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Abstract. The transportation problem that occurs in urban areas is
how to meet the demand for the increasing number of trips and avoid
traffic jams on the highway. In Indonesia, traffic density occurs during
office hours, holidays, and national holidays. The solution to this problem
is to use an effective public transportation service, one of which is the
bus. Infrastructure for bus transportation includes roads, bridges, bus
stops, and bus station. Bus station is one of the transportation systems
that has the main function as a place to stop public transportation to
pick up and drop passengers to the final destination of the trip. In this
paper, we discuss the application of the concept of Spatial Temporal
Graph Neural Network (STGNN) together with Local Vertex Irregular
Reflexive Coloring (LVIRC) to analyze the passengers density anomaly
of in bus station. The results shows that the use of the Spatial Temporal
Graph Neural Network with Local Vertex Irregular Reflexive Coloring
(LVIRC) are effective tools for forcasting the passengers density anomaly
with the best model is generated by ANN-657 cascadeforwardnet, with
a test MSE of 9.4982 ×10−9.

Keywords: spatial temporal graph neural network · local vertex
irregular reflexive coloring · time series forecasting · passengers density
anomaly

1 Introduction

The transportation problem that occurs in Indonesia’s urban areas is how to
meet the increasing demand for travel, which does not cause traffic jams on the
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roads. This is in line with economic development and the growing number of
middle and upper middle class people in urban areas as seen from the develop-
ment of existing urban transportation. The solution to this problem is to use
effective public transportation services, one of which is the bus [13].

The bus is one of the public transportation media for traveling medium and
long distances. A prediction/forecasting system is needed that can identify the
surge in passengers that may occur during the holidays. Therefore, the handling
of these problems must be carried out systematically starting from prevention
and curative action.

The application of Artificial Neural Networks is one way to analyze and
can prevent the large number of passengers not being carried by the fleet by
providing the number of fleets according to the known number of passengers. In
the Artificial Neural Networks input data perspective, the bus transport flows
are considered to be a Non-Euclidean data sources. To handel with this type
of data source, the use of Graph Neural Network (GNN) is considered to be a
breakthrough in the machine learning. By a graph, we mean a structure G =
(V (G), E(G)), where V (G) is a finite nonempty set of elements called vertices,
and E(G) is a set (possibly empty) of unordered pairs {u, v} of vertices u, v ∈
V (G), called edges [8]. The number of vertices of a graph G is the order of
G, commonly denoted by |V (G)|. The number of edges is the size of G, often
denoted by |E(G)|. A graph G that has order p = |V (G)| and size q = |E(G)| is
sometimes called a (p, q)-graph. Let u, v ∈ V (G), vertex u is said to be adjacent
to v if there is an edge e between u and v, that is, e = uv. Vertex v is then
called a neighbor of u. The set of all neighbors of u is called the neighborhood
of u and is denoted by N(u). We also say that u and v are incident with edge
e. The adjacency matrix of a graph G and vertex-set V (G) = {v1, v2, . . . , vn} is

the n × n matrix A = [aij ], where aij =
{

1 if vivj ∈ E(G),
0 otherwise.

The Graph Neural Network (GNN) technique adopts the framework of the
Convolutional Neural Networks (CNN). Convolutional Neural Network (CNN) is
a well-known deep learning architecture inspired by the natural visual perception
mechanism of the living creatures [9]. The core concept behind CNN introduces
hidden convolution and pooling layers to identify spatially localized features via
a set of receptive fields in kernel form. The convolution takes a little sub-patch
of the image (a little rectangular part of the image), applies a function to it, and
produces a new part (a new pixel) (Fig. 1).

Fig. 1. The illustration of CNN Source: https://commons.wikimedia.org

https://commons.wikimedia.org
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Fig. 2. The illustration of node embedding with single layer Source: shorturl.at/fjM39

Graph Neural Networks are a type of machine learning algorithm that can
extract important information from a network to make useful predictions [14]
with graphics, it becomes more pervasive and richer with information, and Arti-
ficial Neural Networks also become more capable. GNN has become a powerful
tool for many important applications other than ANNs. GNN is a class of deep
learning methods designed to perform inferences on data explained by graphs.
As well as a neural network that can be directly applied to graphs, and pro-
vides an easy way to do this node-level, edge-level, and graph-level prediction
tasks. In this theory, we apply the node embedding concept, it means maps ver-
tex features to the d−dimensional (low dimensional space rather than the actual
dimensions of the graph). The goal is to map the vertices so that they are similar
in embedding space approximates similarity in the graphs (Fig. 2).

The graph neural networks (GNN) has been introduced as a new Depth
Learning paradigm for learning non-Euclidean data by applying graph analysis
methods. GNN’s can be categorized into four groups, namely Recurrent GNNs
(RecGNNs), ConvulaTION GNNs (ConvGNNs), Graph Autoencoders (GAEs),
and Spatial Temporal GNNs (STGNNs). Spatial Temporal Graph Neural Net-
works (STGNNs) is a type of GNN in which the concept is based on simulta-
neously spatial model and temporal dependencies to deal with a dynamic graph
problem. In other words, the Spatial Temporal Graph Neural Network (STGNN)
is one of the deepest machine learning type in which the spatial-temporal graph
structure resides dynamic because node/edge features change over time

Traffic flow forecasting problem, flood flow forecasting problem, supply chain
management problem, and precision agriculture problem, etc. are some of the
examples of STGNN cases. A bus station analysis of transport flow networks is a
typical application of STGNN, where bus station network can be modeled with
a graphical structure. In particular, each node represents a bus station location
that monitors the number of lanes, number of buses, type of bus, time of day,
weather, and number of passengers, which changes from time to time. Those are
the node feature of each bus station.

Let us define u and v as two vertices in a graph, xu and xv are two feature vec-
tors. Now, we will define the encoder function Enc(u) and Enc(v), which convert
the feature vectors to zu and zv. The challenge now is how to come up with the
encoder function? The encoder function should be able to perform: (i) Locality
(local network neighborhoods), (ii) Aggregate information, (iii) Stacking multiple

http://www.shorturl.at/fjM39
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Fig. 3. The illustration of node embedding with two layers Source: shorturl.at/fjM39

layers (computation). Locality information can be achieved by using a computa-
tional graph. Once the locality information preserves the computational graph,
we start aggregating [10]. This is basically done using neural networks, see Fig. 3.
Neural Networks are presented in blue and pink boxes. They require aggrega-
tions to be order-invariant, like sum(.), average(.), maximum(.), concat(.),
because they are permutation-invariant functions [15] [16].

In this study we apply the Spatial Temporal Graph Neural Network
(STGNN) integrated with the Local Vertex Irregular Reflexive Coloring (LVIRC)
to analyze bus transportation flow anomalies as a preventive and curative actions
to overcome the increase in the number of passengers. By local vertex irregular
reflexive coloring of graph, that a function f : V (G) → {0, 2, ..., 2k ∈ Nv}
and f : E(G) → {1, 2, ..., k ∈ Ne}, where k = max{k ∈ Ne, 2k ∈ Nv}
for k ∈ Nv, k ∈ Ne are natural number. The associated weight of a vertex
u, v ∈ V (G) under f is w(u) = f(u) + Σ ∈ Nuv∈E(G)f(uv). The function f is
called a local vertex irregular reflexive k-labelling if every two adjacent vertices
has distinct weight. When we assign each vertex of G with a color of the vertex
weight w(uv), thus we say the graph G admits a local vertex irregular reflexive
coloring. The smallest number of vertex weights needed to color the vertices of
G such that no two adjacent vertices share the same color is called a local ver-
tex irregular reflexive chromatic number, denoted by χlrvs(G). Furthermore, the
minimum k required such that χlrvs(G) = χ(G) is called a local reflexive vertex
color strength, denoted by lrvcs(G) [1]- [7], [11]- [12], [17]. In Fig. 4, we give an
illustration of local vertex irregular reflexive coloring of windmill graph.

2 Methods

This research uses analytical and experimental methods. In the analytical study,
we use mathematical deductive approach to describe the findings, whilst in the
experimental method, we use a computer programming to do simulation. We will
analyze the anomaly of the bus transportation flow of twelve bus stations in East
Java, Indonesia. First, we will show the vertex embedding process of single layer
GNN of a given graph with six features data, namely number of lines, number of
buses, type of bus, time of day, weather, and number of passengers for 17 weeks

http://www.shorturl.at/fjM39
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Fig. 4. The illustration of local vertex irregular reflexive coloring of windmill graph

observation. Second, we will develop the STGNN programming, train a model
using 70% data input obtained from the vertex embedding process, testing and
finally forecast passengers density anomaly.

The following is the algorithm for studying bus transportation flow anomalies
using STGNN combined with local vertex irregular reflexive coloring.

Single Layer GNN Algorithm

Step 0. Given that a graph G(V,E) of order
n and feature matrix Hn×m of n
vertices and m features, and give
a tolerance ε.

Step 1. Determine the matrix adjacency A of
graph G and set a matrix B = A + I,
where I is an identity matrix.

Step 2. Initialize weights W, bias β,
learning rate α. (For simplicity,
set Wm×1 = [w1 w2 . . . wm], where 0 <
wj < 1, bias β = 0 and 0 < α < 1)

Step 3. Multiply weight matrix with vertex
features, by setting a message
function mu

l = MSGl(hl−1
u ), for

linear layer mu
l = W l(hl−1

u ).
Step 4. Aggregate the messages from

vertex v’s neighbors, by setting
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function hl
v = AGGl{ml−1

u , u ∈ N(v)}, and
by applying the sum(·) function hl

v =
SUM l{ml−1

u , u ∈ N(v)} in regards
with matrix B.

Step 5. Determine the error, by setting

errorl =
||hvi

−hvj
||2

|E| , where vi, vj are
any two adjacent vertices.

Step 6. Observe whether error ≤ ε or not.
If yes then stop, if not then do
Step 7 to update the learning
weight matrix W.

Step 7. Update the learning weight matrix
by setting W l+1 = W l

j + α × zj × el

where zj is the sum of each column
in the H l

vi
and divide by the number

of nodes.
Step 8. Do Step 3-6 till the error ≤ ε.
Step 9. Save the embedding results into a

vector, by naming the vector file
with embedding data.mat. When the
data is a time series data, then do
the same proses for the next time
data observation.

Step 10. Load the embedding data.mat then use
the time series machine learning to
do forecasting.

Step 11. Have the best training, testing
and forecasting results, then STOP.

3 Research Findings

We will discuss the research result and describe in the following. We first show
analytically the embedding process of vertex features and the local vertex irreg-
ular reflexive coloring of graph, and the last use the bus transportation data to
obtain the STGNN model to do time series forecasting on bus transportation
flow anomaly.

Observation 1 Given that a graph G of order n. Suppose that vertex and
edge sets are V (G) = {v1, v2, . . . , vn−1, vn} and E(G) = {vivj |vi, vj ∈ V (G)},
respectively. Given that vertex features as follows
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Hvi
=

⎡
⎢⎢⎢⎣

s1,1 s1,2 · · · s1,m
s2,1 s2,2 · · · s2,m
...

...
. . .

...
sn,1 sn,2 · · · sn,m

⎤
⎥⎥⎥⎦ .

The vertex embedding can determined using the messages passing from ver-
tex v’s neighbors hl

v = AGGl{ml−1
u , u ∈ N(v)} under the aggregation sum(·),

thus hl
v = SUM l{ml−1

u , u ∈ N(v)} in regard to the matrix B = A + I where
A, I are adjacency and identity matrix, respectively.

Proof. By graph G, we can determine the matrix adjacency A. Since, we need
to consider the self adjacency for each vertex of G then we need to add A by
identity matrix I and we have matrix B as follows.

B = A + I =

⎡
⎢⎢⎢⎣

b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n
...

...
. . .

...
bn,1 bn,2 · · · bn,n

⎤
⎥⎥⎥⎦

According to the single layer GNN algorithm, we need to initialize the learn-
ing weights as W 1 = [w1 w2 . . . wm]. This weight will be used to obtain the
value of mvi

and update the new weight in the next iteration. The process of
vertex embedding of GNN can be divided into two stages, namely message pass-
ing and aggregation. In the first step we do message passing ml

u = MSGl(hl−1
u ).

For linear layer ml
u = W l(hl−1

u ), we have m1
vi

= W 1 · H0
vi

m1
v1

= [w1,1 w1,2 . . . w1,m] · [s1,1 s1,2 . . . s1,m]
= w1 × s1,1 + w2 × s1,2 + · · · + wm × s1,m

m1
v2

= [w1,1 w1,2 . . . w1,m] · [s2,1 s2,2 . . . s2,m]
= w1,1 × s2,1 + w1,2 × s2,2 + · · · + w1,m × s2,m

...
m1

vn
= [w1,1 w1,2 . . . w1,m] · [sn,1 sn,2 . . . sn,m]

Once the above process has been done we do the second step, namely aggre-
gation in regards with v’s neighbors. By applying the aggregation sum(·), for
hl
v = AGGl{ml−1

u , u ∈ N(v)} we have hl
v = SUM l{ml−1

u , u ∈ N(v)} in regards
with matrix B = A + I. The embedding vector hvi

can written as follows:
h1
vi

= [mv1 ;mv2 ; . . . ;mvn
]. Next, we need to obtain the error value that indi-

cates how close the two adjacent vertices in the embedding space. The smaller
the error value, the closer the distance between the two vertices. The error can
be formulated as follows.

errorl =
||hvi

− hvj
||inf

|E(G)| where i, j ∈ {1, 2, ..., n}
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In the next iteration, we need to update Hvi
using Hvi

and hvi
in the previous

iteration.

H2
v1

=
[s1,1 s1,2 . . . s1,m]∑
[s1,1 s1,2 . . . s1,m]

× hv1

=
[(s1,1 × hv1) + (s1,2 × hv1) + · · · + (s1,m × hv1)]∑

[s1,1 s1,2 . . . s1,m]

H2
v2

=
[s2,1 s2,2 . . . s2,m]∑
[s2,1 s2,2 . . . s2,m]

× hv2

=
[(s2,1 × hv2) + (s2,2 × hv2) + · · · + (s2,m × hv2)]∑

[s2,1 s2,2 . . . s2,m]
...

H2
vn

=
[sn,1 sn,2 . . . sn,m]∑
[sn,1 sn,2 . . . sn,m]

× hvn

=
[(sn,1 × hvn

) + (sn,2 × hvn
) + · · · + (sn,m × hvn

)]∑
[sn,1 sn,2 . . . sn,m]

Hvi
can be written like following.

Hvi
= [H2

v1
; H2

v2
; . . . ; H2

vn
]

In this iteration the learning weights need to be updated. The goal is to get
the best learning model. However, before updating the weights we need to find
the zk value.

z1 =

∑
[H2

(1,1);H
2
(2,1); . . . ;H

2
(n,1)]

n

z2 =

∑
[H2

(1,2);H
2
(2,2); . . . ;H

2
(n,2)]

n
...

zm =

∑
[H2

(1,m);H
2
(2,m); . . . ;H

2
(n,m)]

n

zk can be written like following.

zk = [z1 z2 . . . zm]
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By initializing the learning rate (α), the learning weights can be updated as
follows.

W 2
1 = W 1

1 + α × z1 × e

W 2
2 = W 1

2 + α × z2 × e

...
W 2

m = W 1
m + α × zm × e

Thus, the learning weights can be updated as follows.

W 2 = [W 2
1 W 2

2 . . . W 2
m]

To have more understanding about the graph neural network, let us give
some technical example about a specific graph with a specific feature of each
vertex/node.

Example. Given that a graph G of order five. Suppose that vertex and edge sets
are V (G) = {v1, v2, v3, v4, v5} and V (G) = {v1v2, v1v3, v2v3, v2v4, v2v5, v4v5},
respectively. Given that feature node as

H0
vi

=

⎡
⎢⎢⎢⎢⎣

0.61 0.69 0.50 0.10
0.27 0.44 0.10 0.10
0.50 0.61 0.10 0.10
0.50 0.61 0.90 0.10
0.10 0.10 0.10 0.10

⎤
⎥⎥⎥⎥⎦

Obtain the nodes embedding with one hidden layer with one neuron, and with
minimal loss function.

Solution. By the above graph, we can determine the adjacency, Identity,
and loop-adjacency matrices as follows.

A(G) =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 1 1
1 1 0 0 0
0 1 0 0 1
0 1 0 1 0

⎤
⎥⎥⎥⎥⎦ , I =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , B = A + I =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 1 1 1
1 1 1 0 0
0 1 0 1 1
0 1 0 1 1

⎤
⎥⎥⎥⎥⎦

We can start the technical calculation by initiating the learning weight W 1 =[
0.05 0.05 0.05 0.05

]
of (1, 4)-matrix. See Fig. 5, in this figure learning weight is

(4, 8)-matrix, meaning the number on neuron in the hidden layer is eight. The
first iteration of Equation Fig. 5 can be described as follows:



314 A. D. Harliyuni et al.

Fig. 5. The example of GNN architectures: https://www.youtube.com/watch?v=A-
yKQamf2Fc

ml
vi

= W l · H l−1
vi

, where i = 1, 2, 3, 4, 5

m1
v1

= W 1 · H0
v1

= [0.05 0.05 0.05 0.05] · [0.61 0.69 0.50 0.10]
= 0.0950

m1
v2

= W 1 · H0
v2

= [0.05 0.05 0.05 0.05] · [0.27 0.44 0.10 0.10]
= 0.0455

m1
v3

= W 1 · H0
v3

= [0.05 0.05 0.05 0.05] · [0.50 0.61 0.10 0.10]
= 0.0655

m1
v4

= W 1 · H0
v4

= [0.05 0.05 0.05 0.05] · [0.50 0.61 0.90 0.10]
= 0.1055

m1
v5

= W 1 · H0
v5

= [0.05 0.05 0.05 0.05] · [0.10 0.10 0.10 0.10]
= 0.0200

thus, we have m1
vi

:

m1
vi

= [0.0950; 0.0455; 0.0655; 0.1055; 0.0200]

By considering the matrix B, we only include the non zeros element of m1
vi

,
thus we have

https://www.youtube.com/watch?v=A-yKQamf2Fc
https://www.youtube.com/watch?v=A-yKQamf2Fc
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m1
v1

= [0.0950; 0.0455; 0.0655]

m1
v2

= [0.0950; 0.0455; 0.0655; 0.1055; 0.0200]

m1
v3

= [0.0950; 0.0455; 0.0655]

m1
v4

= [0.0455; 0.1055; 0.0200]

m1
v5

= [0.0455; 0.1055; 0.0200]

Take the sum of the elements of each nodes embedding are as follows: h1
v1

=
0.2060, h1

v2
= 0.3315, h1

v3
= 0.2060, h1

v4
= 0.1710, h1

v5
= 0.1710. Thus, we have

the first iteration of aggregation

h1
vi

= [0.2060 0.3315 0.2060 0.1710 0.1710]
where i = 1, 2, 3, 4, 5.

The loss (e) can be calculated as

el =
||hl

vi
− hl

vj
||inf

|E(G)|2 where i, j ∈ {1, 2, 3, 4, 5}

e1 =
||h1

v1
− h1

v2
|| + ||h1

v1
− h1

v3
|| + ||h1

v2
− h1

v3
||

|E(G)|

e1 =
+||h1

v2
− h1

v5
|| + ||h1

v5
− h1

v4
|| + ||h1

v4
− h1

v2
||

|E(G)|
= 0.0047

In the second iteration, we need update H l−1
vi

first:

H l−1
vi

=
H l−2

vi∑
(H l−2

vi )
× hl−1

vi
, where i = 1, 2, 3, 4, 5

H1
v1

=
[0.61 0.69 0.50 0.10]∑
[0.61 0.69 0.50 0.10]

× 0.2060

= [0.0661 0.0748 0.0542 0.0108]

H1
v2

=
[0.27 0.44 0.10 0.10]∑
[0.27 0.44 0.10 0.10]

× 0.3315

= [0.0984 0.1603 0.0364 0.0364]

H1
v3

=
[0.50 0.61 0.10 0.10]∑
[0.50 0.61 0.10 0.10]

× 0.2060

= [0.0786 0.0959 0.0157 0.0157]

H1
v4

=
[0.50 0.61 0.90 0.10]∑

[3 2 1 1.2]
× 0.1710

= [0.0405 0.0494 0.0729 0.0081]

H1
v5

=
[0.10 0.10 0.10 0.10]∑
[0.10 0.10 0.10 0.10]

× 0.1710

= [0.0428 0.0428 0.0428 0.0428]
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thus, we have H1
vi

:

H1
vi

= [H1
v1

; H1
v2

; H1
v3

; H1
v4

; H1
v5

]

=

⎡
⎢⎢⎢⎢⎣

0.0661 0.0748 0.0542 0.0108
0.0984 0.1603 0.0364 0.0364
0.0786 0.0959 0.0157 0.0157
0.0405 0.0494 0.0729 0.0081
0.0428 0.0428 0.0428 0.0428

⎤
⎥⎥⎥⎥⎦

Now, we need to update the learning weight. before that, we need take the
sum of each column in the H1

vi
and divide them by the number of nodes as

follows: z1 = 0.0652, z2 = 0.0846, z3 = 0.0444, z4 = 0.0227. Thus, we have
zk = [0.0652 0.0846 0.0444 0.0227] where k = 1, 2, 3, 4. Given that the learning
rate α, we can update the weight w as

W l = W l−1
k + α × zk × el−1, where k = 1, 2, 3, 4

W 2 = W 1
k + α × zk × e1, for α = 0.1

W 2
1 = W 1

1 + α × z1 × e1

= 0.05 + 0.1 × 0.0652 × 0.0047 = 0.0500
W 2

2 = W 1
2 + α × z2 × e1

= 0.05 + 0.1 × 0.0846 × 0.0047 = 0.0500
W 2

3 = W 1
3 + α × z3 × e1

= 0.05 + 0.1 × 0.0444 × 0.0047 = 0.0500
W 2

4 = W 1
4 + α × z4 × e1

= 0.05 + 0.1 × 0.0227 × 0.0047 = 0.0500t

Thus, we have W 2:

W 2 = [W 2
1 W 2

2 W 2
3 W 2

4 ]
= [0.0500 0.0500 0.0500 0.0500]

By this new W 2 in hand, we can calculate the second iteration as follows.
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ml
vi

= W l · H l−1
vi

, where i = 1, 2, 3, 4, 5

m2
v1

= W 2 · H1
v1

= [0.0500 0.0500 0.0500 0.0500] ·
[0.0661 0.0748 0.0542 0.0108]

= 0.0103
m2

v2
= W 2 · H1

v2

= [0.0500 0.0500 0.0500 0.0500] ·
[0.0984 0.1603 0.0364 0.0364]

= 0.0166
m2

v3
= W 2 · H1

v3

= [0.0500 0.0500 0.0500 0.0500] ·
[0.0786 0.0959 0.0157 0.0157]

= 0.0103
m2

v4
= W 2 · H1

v4

= [0.0500 0.0500 0.0500 0.0500] ·
[0.0405 0.0494 0.0729 0.0081]

= 0.0086
m2

v5
= W 2 · H1

v5

= 0.0500 0.0500 0.0500 0.0500] ·
[0.0428 0.0428 0.0428 0.0428]

= 0.0086

thus, we have m2
vi

:

m2
vi

= [0.0103 0.0166 0.0103 0.0086 0.0086]

By considering the matrix B, we only include the non zeros element of m2
vi

,
thus we have

m2
v1

= [0.0103 0.0166 0.0103]

m2
v2

= [0.0103 0.0166 0.0103 0.0086 0.0086]

m2
v3

= [0.0103 0.0166 0.0103]

m2
v4

= [0.0166 0.0086 0.0086]

m2
v5

= [0.0166 0.0086 0.0086]

Take the sum of the elements of each nodesZ embedding are as follows: h2
v1

=
0.0372, h2

v2
= 0.0543, h2

v3
= 0.0372, h2

v4
= 0.0337, h2

v5
= 0.0337. Thus, we have

the second iteration of aggregationh2
vi

=[0.0372; 0.0543; 0.0372; 0.0337;
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0.0337]
where i=1,2,3,4,5.

The loss (e) can be calculated as

e2 =
||hl

vi
− hl

vj
||inf

|E(G)| where i, j ∈ {1, 2, 3, 4, 5} = 0.0062

3.1 Nodes Embedding

In this study, we used data with normalization. We use alpha = 0.1, iterations of
4, 7, and 10, initial weights are 0.5, 0.3, and 0.1. The results of this experiment
can be seen in Table 1. Based on the table, it can be seen that in the normalized
data the error value tends to decrease in each iteration. Based on the 3 weight
values that we use, the initial weight of 0.1 is the weight that produces the
smallest error value (Fig. 6).

Table 1. The results of GNN nodes embedding for finding the best loss.

Data Type Iteration Numbers Learning Weight Error Value

Non-Normalization 4 0.5 6.9 × 1014

0.3 6.8 × 1012

0.1 3.4 × 108

7 0.5 17 × 10128

0.3 1.3 × 10120

0.1 3.3 × 10104

10 0.5 17 × 10128

0.3 1.3 × 10120

0.1 3.3 × 10104

Normalization 4 0.5 1.6194

0.3 0.2255

0.1 0.0067

7 0.5 9.3124

0.3 1.8634

0.1 0.0062

10 0.5 1.7 × 1028

0.3 2.4 × 1027

0.1 1.6234 ×10−6
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Fig. 6. The performance indicator of ANN architectures and models on training and
testing bus transportation flow data set.

3.2 Time Series Forecasting Analysis

Now, we will perform computer simulation on two neural network architectures
to train, test, and forecast passengers density anomaly data in East Java. The
data on the time series is obtained from the GNN embedding process in the
previous stage. We use Matlab programming to perform numerical simulations.
A comparison of this architecture can be seen in Fig. 7. The neural network
architecture that we use is ANN-657 and ANN-746. While the ANN models
that we use are Feedforwardnet, Paternnet, Fitnet, and Cascadeforwardnet. The
parameters that we use in training the network are the Lavenberg-Marquadt
training function, the sigmoid log transfer function and the sigmoid hyperbolic
tangent, the number of epochs 750, and the learning rate 0.1. The results of this
training and testing are presented in Table 1. The best model indicator is the
model that produces the smallest mean square error (MSE). So, based on the
table, the best model is generated by ANN-657 cascadeforwardnet, with a test
MSE of 9.4982 ×10−9 (Fig,9).

Fig. 7. The comparison of ANN architecture which we used to get the training model.
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Fig. 8. The comparison of ANN output and target data of the passengers density of
bus transportation flow on training stage.

Fig. 9. The comparison of ANN output and target data of the passengers density of
bus transportation flow on testing stage.

In addition to performance indicators, we also show plots from training, test-
ing, and forecasting to find out where the anomalous data is located. The results
of our study are shown in Fig. 8 - Image 10. Based on Fig. 10, we know that in
the following week the anomaly data is in the 6th data. The regression that we
produce is also good, namely 0.98338. The plot of this regression can be seen in
Fig. 11.
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Fig. 10. The forecasting of bus transportation flow for determining the biggest passen-
gers density. The illustration shows that the biggest passengers density is in number 6,
or in other words is Probolinggo Station.

Fig. 11. This regression shows that the model we use in this study is accurate.

Discussion

In this research, we have succeeded in embedding the bus transportation flow
graph in East Java. This embedding process can reduce the original feature
dimension from 6 to 1. Of course, to get the embedding results, we need to
process message passing and aggregation. In the message passing process, we
assume that each node has information or messages that will be sent to other
nodes. So in this process we consider the adjacency matrix. However, we do
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not only consider the relationship of one node with adjacent vertices. But also
the relationship of the node to itself. So we use matrix B as a reference in this
message passing process. Next, when the messages have been sent, we add up
the messages in the aggregation process. To measure how close two vertices
have been processed by aggregation, we use error value as a benchmark. In this
study, the best error value is 1.6234 ×10−6 generated using a weight of 0.1 and
10 iterations.

Furthermore, after obtaining the embedded data, we forecast the time series
data using ANN. At this stage there are three parts, namely training, testing,
and forecasting. There are four models and two ANN architectures that we used
during the training. In network training we obtained a model which was then
used in the testing phase. The model that has been built is then tested at the
testing stage to measure the performance of the ANN. As a benchmark, we use
the mean square error (MSE). Based on the test results, the best ANN model
is Cascadeforwardnet with 657 architecture. Furthermore, by using the training
model we obtain bus transportation flow data forecasting in the following week.
This forecast is shown in Fig. 10. Based on the picture, the anomaly point is on
the 6th bus station.

Concluding Remarks

Transportation is an important and strategic means of development in facilitat-
ing the wheels of the economy and the smooth running of community activities.
The bus is transportation with multiple comparative advantages such as being
mass in nature, adaptive to the main tasks, and the function of mobilizing the
flow of passengers and goods. Then, one of the public transportation media for
traveling medium and long distances. Another thing that is no less important
is the need for smooth transportation. Thus, a prediction/forecasting system is
needed that can identify the surge in passengers. In line with this, machine learn-
ing is felt to be able to present a new breakthrough, especially in transportation.
So, the use of IoT in transportation will support the system transportation
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