons.

2 Method

If properly designed, Jupyter notebooks are an excellent companion to lectures and can
replace traditional educationalmaterials, such as static textbooks and slides. Each Jupyter
notebook we use for teaching biotechnology is self-explanatory, limited to a single topic
related to previous lectures and designed to put theoretical concepts into practice. Most
of our students have no prior programming experience, but code is an effective formalism
for expressingproblem-solving strategies that are basedon computational thinking, sowe
expose our students to code written in Python and teach them how to read it, understand
it, and express its meaning in their own words. To facilitate the learning process, our
notebooks are designed using different pedagogical patterns [15] that have previously
been described by Barba et al. [16]:

• Shift-Enter for the win. This is themost passive approach, but it serves as a preparation
for the other approaches. It is based on using the notebook as a textbook. The teacher



Jupyter Notebooks as Computational Thinking Tools 171

runs from top to bottom of the notebook, executing each cell (by pressing shift +
enter) at the same time as the students, while explaining the code, the abstractions
behind it, and the interpretation of the results. The experience can be greatly enriched
by using widgets that allow students to modify parameters to alter the results.

• Tweak, twiddle, and frob. We give students a complete notebook and ask them to
change specific aspects of the code and interpret the changes in the results. We want
students to understand how the code works and the relationship between parameters,
input data, and results.

• Fill in the blanks. We give students a complete notebook with only a few small gaps
to fill in. These gaps are accompanied by hints in the form of code comments, and
the notebook includes tests to allow students to confirm whether their solutions are
correct. Our aim is to get students to focus on a specific aspect of the workflow.

• Bug hunt. We give students a complete notebook with deliberate errors that they must
find and correct. They are not given any hints, but the notebook includes tests to allow
students to confirm whether their solutions are correct. Our aim is for students to gain
a better understanding of how the workflow as a whole works.

We chose these four pedagogical patterns because they are easy to implement both
in real-time sessions and for autonomous work, individually or in groups. Moreover,
despite their simplicity, these pedagogical patterns allow a wide range of exercises, such
as reading the code to try to understand how it works in general terms, examining specific
aspects of its design, or editing it to modify its operation. Due to its more introductory
and explanatory nature, we typically reserve the Shift-Enter for the win pedagogical
pattern for real-time face-to-face or online sessions, though it is also appropriate for
students to independently review the subject and key ideas before and after the lesson.
Regarding the other three pedagogical patterns, we use them for both classroomexercises
and homework.

3 Findings and Discussion

Jupyter notebooks are a new type of teaching material that stands out for its interactivity
and for being friendly for both the designers (i.e., teachers) and the users (i.e., students).
Furthermore, our students have found that using these notebooks is a handy way to
take notes and gather theoretical concepts, exercises, questions, and answers into a
single document. Jupyter notebooks are suitable for face-to-face, online, and autonomous
learning, but good practices must be followed to reap the benefits. Both the guide to
teaching and learning with Jupyter by Barba et al. [16] and the large-scale study on the
quality and reproducibility of Jupyter notebooks by Pimentel et al. [17] discuss good
and bad practices as well as anecdotes about using these tools in teaching and research.
Based on these previous works and our extensive experience using Jupyter notebooks
in biotechnology education, we have compiled a list of ten simple tips for making the
most of these tools and avoiding the most frequent issues:

i. Take care with the notebook’s title, structure, and length. Jupyter notebooks are
IPYNB files. Unfortunately, the notebook’s name is always the same as the file’s



172 R. Lebrón et al.

name, which can cause issues if the name is too long or contains certain characters.
For the IPYNB file, we recommend using a short name consisting only of alphanu-
meric characters and underscores and indicating the full name of the notebook in
the first cell using aMarkdown level 1 heading (e.g., # Making Phylogenetic Trees
in Python). We recommend using higher-level headings to define sections and
subsections to structure the document. Try not to let the depth of the explanations
decline throughout the document, as the final section of Jupyter notebooks tends to
be the least elaborate [17]. Regarding document length, we recommend creating
short, self-explanatory documents dealing with single topics. It is preferable to
have several short, related notebooks within the same directory than a single long,
confusing notebook.

ii. For each meaningful unit, use a single code cell. If several lines of code work
together to complete a task, group them in the same cell; otherwise, the students
may encounter execution errors. Also, avoid grouping lines of code that perform
different tasks in the same cell, as this may make it difficult for the students to
distinguish between each step of the algorithm. It is also critical to use Markdown
text cells before and/or after each code cell to explain how it works and how to
interpret its output.We recommend that comments within the code (i.e., comments
specific to the programming language being used) be reserved for hints to the
students on exercises that involve completing or correcting code.

iii. Check that the proper version of all dependencies is installed. It is critical that
you ensure that all the dependencies required by the students are installed in the
environment in which they will be working (e.g., Google Colab) and that the
version is the same as the one used to prepare the materials. Otherwise, include
the code or instructions for installing the dependencies at the very beginning of
the notebook (before importing them). We also recommend importing all required
dependencies at the beginning of the notebook, before the rest of the code cells
(and after the installation cells, if any).

iv. Examine the input files thoroughly. Ensure that all files required by students are
available online (via Google Drive shared folders or otherwise) and check their
completeness, formatting, and content. An incomplete or improperly formatted
file may cause confusion among students, reducing their engagement during the
rest of the session.

v. Before the lecture, rerun the notebook from beginning to end. This will assist you
in detecting both accidental errors, such as those caused by out-of-order or deleted
cells, and discrepancies between the environment in which the materials were
developed and the environment used by the students. Perform these checks ahead
of time, and then adapt or correct the notebook before sharing it with students.

vi. Check that your students understand key concepts and have feedback strategies.We
recommend spending a few minutes in the beginning and/or before the conclusion
of each session reviewing the most important aspects, such as subject-specific or
programming concepts, Python or Markdown syntax, or the use of Jupyter itself.
Remember that your students are just getting started as problem solvers. It is also
critical to prepare in advance for feedback strategies that are appropriate for the
teaching modality (face-to-face, online, or autonomous). For example, in face-to-
face sessions, students can be given sticky noteswith different colors andmeanings



Jupyter Notebooks as Computational Thinking Tools 173

(green: I finished the exercise; yellow: I am working on it; red: I got stuck), which
they can stick to their desks or the back of their computers. As a result, the teacher
can quickly assess the current situation of the class and decide how to proceed. In
the case of online sessions, students can be asked to copy and paste their proposed
solutions into private chats or share their notebookswith the teacher after they have
had a reasonable amount of time to solve the exercise. In the case of an autonomous
learning notebook, it is advisable to include self-assessment activities as well as a
solved version of the notebook that students can refer to if they get stuck.

vii. To explain abstract concepts, use metaphors. Metaphors are figures of speech
that help explain ideas or make comparisons by using representations of fictitious
objects or actions that somehow resemble the abstract objects or actions you are
trying to explain to your students. They have been shown to be helpful for teaching
computational thinking [18] and programming [19], but should be used with care
to avoid misunderstandings [20].

viii. Create functions and object classes to practice abstraction. When possible, break
problems down into simpler tasks and explain each of these tasks to your stu-
dents as if they were a separate problem. Using whatever resources that you deem
necessary, explain the abstract concepts underlying each task (e.g., drawing the
process often helps). Implement an example of this task step-by-step, then try
to derive other examples by modifying the code. To show how to automate this
task, abstract functions from the code examples and define object classes with
appropriate attributes representing the function’s input and output. It is sometimes
interesting to represent a task as an action that an object can perform (i.e., a method
of the object).

ix. Experiment with various pedagogical patterns until you find the best one for each
case. We have indicated those pedagogical patterns that we use most frequently
with our biotechnology students, but we strongly recommend you look at the
catalogue of pedagogical patterns elaborated by Barba et al. [16].

x. Share and reuse notebooks.We stand on the shoulders of giants. GitHub (https://git
hub.com/) and Kaggle (https://www.kaggle.com/) provide a plethora of free public
Jupyter notebooks that you can use directly, modify, or use as inspiration to create
your own notebooks. Make good use of them, and if possible, contribute your own
notebooks to the community.

It should be noted that this list of tips is empirical, open to further recommendations,
and broad enough to be applied to teaching contexts outside of biotechnology. We hope
that these tips, along with the official Jupyter Notebook documentation (https://docs.jup
yter.org/), will serve as a starting point for teachers of all disciplines interested in Jupyter
notebook design. Additionally, we have created a public GitHub repository (https://
github.com/rlebron-bioinfo/biotech-notebooks) with samples of open-source Jupyter
notebooks to aid in extending their use in education.

4 Conclusion

Interactive notebooks are flexible, user-friendly tools for introducing students of biotech-
nology and other disciplines who lack a strong background inmathematics and computer

https://github.com/
https://www.kaggle.com/
https://docs.jupyter.org/
https://github.com/rlebron-bioinfo/biotech-notebooks


174 R. Lebrón et al.

science to computational thinking and programming, which are becoming increasingly
important in both research and industry. Literate programming tools, particularly Jupyter
notebooks, have grown in popularity among programmers and scientists in recent years,
and they are also proving to be useful tools for supporting face-to-face and online teach-
ing. There is also an increasing number of online Jupyter notebooks that are designed to
aid in the acquisition of new skills, making them an excellent starting point for engaging
students in lifelong and autonomous learning, both of which are critical attitudes in an
ever-changing job market.

References

1. United Nations, ‘Policy Brief: Education during COVID-19 and beyond’, 2020. https://
unsdg.un.org/resources/policy-brief-education-during-covid-19-and-beyond (accessed Jun.
25, 2022).

2. S. Pokhrel and R. Chhetri, ‘A Literature Review on Impact of COVID-19 Pandemic on
Teaching and Learning’, High. Educ. Futur., vol. 8, no. 1, pp. 133–141, Jan. 2021, https://doi.
org/10.1177/2347631120983481.

3. V. Amnouychokanant, S. Boonlue, S. Chuathong, andK. Thamwipat, ‘Online LearningUsing
Block-based Programming to Foster Computational Thinking Abilities during the COVID-19
Pandemic’, Int. J. Emerg. Technol. Learn., vol. 16, no. 13 SE-Papers, pp. 227–247, Jul. 2021,
https://doi.org/10.3991/ijet.v16i13.22591.

4. F. Al Ghazali, ‘Challenges and opportunities of fostering learner autonomy and self-access
learning during the Covid-19 pandemic’, SiSal J., vol. 11, no. 3, pp. 114–127, Sep. 2020,
https://doi.org/10.37237/110302.

5. J. M. Wing, ‘Computational thinking’,Commun. ACM, vol. 49, no. 3, pp. 33–35, 2006.
6. International Society for Technology in Education and Computer Science Teach-

ers Association, ‘Operational Definition of Computational Thinking for K–12 Edu-
cation’, 2011. https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definit
ion_ISTE.pdf (accessed Jun. 25, 2022).

7. Y. Arencibia-Rodríguez-del-Rey, I. N. Cawanga Cambinda, C. Deco, C. Bender, R. Avello-
Martínez, and K. O. Villalba-Condori, ‘Developing computational thinking with a module of
solved problems’, Comput. Appl. Eng. Educ., vol. 29, no. 3, pp. 506–516, 2021, https://doi.
org/10.1002/cae.22214.

8. Y. Li et al., ‘Computational Thinking Is More about Thinking than Computing’, J. STEM
Educ. Res., vol. 3, no. 1, pp. 1–18, 2020, https://doi.org/10.1007/s41979-020-00030-2.

9. J. Domènech-Casal, ‘Cracking the genetic code: replicating a scientific discovery’, Sci. Sch.,
vol. 36, pp. 47–51, 2016.

10. M. B. Kery, M. Radensky, M. Arya, B. E. John, and B. A. Myers, ‘The Story in the Notebook:
Exploratory Data Science Using a Literate Programming Tool’, in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, 2018, pp. 1–11, https://doi.org/
10.1145/3173574.3173748.

11. H. Shen, ‘Interactive notebooks: Sharing the code’, Nature, vol. 515, no. 7525, pp. 151–152,
2014, https://doi.org/10.1038/515151a.

12. A. M. Caughman and E. G. Weigel, ‘Biology Students’ Math and Computer Science Task
Values Are Closely Linked’, CBE—Life Sci. Educ., vol. 21, no. 3, p. ar43, 2022, https://doi.
org/10.1187/cbe.21-07-0180.

13. F. J. Yuste-Lisbona, J. M. Jiménez-Gómez, C. Capel, and R. Lozano, ‘Effective Mapping
by Sequencing to Isolate Causal Mutations in the Tomato Genome’,Methods Mol. Biol., vol.
2264, pp. 89–103, 2021, https://doi.org/10.1007/978-1-0716-1201-9_7.

https://unsdg.un.org/resources/policy-brief-education-during-covid-19-and-beyond
https://doi.org/10.1177/2347631120983481
https://doi.org/10.3991/ijet.v16i13.22591
https://doi.org/10.37237/110302
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://doi.org/10.1002/cae.22214
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1038/515151a
https://doi.org/10.1187/cbe.21-07-0180
https://doi.org/10.1007/978-1-0716-1201-9_7


Jupyter Notebooks as Computational Thinking Tools 175

14. M.Mirdita, K. Schütze, Y.Moriwaki, L. Heo, S. Ovchinnikov, andM. Steinegger, ‘ColabFold:
making protein folding accessible to all’, Nat. Methods, vol. 19, no. 6, pp. 679–682, 2022,
https://doi.org/10.1038/s41592-022-01488-1.

15. D. Laurillard, Teaching as a Design Science, 1st ed. New York: Routledge, 2012.
16. L. A. Barba et al., ‘Teaching and learning with Jupyter’, 2019. https://jupyter4edu.github.io/

jupyter-edu-book/ (accessed Jun. 25, 2022).
17. J. F. Pimentel, L.Murta, V. Braganholo, and J. Freire, ‘ALarge-Scale StudyAboutQuality and

Reproducibility of Jupyter Notebooks’, in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), 2019, pp. 507–517, https://doi.org/10.1109/MSR.
2019.00077.

18. A. Manches, P. E. McKenna, G. Rajendran, and J. Robertson, ‘Identifying embodied
metaphors for computing education’, Comput. Human Behav., vol. 105, p. 105859, 2020,
https://doi.org/10.1016/j.chb.2018.12.037.

19. D. Pérez-Marín, R. Hijón-Neira, A. Bacelo, and C. Pizarro, ‘Can computational thinking
be improved by using a methodology based on metaphors and scratch to teach computer
programming to children?’, Comput. Human Behav., vol. 105, p. 105849, 2020, https://doi.
org/10.1016/j.chb.2018.12.027.

20. E. Pauwels, ‘Mind the metaphor’, Nature, vol. 500, no. 7464, pp. 523–524, 2013, https://doi.
org/10.1038/500523a.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1038/s41592-022-01488-1
https://jupyter4edu.github.io/jupyter-edu-book/
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1016/j.chb.2018.12.037
https://doi.org/10.1016/j.chb.2018.12.027
https://doi.org/10.1038/500523a
http://creativecommons.org/licenses/by-nc/4.0/

	Jupyter Notebooks as Computational Thinking Tools for Teaching and Lifelong Learning in Biotechnology
	1 Introduction
	2 Method
	3 Findings and Discussion
	4 Conclusion
	References




