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Abstract. Potato is a plant from the Solanaceae tribe and one of the staple crops
for human consumption. Potatoes have several benefits such as being low in fat
and having a better carbohydrate content than rice. Behind the relatively easy
cultivation of potato plants, there are problems that are often faced by farmers.
This problem is the susceptibility of potato plants to disease. An emerging solution
is to combine computer vision and deep learning. This research compared four
deep learning architectures such as Alexnet, GoogleNet, ResNet-50, andVGG-16.
The best model was produced by VGG-16 with a test accuracy of 99.67%.

Keywords: smart agricultural · leaf disease image classification · deep neural
networks

1 Introduction

Most of the livelihoods of the people on this earth are farmers. One of the most cultivated
plants by farmer is potato [3]. Solanum tuberosumor potato is a plant that is considered to
produce more protein and minerals compared to seral [8]. Potatoes originated in South
America and were later spread by humans throughout the world. Around 1.5 billion
people around the world currently consume potatoes and their processed [5]. Potato is
the fourth largest agricultural food crop in the world after maize, wheat, and rice [3].
Behind its benefits, potato plants are susceptible to several diseases that can reduce the
quality and yield of agriculture [8].

The agricultural industry faces various problems such as decreased production of
apples, tomatoes, potatoes, etc. [6]. To overcome this problem, the proper agricultural
precision management is needed. Agricultural precision is a method for managing agri-
cultural production using advanced technology. Agricultural precision produces data
which is then used to analyze, predict, or classify the data [2].
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Various techniques and methods are widely used to encourage agricultural produc-
tion, such as on-farm and off-farm. Research using traditional statistics is conducted
to assist statisticians in making decisions. Examples of traditional statistics are logistic
regression and discriminant analysis. The assumptions that follow the response vari-
ables and predictors are challenging to use. In contrast to statistics, the deep learning
approach does not require an understanding of advanced actions and mechanisms [1].
Deep learning can generate predictions to forecast the future data [14].

Advances in remote sensing technology, smartphones, sensors, and data storage on
cloud servers using machine learning-based systems can be utilized to make agriculture
more intelligent [12]. Machine learning is a subset of artificial intelligence. The goal
of machine learning is to make machines learn by recognizing a given object [7]. One
method that includes machine learning is an artificial neural network (ANN). This ANN
is inspired by biological neural networks that exist in humans. Since it was discovered
by McCulloch and Pitts in 1943, this ANN model has undergone various developments
such as the emergence of deep learning [4].

Deep learning algorithms contribute to improving computational performance so that
researchers are able to obtain large data sets. In recent years, the deep neural network
approach has had many positive impacts in agriculture [10]. Advances in computer
vision combined with deep learning can be used to diagnose plant diseases quickly and
accurately. This advanced technology can increase the precision of agricultural products
so that labor costs and time spent monitoring agricultural land are reduced [15]. This
technology is also assisted with image processing so as to provide accurate results.
Proper diagnosis of potato plant diseases can suppress the spread of this disease [11].

Some diseases that attack potato plants include late blight and late blight. Early blight
is caused by a fungal pathogen, namely Alternaria solani and belongs to the phylum
Deuteromycota and the order Hyphales. Symptoms of this disease are the appearance of
bull’s eye spots and concentric rings on some leaf surfaces. Another disease, late blight
caused by Phytophthora infectants and is the most vicious disease that attacks potato
plants. It has been recorded that there has been a loss of around 6.7 billion US dollars
due to this disease in the Americas. Both of these diseases attack potato leaves, then
cause them to rot and affect the tubers in the soil [5].

In this study we apply the deep learning method as a feature extractor and classifier.
As a comparison we use four architectures namely AlexNet, GoogleNet, ResNet-50,
and VGG-16. We categorize potato leaves into three classes, namely healthy class, late
blight class, and early blight class.

2 Method

The design of our proposed method is shown in Fig. 1. There are three stages that we
carry out, namely (i) Pre-Processing, (ii) Feature Extraction and Pattern Recognition,
and (iii) Evaluation.

2.1 Digital Image Processing

The image is defined as a two-dimensional function, f (x, y) where x and y are the
spatial coordinates (plane). And the amplitude f in the coordinate pair (x, y) is called
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Fig. 1. Proposed Method in This Study.

Fig. 2. Types of Layers in Artificial Neural Networks.

Fig. 3. Simple Artificial Neural Networks.

the intensity or grayscale level of the image at that point. If x, y and intensity values f
are all limits, the magnitude is discrete, the image can be said to be a digital image [9].
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Fig. 4. Illustration of an Artificial Neural Network with One Hidden Layer

Fig. 5. The Architecture of Convolutional Neural Networks.

Fig. 6. Splitting Process of Input Image.

Fig. 7. Added Zero Padding to the Color Channel Matrix.
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Fig. 8 Illustration of the Softmax Process with Output that Matches the Target.

Fig. 9. Illustration of the softmax process with output that does not match the target.

Fig. 10. The Example of Data Set In This Research.

2.2 Artificial Neural Networks

The field of data mining uses a lot of mathematical neural network models (ANN).
In ANN there are nodes that represent neurons in the human brain. These nodes are
assigned to receive signals from other neurons via synaptic connections. The percep-
tron is an individual processing element that receives connections from other neurons.
The connections between neurons are called weights, and these weights carry encoded
electrical information implicitly [4].

In ANN there are three layers that contain one or several nodes, namely the input
layer, hidden layer, and output layer. The input layer is the layer that functions to receive
information. Furthermore, this information is propagated to other nodes in the hidden
layer. The goal is to make the nodes learn the information. The results of this learning
then become output on the output layer. Figure 2 illustrates the layers in ANN [7].
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Fig. 11. Comparison of Plot Training on Four CNN Models.

Fig. 12. The Confusion Matrix of Four CNN Models.

Suppose W = (wij) is a matrix that represents the weights, namely the relationship
between one neuron and another neuron. Network input to target unit Yj (with no unit
bias j) is a simple dot product of vectors x = (x1, x2, . . . , xn) where n is the number
of inputs dan wj where j is the number of columns in the weight matrix. Thus, Y

∧

=
x · wj = ∑n

i=1 xiwij. Figure 3 illustrates a simple neural network. Bias (β) can be
included in vector x by adding the component x0 = 1, so the vector x becomes, x =
(1, x1, x2, . . . , xn).
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Bias is considered like any other weight, i.e., w0j = βj. Network input to the unit Yj
is given as Eq. (1).

Y
∧

=
n∑

i=0

xiwij = w0j +
n∑

i=0

xiwij = βj +
n∑

i=0

xiwij (1)

The basic operation of a neural network is the addition and multiplication between
the weights and the input signal and applying them to the activation function [13]. There
are several types of activation functions:

1. Linear activation function Y
∧

= f (x) = ax + b, When a = 1, b = 0, it is an identity.
2. Binary activation function with threshold (θ)

Y
∧

= f (x) =
{
1
0
if x ≥ θ

if x < θ

3. Binary sigmoid activation function

Y
∧

= f (x) = 1
1+e−σx , dan f

′ = σ f (x)
[
1 − f (x)

]
.

4. Bipolar sigmoid activation function

Y
∧

= g(x) = 2f (x) − 1 = 1−e−σx

1+e−σx , dan g′(x) = σ
2

[
1 + g(x)

][
1 − g(x)

]
.

5. Tangent hyperbolic activation function

Y
∧

= h(x) = ex−e−x

ex+e−x , dan h
′
(x) = [1 + h(x)][1 − h(x)].
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• Observation

Given a neural network with one hidden layer there are two neurons. Figure 4
illustrates this artificial neural network. Suppose x = {xi|i = 1, 2, . . . , n}, where x
is input data and n is numbers of input data. Let h dan β respectively be the num-
ber of hidden layers and bias. Output (y

∧

) written as y
∧ = 1

1+e−(β1+W1(β0+W0x))
, where

[h1; h2] = β0 + W 0x.

Proof. Input data x = {x1, x2, . . . , xn}, since we have one layer and two neurons, we
define weights W 0 = [w0

1,1 w
0
1,2 · · · w0

1,n ; w0
2,1 w

0
2,2 · · · w0

2,n ], W 1 = [w1
1 w1

2 ] dan
bias β0, β1.

[
h1
h2

]

=
[

β0
1

β0
2

]

+
[
w0
1,1

w0
2,1

w0
1,2 · · · w0

1,n
w0
2,1 · · · w0

2,n

]
⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

= β0 + W 0x

Next, we get y_in as follow

yin = β1 +
[
w1
1

w1
2

][
h1
h2

]

= β1 +
[
w1
1

w1
2

]

·
(
β0 + W 0x

)
= β1 + W 1

(
β0 + W 0x

)

So, output (y
∧

) written as follow

y
∧ = 1

1 + e−yin
= 1

1 + e−(β1+W 1(β0+W 0x))

It concludes the proof.
�

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are neural networks that have layers with con-
volution operations in them. The process on CNN begins by breaking the input image
into several small overlapping pieces [1]. This cropping of the input image is shown in
Fig. 5.

Next is the feature extraction process with the convolution operation. The layer that
performs the convolution operation is called the Convolution Layer. Convolution uses a
filter of a certain size and performs the matrix multiplication operation. The filter shifts
by several pixels starting from the top left corner pixel to the bottom right corner. This
pixel shift is called stride. Convolution involves the existing color channel layers in the
image such as the red channel layer, the green channel layer, and the blue channel layer.
The purpose of this operation is to extract the features in the image. The output of the
convolution operation is called a feature map.
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Apart from convolution operations, CNN also has other layers such as ReLU and
MaxPooling. ReLU (Rectified Linear Unit) is an activation function that is used to gen-
eralize the feature map resulting from the convolution operation. Feature map elements
with negative values are activatedwithReLUand their values change to zero.Meanwhile,
feature map elements with a value of zero and positive numbers will not be activated.
Furthermore, the MaxPoling process aims to reduce the dimensions of the feature map
before being used as input in Fully Connected Neural Networks (FCNN). Suppose there
is an image of size m × n, where m represents the number of rows and n represents the
number of columns. We build a CNN architecture as shown in Fig. 6.

In the color channel matrix, we provide one row of zero padding. The goal is to
maintain the dimensions of the feature map. In addition, we also specify that the convo-
lution stride is one pixel and the filter size is 3 × 3 with random elements. Illustration
of adding zero padding can be seen in Fig. 7.

Convolution operation in the red channel:

Ired =
⎡

⎣
0 0 0
0 241 211
0 190 201

⎤

⎦ ∗
⎡

⎣
1 0 1
1 −1 1

−1 0 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + · · · + (201 ∗ −1)

= −231

Convolution operation in the green channel:

Igreen =
⎡

⎣
0 0 0
0 230 248
0 240 245

⎤

⎦ ∗
⎡

⎣
1 0 0
0 1 −1

−1 0 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + · · · + (245 ∗ −1)

− 263

Convolution operation in the blue channel:

Iblue =
⎡

⎣
0 0 0
0 253 253
0 251 250

⎤

⎦ ∗
⎡

⎣
−1 0 1
1 0 0
1 0 −1

⎤

⎦

= (0 ∗ −1) + (0 ∗ 0) + · · · + (250 ∗ −1)

= −250

Suppose bias (β) = 1, The resulting feature map values are as follows:

c1 = Ired + Igreen + Iblue + β

= −231 − 263 − 250 + 1

= −743

The filter is then shifted one pixel to the right, so that the convolution operation is
illustrated as follows:
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Convolution operation in the red channel:

Ired =
⎡

⎣
0 0 0
241 211 213
190 201 201

⎤

⎦ ∗
⎡

⎣
1 0 1
1 −1 1

−1 0 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + · · · + (201 ∗ −1)

= −148

Convolution operation in the green channel:

Igreen =
⎡

⎣
0 0 0

230 248 235
240 245 231

⎤

⎦ ∗
⎡

⎣
1 0 0
0 1 −1

−1 0 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + · · · + (231 ∗ −1)

= −458

Convolution operation in the blue channel:

Iblue =
⎡

⎣
0 0 0
253 253 250
251 250 245

⎤

⎦ ∗
⎡

⎣
−1 0 1
1 0 0
1 0 −1

⎤

⎦

= (0 ∗ −1) + (0 ∗ 0) + · · · + (253 ∗ −1)

= 259

Then, the resulting feature map values are as follows:

c2 = Ired + Igreen + Iblue + β

= −148 − 458 + 259 + 1

= −347

After going through a series of convolution processes, the following feature map is
obtained:

C =

⎡

⎢
⎢
⎢
⎣

c1
c6
...

c21

c2
c7
...

c22

· · ·
· · ·
. . .

· · ·

c5
c10
...

c25

⎤

⎥
⎥
⎥
⎦

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−743
−570
−414
−256
1409

−347
−196
17
975
1954

−421
−146
772
807
1833

−388
508
612
670
1650

243
409
521
497
683

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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Thenext process is to activate the featuremapusing theRectifiedLinearUnit (ReLU).
The following is a feature map that has been activated.

C(σ ) =
{

σ,

0,
ifσ ≥ 0
ifσ < 0

C(σ ) =
{

σ,

0,
if σ ≥ 0
if σ < 0

=

⎡

⎢
⎢
⎢
⎣

c1
c6
...

c21

c2
c7
...

c22

· · ·
· · ·
. . .

· · ·

c5
c10
...

c25

⎤

⎥
⎥
⎥
⎦

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

1409

0
0
17
975
1954

0
0
772
807
1833

0
508
612
670
1650

243
409
521
497
683

⎤

⎥
⎥
⎥
⎥
⎥
⎦

The next process is to reduce the dimensions of the feature map using MaxPooling.
The filter used is 3 × 3 and the stride used is one pixel. The filter moves from the top
left corner to the bottom right. The following illustrates the MaxPooling process.

m1 =
⎡

⎣
0 0 0
0 0 0
0 17 772

⎤

⎦

max(m1) = 772

The next filter shifts 1 pixel to the right, the results of the MaxPooling process on
the filter are illustrated below.

m2 =
⎡

⎣
0 0 0
0 0 508
17 772 612

⎤

⎦

max(m2) = 772

After going through a series of MaxPooling processes, the following feature map is
obtained.

C =
⎡

⎣
772 772 772
975 975 807
1954 1954 1833

⎤

⎦

Next, we transpose the maxpooling result matrix and convert it into a vector as
follows.

C = [772; 772; 772; 975; 975; 975; 807; 1954; 1954; 1833]
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Then we normalize the vector C with Eq. 2.

xi = a + (Ci − max(C)) × (b − a)

max(C) − min(C)
(2)

where: a = 0.1; b = 0.9.
So, we obtain the input vector for FCNN as follows

x = [0.1; 0.1; 0.1; 0.23; 0.23; 0.12; 0.9; 0.9; 0.81]
These vectors then become input to Fully-Connected Neural Networks (FCNN).

Some of the parameters we used in FCNN are weights (W 0andW 1), bias (β0andβ1),
learning rate α = 0.1, and target (t).

W 0 =
⎡

⎣
0.1 0.2 0.3
0.2 0.3 0.1
0.3 0.1 0.2

0.1 0.2 0.3
0.2 0.3 0.1
0.3 0.1 0.2

0.1 0.2 0.3
0.2 0.3 0.1
0.3 0.1 0.2

⎤

⎦

W 1 = [0.1; 0.2; 0.3]

β0 = [0.1; 0.1; 0.1]

β1 = [0.1; 0.1; 0.1]

t = [
1 1 1

]

The first step in FCNN is feedforward neuron one as follows.

h11,1 = β0
1 + x1 ∗ w0

1,1 = 0.1 + 0.1 ∗ 0.1 = 0.1100

h11,2 = β0
1 + x2 ∗ w0

1,2 = 0.1 + 0.1 ∗ 0.2 = 0.1200

...

h11,9 = β0
1 + x9 ∗ w0

1,9 = 0.1 + 0.81 ∗ 0.3 = 0.3430

h11 =
[
0.11 0.12 · · · 0.343

]

Next is feedforward neuron two as follow.

h12,1 = β0
2 + x1 ∗ w0

2,1 = 0.1 + 0.1 ∗ 0.2 = 0.1200

h12,2 = β0
2 + x2 ∗ w0

2,2 = 0.1 + 0.1 ∗ 0.3 = 0.1300
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...

h12,9 = β0
2 + x9 ∗ w0

2,9 = 0.1 + 0.81 ∗ 0.1 = 0.1810

h12 =
[
0.12 0.13 · · · 0.181

]

The last feedforward is in neuron three, the calculate as follow.

h13,1 = β0
3 + x1 ∗ w0

3,1 = 0.1 + 0.1 ∗ 0.3 = 0.1300

h13,2 = β0
3 + x2 ∗ w0

3,2 = 0.1 + 0.1 ∗ 0.1 = 0.1100

...

h13,9 = β0
3 + x9 ∗ w0

3,9 = 0.1 + 0.81 ∗ 0.2 = 0.1230

h13 =
[
0.13 0.11 · · · 0.123

]

Next is to calculate the output (y)

yin1 = β1
1 + w1

1 ∗ h11,1 + w1
1 ∗ h11,2 + · · · + w1

1 ∗ h11,9
= 0.1 + 0.1 ∗ 0.1100 + 0.1 ∗ 0.1200 + · · · + 0.1 ∗ 0.3430

= 0.2578

yin2 = β1
2 + w1

2 ∗ h12,1 + w1
2 ∗ h12,2 + · · · + w1

2 ∗ h12,9
= 0.1 + 0.2 ∗ 0.1200 + 0.2 ∗ 0.1300 + · · · + 0.2 ∗ 0.1810

= 0.4236

yin3 = β1
3 + w1

3 ∗ h13,1 + w1
3 ∗ h13,2 + · · · + w1

3 ∗ h13,9
= 0.1 + 0.3 ∗ 0.1300 + 0.3 ∗ 0.1300 + · · · + 0.3 ∗ 0.1230

= 0.4432

Then activate each neuron output. The activation function used is the sigmoid log.

ym = 1

1 + e−yinm

y1 = 0.5641

y2 = 0.6043
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y3 = 0.6090

After obtaining the next output, we can calculate the output error.

δk1 = (t1 − y1)
2

= (1 − 0.5641)2

= 0.1900l

δk2 = (t2 − y2)
2

= (1 − 0.6043)2

= 0.1565

δk3 = (t3 − y3)
2

= (1 − 0.6090)2

= 0.1529

MSE = ((t1 − y1) + (t2 − y2) + (t3 − y3))2

3
= 0.4982

Then calculate the backpropagation error between output layer and hidden layer:

δj11 =w0
1,1 ∗ δk1 + w0

1,2 ∗ δk1 + w0
1,3 ∗ δk1 + . . . + w0

1,9 ∗ �k1

=0.3420

δj02 =β0
2 + w1

2 ∗ �k2
=0.1 + 0.2 ∗ 0.1565

=0.0222

δj03 =β0
3 + w1

3 ∗ �k3
=0.1 + 0.3 ∗ 0.1529

=0.0331

Then calculate the backpropagation error between hidden layer and input layer:

δj11 =w0
1,1 ∗ δk1 + w0

1,2 ∗ δk1 + w0
1,3 ∗ δk1 + . . . + w0

1,9 ∗ δk1

=0.3420

δj12 =w0
2,1 ∗ δk2 + w0

2,2 ∗ δk2 + w0
2,3 ∗ δk2 + . . . + w0

2,9 ∗ δk2

=0.2818

δj13 =w0
3,1 ∗ δk3 + w0

3,2 ∗ δk3 + w0
3,3 ∗ δk3 + . . . + w0

3,9 ∗ δk3
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=0.2752

The final step is to update the weights and biases as follows:

• The weights between input layer and hidden layer

w_new0
1,1 =w0

1,1 + α ∗ δk1*h
1
1

=
[
0.1013 0.2014 · · · 0.3041

]

w_new0
2,1 =w0

2,1 + α ∗ δk2*h
1
2

=
[
0.2016 0.3017 · · · 0.1014

]

w_new0
3,1 =w0

3,1 + α ∗ δk3*h
1
3

=
[
0.3019 0.1016 · · · 0.1018

]

W_new0 =
⎡

⎢
⎣

w_new0
1,1

w_new0
2,1

w_new0
3,1

⎤

⎥
⎦

W_new0 =
⎡

⎣
0.1013 0.2014 · · ·
0.2016 0.3017 · · ·
0.3019 0.1016 · · ·

0.3041
0.1014
0.1018

⎤

⎦

• The weights between hidden layer and output layer

w_new1
1 = w1

1 + α ∗ δk1
= 0.1355

w_new1
2 =w1

2 + α ∗ δk2
=0.2296

w_new1
3 =w1

3 + α ∗ δk3
=0.3291

W_new1 =
⎡

⎣
w_new1

1
w_new1

2
w_new1

3

⎤

⎦ =
⎡

⎣
0.1355
0.2296
0.3291

⎤

⎦

• Bias between input layer and hidden layer

β_new0
1 = β0

1 + α · δj1 = 0.1119
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β_new0
2 = β0

1 + α · δj2 = 0.1131

β_new0
3 = β0

1 + α · δj3 = 0.1146

βnew
0 =

[
βnew

0
1;βnew

0
2;βnew

0
3

]

βnew
0 = [0.1119; 0.1131; 0.1146]

• Bias between hidden layer and output layer

β_new1
1 = β1

1 + α · δj1 = 0.1119

The process is repeated to the feedforward stage until the number of epochs reaches
a maximum. The output value of the neural network is then used as input to the Softmax
Layer. In this layer, there will be as many probabilities as the output class we specify. An
illustration of the softmax process with output that matches the target shown in Fig. 8.
While An illustration of the softmax process with output that matches the target shown
in Fig. 9. The output value (logits) is processed using the softmax function. Based on
the probability value generated, the system determines the third class as output.

2.4 Confusion Matrix (Metric Performance)

The confusion matrix or commonly called the error matrix is a table that provides com-
parative information from the classification that has been carried out by the system. The
table is presented in Table 1. The confusion matrix can also describe the performance
of the classification model on test data.

1. True Positive (TP)

Is a condition where the model classifies a data as true, and the actual class of the
data is true.

2. True Negative (TN)

Is a condition where the model classifies a data as false, and the actual class of the
data is false.

3. False Positive (FP)

Is a condition where the model classifies a data as true, and the actual class of the
data is false.

4. False Negative (FN)

Is a condition where the model classifies a data as false, and the actual class of the
data is true.
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Table 1. Table of Confusion Matrix

True False

True TP FP

False FN TN

To evaluate the performance of a model, you can use accuracy, precision, and recall.
Accuracy shows howmuch themodel gives the correct classification results for the entire
data. Accuracy is calculated using Eq. (3).

Accuracy = TP + TN

TP + TN + FP + FN
× 100% (3)

Precision shows a comparison of the amount of data that is classified as true with
data that is classified as true and data that is classified as false but comes from the true
class. Precision can be calculated using Eq. (4).

Precision = TP

TP + FP
× 100% (4)

Finally, recall shows the amount of data classified as true with data classified as true
and data classified as false but not from the true class. Recall can be calculated using
Eq. (5).

Recall = TP

TP + FN
× 100% (5)

3 Design and Experiment

The data set we used in this studywas taken from theKaggle Potato Disease Leaf Dataset
(PLD) | Kaggle. There are three data classes in this data set, namely early blight class,
healthy class, and late blight class. The distribution of the data set we used for network
training and testing can be seen in Table 2.

Table 2. The Divided of Data Set

Class Data Set

Training Testing

Early Blight 250 Images 100 Images

Healthy 200 Images 100 Images

Late Blight 250 Images 100 Images

Total 700 Images 300 Images
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Table 3. Training and Testing Accuracy

Model CNN Train Accuracy Time Train Test Accuracy

Alexnet 99.85% 3945 s 95%

GoogleNet 100% 6160 s 99.3%

ResNet-50 100% 10588 s 98.67%

VGG-16 100% 28957 s 99.67%

The data set consists of 1000 images, with 700 images used as training and the
remaining 300 images used as testing. The training stage aims to train the neural network
to recognize the given image input. The output of network training is training accuracy
and training model. In the testing phase, this model is used to recognize new data. The
data set that we use can be seen in Fig. 11.

4 Results and Discussion

4.1 Metrics and Envirenment Setup

In this study, we used Adam optimizer as a performance classification. The number of
epochs that we use in this study is 100 epochs. Other parameters at the training stage
are the learning rate and batch size. These parameters can be seen in Table 3.

To get optimal CNN model performance we use augmentation data. This technique
is used to manipulate data without losing important information in it. The image data
that we use is reflected, then a translation is carried out on the x-axis of 30 pixels and
-30 pixels on the y-axis.

In this study we usedMatlab R2022b software. The computers we use have NVIDIA
Cuda Cores 3840 and some hardware: CPU 11th Gen Intel(R) Core (TM) i5-11400H
with a speed of 2.70 GHz, GPU NVIDIA GeForce RTX 3060 with 6 GB of memory,
and 16 GB of RAM.

4.2 The Evaluation of Training Stage

In this study we used CNN Transfer Learning, which is a model that has been trained
using another data set. We downloaded this model from mathworks.com. Some of these
models include Alexnet, GoogleNet, ResNet-50, and VGG-16. Each of these models is
identical to the original architecture but without the fully-connected layer.

Alexnet architecture has 25 layers with 5 Convolution Layers, 5 ReLU Layers, and
6 MaxPooling Layers. The GoogleNet architecture has 144 layers with 55 Convolution
Layers, 57 ReLU Layers, and 12 MaxPooling Layers. The ResNet-50 Architecture has
177 Layers with 53 Convolution Layers, 49 ReLU Layers, and 1 MaxPooling Layer.
The VGG-16 architecture has 41 layers with 13 Convolution Layers, 15 ReLU Layers,
and 5 MaxPooling Layers.
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When conducting training, each CNN model generates training plots and loss plots.
On the training plots we can see the number of epochs and the resulting training accuracy.
The higher the training accuracy, the smaller the loss generated by the model.

This training plot can be seen in Fig. 11. Training using the Alexnet, GoogleNet, and
ResNet-50 models resulted in increasing and decreasing accuracy. While training using
the VGG-16 model the resulting accuracy is 100% stable starting from epoch above
45. Although it produces high training accuracy, the CNN models that we use require a
long time to train. The fastest computing time is Alexnet with 1 h of training. While the
longest computing time is VGG-16 with about 8 h of training.

4.3 The Evaluation of Testing Stage

In the training process, the models we have trained are stored for use in the testing
phase. This stage aims to measure how accurate the model we have trained. Benchmark
whether or not this model is determined by the resulting test accuracy value. Based on
Table 3, the best CNN model is produced by VGG-16 with a test accuracy of 99.67%.
Followed by GoogleNet 99.3%, ResNet-50 98.67%, and Alexnet 95%. Each of these
models is then measured its performance with a confusion matrix. The comparison of
the confusion matrix in each CNN model is shown in Fig. 12.

Based on Fig. 12, the smallest number of errors is owned by VGG-16. This is why
the accuracy of the VGG-16 test reaches 99.67%. The model that generates the most
errors is Alexnet. The type of classification that we do is multi-class classification, which
means that there are more than two classes that are classified.

So that the precision and recall calculations are different from the binary class. For
example, in the Alexnet model, True Positive (TP) for the Early Blight class is 94, True
Negative (TN) for the Early Blight class is 191, False Positive (FP) for the Early Blight
class is 6, and False Negative (FN) for the Early Blights total 6.

After we know the TP, TN, FP, and FN values of each class, the next step is to
calculate accuracy (Eq. 3), precision (Eq. 4), and recall (Eq. 5). In this study, we use
accuracy, precision, and recall as benchmarks for the performance of the classification
model. Table IV shows the performance of the four classification models.

Based on the table, we can see that the best classificationmodel is produced byVGG-
16, with 99.67% accuracy, 99.67% precision, and 99.67% recall. Accuracy shows how
much the accuracy of themodel is, whichmeans that the greater the accuracy, the smaller
the error. Precision indicates how much data belonging to one class is misclassified as
another class. The greater the precision value, the smaller the error made. Meanwhile,
recall shows how many other classes are incorrectly classified as a class. The greater the
recall value indicates the smaller the error made by the system.

5 Conclusions and Future Works

The agricultural sector is the livelihood with the largest number of workers in Indonesia.
The production of agricultural products is also influenced by several factors, one ofwhich
is agricultural precision. Just like humans, plants can also get sick. So, it is necessary to
create a systemmodel that is able to classify the types of plant diseases automatically. In
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our research we apply deep learning to classify the types of diseases that exist on potato
leaves. As a comparison, we used four CNN models that are popular among researchers
to see which model is more effective in our problem. Based on the results we obtained,
it can be concluded that the best model was produced by VGG-16 with an accuracy of
99.67%. We can then use the VGG-16 model to classify potato leaf diseases from the
data taken directly. Of course, to make machines able to recognize types of diseases like
humans, learning and testing is needed. The learning phase aims to train the machine,
while the testing phase aims to measure the performance of the training model.
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