
Application of Convolutional Neural Network
for Identifying Cocoa Leaf Disease

Annisa Fitri Maghfiroh Harvyanti1, Rifki Ilham Baihaki2, Dafik2,3,
Zainur Rasyid Ridlo2,4, and Ika Hesti Agustin1,2(B)

1 Department of Mathematics, University of Jember, Jember, Indonesia
ikahesti.fmipa@unej.ac.id

2 PUI-PT Combinatorics and Graph, CGANT, University of Jember, Jember, Indonesia
{d.dafik,zainur.fkip}@unej.ac.id

3 Department of Mathematics Education Postgraduate, University of Jember, Jember, Indonesia
4 Department of Science Education, University of Jember, Jember, Indonesia

Abstract. Cocoa or Theobroma cacao L. is a plantation product that has high eco-
nomic value and is very popular for its processed fruit. The large market demand
for cocoa is not proportional to the low level of productivity. The main issue in
cocoa plantations is the high incidence and rapid spread of disease. The most
common disease is Vascular Streak Dieback (VSD). Appropriate treatment must
be carried out immediately to maintain productivity. Identifying diseases based
on leaf image using a Convolutional Neural Network (CNN) can simplify and
speed up the detection of diseases. This study compares four CNN architectures,
namelyAlexNet, SqueezeNet,Darknet, andmodifiedCNN to identify cocoa plants
infectedwithVSD. The total number of datasets used is 1200 images, consisting of
600 images for the healthy class and the remaining 600 images for the VSD class.
The best results were obtained with the DarkNet-19 model, with a test accuracy
of 98.61%.

Keywords: precision agriculture · cocoa leaf disease · image classification ·
convolutional neural network

1 Introduction

Cocoa is one of Indonesia’smainstay agricultural commodities. Its role is quite important
for the national economy, especially as a provider of employment and a source of foreign
exchange. In terms of quality, Indonesian cocoa is not inferior to world cocoa because it
has the advantage of not melting easily. In line with these advantages, Indonesian cocoa
market opportunities are quite open, both for export and domestic demand. Nonetheless,
Indonesia’s cocoa production is still low due to complex problems including diseases,
cocoa pod borer pests, and cocoa downstream product development [12]. One of the
most common diseases in coffee plantations is Vascular Streak Disease (VSD).

VSD disease is caused by the fungus Oncobasidium theobromae (Ceratobasidiales:
Ceratobasidiaceae) [8]. The first symptom to appear is usually the yellowing of the

© The Author(s) 2023
I. H. Agustin (Ed.): ICONNSMAL 2022, AISR 177, pp. 283–304, 2023.
https://doi.org/10.2991/978-94-6463-174-6_21

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-174-6_21&domain=pdf
https://doi.org/10.2991/978-94-6463-174-6_21


284 A. F. M. Harvyanti et al.

leaves, especially on the second or third leaf from the tip. These leaves develop small,
well-defined green spots that are scattered on a yellow background. This disease spreads
very quickly and can be deadly. This is a challenge for cocoa plantations to increase
cocoa productivity.

Precision agriculture is a solution required to achieve the production rate required.
Applications of artificial neural networks have been widely used in precision agricul-
ture, such as forecasting temperature, soil moisture, and relative humidity [3, 17]. An
artificial neural network is one of the most important elements of machine learning and
artificial intelligence. It’s an adaptive system that’s inspired by the human brain’s struc-
ture and functions. A neural network can learn from past data to do several tasks, such
as recognizing patterns, classifying data, and forecasting future events. Convolutional
Neural Networks is a part of ANNwhich is now popularly used for image classification,
segmentation, and object recognition [13]. Input data on CNN can be any data, including
numeric, image, video, sound, and natural language [1, 7]. CNN is popularly used for
image classification, segmentation, and object recognition [13]. CNN has been widely
implemented in various fields, namely health, agriculture, web, mail services, etc.

There have been numerous studies towards the automatic classification and identifi-
cation of plant diseases. In a study by Brahimi et al. [2], they classified nine tomato leaf
diseases with an accuracy rate of 99.18% using AlexNet and GoogleNet. When com-
paring four CNN architectures to categorize three tomato leaf diseases, Baihaki et al.
[14] found that VGG-16 produced the best results with a 99.67% accuracy rate. Using
VGG-16 and VGG-19, Darwis et al. [4] devised a method for identifying three diseases
of maize and found an average accuracy of 98.2%. Liu et al. proposed a novel architec-
ture of CNN to identify apple leaf diseases with accuracy 97,62%. Similar research was
provided by the authors employing CNN architecture to discover and recognize illnesses
in maize [5, 16]. The CNN architecture is also used by the authors in other plants. Based
on an article by Tugrul et al., still, no one has done research on image classification leaf
plant disease for cocoa.

In this research, we apply Convolutional Neural Network as a feature extractor
and classifier. We use four architectures namely AlexNet, SqueezeNet, DenseNet, and
Modified-CNN. We categorize cocoa leaves into two classes, healthy class and VSD
class.

2 Methods

This part describes the procedure of this research, including image acquisition, pre-
processing including image augmentation and training, feature extraction, and pattern
recognition using four CNN architectures, namely AlexNet, SqueezeNet, DarkNet, and
modified CNN, and the last procedure is model evaluation.

A. Image Acquisition
The object research focuses on cocoa that is widely grown in South and Southeast

Asia. Leaf image data is taken from cocoa plants grown at the Indonesian Coffee and
Cocoa Research Institute in Jember, East Java. The leaves captured were in two classes,
healthy class and VSD class. Infected leaves were observed based on the condition of
the leaves based on information from literatures and farmers there. Pictures were taken



Application of Convolutional Neural Network 285

Fig. 1. Comparison of original image and augmented image.

using a smartphone camera with a 48 MP camera. All images are saved in jpg format
with an image size of 3000 × 3000 pixels.

B. Data Augmentation
The initial dataset includes 343 healthy and 327 VSD-infected leaf images. The

limited datawe havemakes it impossible to obtain an accurate and non-overfittingmodel.
We use image augmentation to overcome this problem and improve the classification
results. Data Augmentation prevents overfitting bymodifying limited datasets to possess
the characteristics of big data [11]. The results of the classification were improved by
data augmentation. The previous study shows the effectiveness of data augmentation
comes from simple transformations such as color space augmentations, flipping, and
random cropping [15].

In this study, each image was augmented with a white balance color augmenter
developed by Afifi et al. [10]. This augmentation method can accurately imitate real-
istic color constancy degradation. Existing color augmentation methods often generate
unnatural colors which rarely happens. By simulating various white balance effects,
white balance color augmenter increases the precision of image classification and image
semantic segmentation techniques. The augmentation process produces a total of 1200
images, comprising 600 images for the healthy class and the remaining 600 for the VSD
class.

C. Data Training and Testing
The data produced by the augmentation were divided by a 70:30 ratio. The number

of images for training is 840 and 360 images for testing. Training data is used to generate
a suitable model to test data validation. 70% of the entire data is randomly chosen for
training and the remaining 30% is used for testing. Data testing is used to examine the
model accuracy from the training results. The training model was devoted to generating
the most accurate identification.

D. Artificial Neural Network
An artificial neural network (ANN) consists of several processing layers, such as an

input layer, hidden layers, and an output layer. Each layer contains a number of nodes that
take the outputs from every node in the layer below as inputs. Each neuron has a weight
and threshold, which the network adjusts it depending on the error rate between the target



286 A. F. M. Harvyanti et al.

and actual output using a training algorithm. Any node whose output exceeds the defined
threshold value is activated and begins providing data to the network’s uppermost layer.
Otherwise, no data is transmitted to the network’s next layer.

For example, let W = (wij) be a weight matrix that represents the relationship
between one neuron and another neuron. The network input to the target unit Yj (with
no bias to unit j) is a simple dot product of the vector x = (x1, x2, . . . , xn) where n is
the number of inputs and wj is the weight value where j is the number of columns in the

weight matrix. Y
∧

becomes Y
∧

= x ·wj = ∑n
i=1 xiwij. Figure 1 illustrates a simple neural

network. The bias (β) can be included in vector x by adding the component x0 = 1, so
that vector x becomes x = (1, x1, x2, . . . , xn).

The bias is considered like any other weight, w0j = βj. The network input to the unit
Yj is given in Eq. (1).

Ŷ =
∑n

i=0
xiwij = w0j +

∑n

i=0
xiwij = βj +

∑n

i=0
xiwij (1)

The basic operation of a neural network is the addition and multiplication between
the weights and the input signal and applying them to the activation function. These are
several types of activation functions:

1. Linear activation function

Ŷ = f (x) = ax + b, if a = 1, b = 0, then f is an identity function.

2. Step binary activation function with threshold θ

Ŷ = f (x) =
{
1
0
if x ≥ θ

if x < θ

3. Sigmoid binary activation function

Ŷ = f (x) = 1

1 + e−σx
, and f ′ = σ f (x)

[
1 − f (x)

]
.

4. Sigmoid bipolar activation function

Ŷ = g(x) = 2f (x) − 1 = 1 − e−σx

1 + e−σx

Fig. 2. A simple artificial neural network.



Application of Convolutional Neural Network 287

and g′(x) = σ
2

[
1 + g(x)

][
1 − g(x)

]

5. Hyperbolic tangent activation function

Ŷ = h(x) = ex − e−x

ex + e−x
,

and h′(x) = [1 + h(x)][1 − h(x)]

Observation 1
Given a neural network with one hidden layer and two neurons. Figure 2 illustrates this
artificial neural network. Let x = {xi|i = 1, 2, . . . , n}, where x is the input data and
n is the number of input data. Suppose that h and β are the number of hidden layers
and biases respectively. The output (y

∧

) is written as y
∧ = 1

1+e−(β1+W1(β0+W0x))
, where

[h1; h2] = β0 + W 0x.

Proof
Input data x = {x1, x2, . . . , xn}, since we have one layer and two neurons, we define
weights (Fig. 3):

Fig. 3 Illustration of artificial neural network with 1 hidden layer.



288 A. F. M. Harvyanti et al.

W 0 = [w0
1,1 w

0
1,2 · · · w0

1,n ; w0
2,1 w

0
2,2 · · · w0

2,n ],W 1 = [w1
1 w1

2 ] and bias β0, β1.
The output from hidden layer is as follows.

[
h1
h2

]

=
[

β0
1

β0
2

]

+
[
w0
1,1

w0
2,1

w0
1,2 · · · w0

1,n
w0
2,1 · · · w0

2,n

]
⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

= β0 + W 0x

Next, we obtain yin as follows.

yin = β1 +
[
w1
1

w1
2

][
h1
h2

]

= β1 +
[
w1
1

w1
2

]

·
(
β0 + W 0x

)

= β1 + W 1
(
β0 + W 0x

)

We get output (y
∧

) as follows.

y
∧ = 1

1 + e−yin
= 1

1 + e−(β1+W 1(β0+W 0x))

It concludes the proof.

Observation 2
Given a neural network architecture with two hidden layers. In each hidden layer there
are two and three neurons. Figure 4 illustrates the architecture of this neural network.
Let h and β be the number of hidden layers and bias, respectively. The output (y

∧

) is
written as y

∧ = 1

1+e−(β2+W2(β1+W1(β0+W0x)))
where h1 = [

h11; h12
] = β0 + W 0x and

h2 = [
h21; h22; h23

] = β1 + W 1(β0 + W 0x).

Proof.
Input data x = {x1, x2, . . . , xn}, sincewe have two hidden layers which have two neurons
and three neurons respectively, we define weights:

W 0 = [w0
1,1 w0

1,2 . . . w0
1,n;w0

2,1 w0
2,2 . . . w0

2,n ]W 1 = [w1
1,1 w1

1,2 ; w1
2,1 w1

2,2 ; w1
3,1 w1

3,2 ]

Fig. 4 Illustration of artificial neural network with 2 hidden layers.



Application of Convolutional Neural Network 289

W 2 = [w2
1;w2

2;w2
3] and bias β0, β1, β2.

The output from hidden layer 1 is as follows:

[
h11
h12

]

=
[

β0
1

β0
2

]

+
[
w0
1,1

w0
2,1

w0
1,2 · · · w0

1,n
w0
2,1 · · · w0

2,n

]
⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

= β0 + W 0x

The output of hidden layer 2 is as follows:

⎡

⎣
h21
h22
h23

⎤

⎦ =
⎡

⎣
β1
1

β1
2

β1
3

⎤

⎦ +
⎡

⎢
⎣

w1
1,1

w1
2,1

w1
3,1

w1
1,2 · · · w1

1,n
w1
2,1

w1
3,2

· · ·
. . .

w1
2,n

w1
3,n

⎤

⎥
⎦

[
h11
h12

]

⎡

⎣
h21
h22
h23

⎤

⎦ =
⎡

⎣
β1
1

β1
2

β1
3

⎤

⎦ +
⎡

⎢
⎣

w1
1,1

w1
2,1

w1
3,1

w1
1,2 · · · w1

1,n
w1
2,1

w1
3,2

· · ·
. . .

w1
2,n

w1
3,n

⎤

⎥
⎦ · (β0 + W 0x)

[
h22

]
= β1 + W 1(β0 + W 0x)

Next, we obtain yin as follows.

yin = β2 +
⎡

⎣
w2
1

w2
2

w2
3

⎤

⎦

⎡

⎣
h21
h22
h23

⎤

⎦

yin = β2 +
⎡

⎣
w2
1

w2
2

w2
3

⎤

⎦ ·
(
β1 + W 1

(
β0 + W 0x

))

yin = β2 + W 2
(
β1 + W 1

(
β0 + W 0x

))

The output result (y
∧

) is as follows.

y
∧ = 1

1 + e−yin
= 1

1 + e−(β2+W 2(β1+W 1(β0+W 0x)))

It concludes the proof.
E. Convolutional Neural Network
Convolutional Neural Network is a part of a deep neural network, which is a type of

ANN that is generally used in image processing and recognition. In general, there are
three layers in CNN, an input layer, one or some hidden layers, and an output layer. The
operation in hidden layer changes data to learn special features in the data. The three
most common layers in CNN are convolution layer, activation layer, and pooling layer.

Convolution runs a series of convolutional filters through the input images, activating
different aspects of the images with each filter.



290 A. F. M. Harvyanti et al.

Fig. 5 Architecture of convolutional neural network.

Rectified linear unit (ReLU) maintains positive values while translating negative
values to zero, enables quicker and more efficient training. Due to the fact that only the
activated features are carried over to the following layer, this is frequently referred to as
activation.

Pooling reduces the number of parameters the network needs to learn by conducting
nonlinear down sampling on the output.

Each layer learns to recognize various features as these operations are repeated over
tens or hundreds of layers.

F. CNN Architecture

AlexNet
AlexNet earned first place in the 2012 ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC), a large-scale image classification competition in 2012. This architec-
ture consists of 5 convolution layers, 3 pooling layers, 2 dropout layers, and 3 fully
connected layers. AlexNet was designed by Alex Krizhevsky, Geoffrey Hinton, and Ilya
Sutskever who are members of the SuperVision group.

SqueezeNet
SqueezeNet is an improved architecture ofAlexNet. It has 18 layers and a 227x227 image
input size. SqueezeNet reduces the size of the activation map (squeeze) by changing
the convolution array from 3x3 to 1x1 and using fewer filters. With 50 times fewer
parameters, SqueezeNet achieves AlexNet-level accuracy on ImageNet [4].

DarkNet-19
DarkNet-19 is a convolutional neural network that has 19 layers deep. The pretrained
network can classify images into 1000 object categories on ImageNet. This network has
a 256x256 image input size.

Modified CNN
This architecture is developed by Baihaki et al. [15] to classify CT-Scan images of the
lungs of patients with COVID-19 with an accuracy rate of 91% for testing and 100% for
training. This architecture has 8 layers deep with 2 convolutional layers, two activation
layers, one softmax layer, and one classification layer. It uses adam as the optimizer.

G. Simulation of CNN



Application of Convolutional Neural Network 291

CNN is specifically designed to process pixel data and visual images. Neurons that
compose CNN perform the roles of activation, bias, and weight. Additionally, neurons
are organized in the convolutional layer to create a filter with length and height (pixels).
In order to get new representative information from the multiplication of the picture
component with the applied filter, CNN applies a convolution kernel (filter) to an image.
The following is the simulation of CNN workflows.

• Splitting Image.
Every image has three color channels, namely RGB (red, green, blue). The image

of size 256 × 256 pixels is actually a multidimensional array with a size of 256
× 256 × 3 (3 is the number of color channels). The array is stored and read as a
representation of an image. Let’s take a small size 5 × 5 pixels of an image as an
example to simulate the process of CNN (Fig. 6).

• Feature Extraction
Numbers that represent the image are features that result from the encoding of an

image. The feature extraction layer composes of Convolutional Layer and the Pooling
Layer (Fig. 7).

• Zero Padding

Zero padding is the addition of zero rows and columns on each side of the input. This
is done in order to manipulate the output dimensions of the convolutional layer (feature
map) so that more features are properly extracted (Fig. 8).

• Convolution Process

Given a certain sized filter that will be shifted by a stride to the entire part of the
image. Convolution performs a “dot” operation between the input and the value of the

Fig. 6 Splitting input image.

Fig. 7 Color channel on input image.



292 A. F. M. Harvyanti et al.

Fig. 8 Zero padding on input image.

filter to produce an activation map or feature map. In the example, a 3 × 3 filter is taken
with a stride of 1. The following is a simulation of convolution process.

Operate convolution process in the red channel:

Ired =
⎡

⎣
0 0 0
0 180 180
0 180 180

⎤

⎦ ∗
⎡

⎣
1 0 0

−1 −1 0
1 1 1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + . . . + (180 ∗ 1)

= 180

Convolution process in the green channel:

Igreen =
⎡

⎣
0 0 0
0 210 209
0 210 209

⎤

⎦ ∗
⎡

⎣
−1 0 0
0 1 −1

−1 0 −1

⎤

⎦

= (0 ∗ −1) + (0 ∗ 0) + . . . + (209 ∗ −1)

= 210

Convolution process in the blue channel:

Iblue =
⎡

⎣
0 0 0
0 34 31
0 34 31

⎤

⎦ ∗
⎡

⎣
−1 0 −1
0 0 1
0 −1 0

⎤

⎦

= (0 ∗ −1) + (0 ∗ 0) + . . . + (31 ∗ 0)

= −3

Let bias β = 1, the feature map values results are as follows:

c1 = Ired + Igreen + Iblue + β

= 180 + 210 − 3 + 1

= 388

The process of convolution operation is continued by shifting the filter one pixel to
the right.

Convolution process in the red channel:

Ired =
⎡

⎣
0 0 0

180 180 179
180 180 179

⎤

⎦ ∗
⎡

⎣
1 0 0

−1 −1 0
1 1 1

⎤

⎦



Application of Convolutional Neural Network 293

= (0 ∗ 1) + (0 ∗ 0) + . . . + (179 ∗ 1)

= 179

Convolution process in the green channel:

Igreen =
⎡

⎣
0 0 0

210 209 208
210 209 208

⎤

⎦ ∗
⎡

⎣
−1 0 0
0 1 −1

−1 0 −1

⎤

⎦

= (0 ∗ −1) + (0 ∗ 0) + . . . + (208 ∗ −1)

= −1

Convolution process in the blue channel:

Iblue =
⎡

⎣
0 0 0
0 34 31
0 34 31

⎤

⎦ ∗
⎡

⎣
−1 0 −1
0 0 1
0 −1 0

⎤

⎦

= (0 ∗ −1) + (0 ∗ 0) + . . . + (31 ∗ 0)

= −3

Then, the feature map values results are as follows:

c2 = Ired + Igreen + Iblue + β

= 179 − 1 − 3 + 1

= 176

Aseries of convolutionprocesses havebeen carried out, then a featuremap is obtained
as follows:

C =

⎡

⎢
⎢
⎢
⎣

c1 c2 · · · c5
c6 c7 · · · c10
...

...
. . .

...

c21 c22 · · · c25

⎤

⎥
⎥
⎥
⎦

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

388 176 172 171 −17
358 85 89 97 −72
357 84 268 98 −75
359 87 90 94 −77
240 −6 0 3 −203

⎤

⎥
⎥
⎥
⎥
⎥
⎦

• Activation Layer (ReLU)

The reLU (Rectified Linear Unit) activation function is one of the most frequently
used to activate feature maps. The reLU function is used to represent the output value of
the neuron as 0 if the input is negative. If the input is positive, then the value is retained.

C(σ ) =
{

σ, ifσ ≥ 0
0, ifσ < 0



294 A. F. M. Harvyanti et al.

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

388 176 172 171 0
358 85 89 97 0
357 84 268 98 0
359 87 90 94 0
240 0 0 3 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

• Pooling Layer (Max Pooling)

In the pooling layer, there is a certain filter and stride that is shifted throughout
the feature map area. The most common pooling methods are Average Pooling and
Max Pooling. The goal is to reduce the dimensions of the feature map (down sam-
pling), thereby speeding up processing because there are fewer parameters to update
and overcome overfitting. The Max Pooling process is illustrated as follows:

m1 =
⎡

⎣
388 176 172
358 85 89
357 84 268

⎤

⎦

max(m1) = 388

The next filter shifts 1 pixel to the right, the results of the MaxPooling process on
the filter are illustrated below.

m2 =
⎡

⎣
176 172 171
85 89 97
84 268 98

⎤

⎦

max(m2) = 268

After going through a series of MaxPooling processes, the following feature map is
obtained.

C =
⎡

⎣
388 268 268
359 268 268
359 268 268

⎤

⎦

The process will return to the convolution operation if there is still a Convolution
Layer after the MaxPooling Layer.

Flattening

This is the last process in the feature extraction layer. Flattening or reshaping a
feature map means converting it from a matrix form to a vector.

C = [388; 268; 268; 359; 268; 268; 359; 268; 268]T



Application of Convolutional Neural Network 295

These vectors must be normalized first before become input to Fully-Connected
Neural Networks (FCNN).

Normalization

We normalize vector C with the following formula.

xi = a + (Ci − max(C)) × (b − a)

max(C) − min(C)

where a = 0.1; b = 0.9
We obtain the input vector for FCNN as follows.

x = [0.9; 0, 1; 0, 1; 0, 707; 0, 1; 0, 1; 0, 707; 0, 1; 0, 1]T

These vectors then become input to Fully-Connected Neural Networks (FCNN).
Some of the parameters we used in FCNN are weights (W 0andW 1), bias (β0andβ1),
learning rate α = 0.01, and target (t).

• Fully-Connected Neural Network (FCNN)

The fully connected layer is like an artificial neural network, where all the activity
neurons from the previous layer are connected to the neurons in the next layer. FCNN
aims to process data so that it can be classified, and it is usually used in the multi-layer
perceptron method (Fig. 9).

Some of the parameters used in FCNN are weights (w1,w2,w3,w4), bias (v),
learning rate α = 0.01, and target (t).

W 0 =
[
0.2 0, 1 0, 1 0, 4 0, 2 0, 2 0, 3 0, 1 0, 1
0, 1 0, 3 0, 2 0, 2 0, 1 0, 4 0, 1 0, 1 0, 2

]

W 1 = [0, 2; 0, 1]

β0 = [0.1; 0, 1]

β1 = [0.1; 0, 1]

Fig. 9 Illustration of Fully Connected Neural Network.



296 A. F. M. Harvyanti et al.

t = [
1 1

]

The first step in FCNN is feedforward neuron one as follow.

h11,1 = β0
1 + x1 ∗ w0

1,1 = 0.1 + 0.9 ∗ 0.2 = 0.2800

h11,2 = β0
1 + x2 ∗ w0

1,2 = 0.1 + 0.1 ∗ 0.1 = 0.1100

...

h11,9 = β0
1 + x9 ∗ w0

1,9 = 0.1 + 0.1 ∗ 0.1 = 0.1100

h11 = [0.2800 0.1100 0.1100 0.3828 0.1200

0.1200 0.3121 0.1100 0.1100 ]
Next is feedforward neuron two as follow.

h12,1 = β0
2 + x1 ∗ w0

2,1 = 0.1 + 0.9 ∗ 0.1 = 0.1900

h12,2 = β0
2 + x2 ∗ w0

2,2 = 0.1 + 0.1 ∗ 0.3 = 0.1300

...

h12,9 = β0
2 + x9 ∗ w0

2,9 = 0.1 + 0.1 ∗ 0.2 = 0.1200

h12,9 = [0.1900 0.1300 0.1200 0.2414 0.1100

0.1400 0.1707 0.1100 0.1200 ]
Next is to calculate the output (y)

yin1 = β1
1 + w1

1 ∗ h11,1 + w1
1 ∗ h11,2 + · · · + w1

1 ∗ h11,9

yin1 = 0.1 + 0.2 ∗ 0.2800 + 0.2 ∗ 0.1100 + · · · + 0.1 ∗ 0.1100

yin1 = 0.4310

yin2 = β1
2 + w1

2 ∗ h12,1 + w1
2 ∗ h12,2 + · · · + w1

2 ∗ h12,9

yin2 = 0.1 + 0.1 ∗ 0.1900 + 0.1 ∗ 0.1300 + · · · + 0.1 ∗ 0.1210



Application of Convolutional Neural Network 297

yin2 = 0.2332

Then activate each neuron output. The activation function used is the sigmoid log.

ym = 1

1 + e−yinm

y1 = 0.6061

y2 = 0.5580

After obtaining the next output, we can calculate the output error.

δk1 = (t1 − y1)
2

�k1 = (1 − 0.6061)2

�k1 = 0.1552

δk2 = (t2 − y2)
2

�k2 = (1 − 0.5580)2

�k2 = 0.1953

MSE = ((t1 − y1) + (t2 − y2))2

2
= 0.3493

Then calculate the backpropagation error between output layer and hidden layer:

δj01 = β0
1 + w1

1 ∗ δk1

δj01 = 0.1 + 0.2 ∗ 0.1552 = 0.1310

δj02 = β0
2 + w1

2 ∗ δk2

δj02 = 0.1 + 0.1 ∗ 0.1953 = 0.1195

δj02

Then calculate the backpropagation error between hidden layer and input layer:

δj11 = w0
1,1 ∗ δk1 + w0

1,2 ∗ δk1 + w0
1,3 ∗ δk1 + · · · + w0

1,9 ∗ δk1



298 A. F. M. Harvyanti et al.

δj11 = 0.2638

δj12 = w0
2,1 ∗ δk2 + w0

2,2 ∗ δk2 + w0
2,3 ∗ δk2 + · · · + w0

2,9 ∗ δk2

δj12 = 0.3321

The final step is to update the weights and biases as follows:

• The weights between input layer and hidden layer

w_new0
1,1 = w0

1,1 + α ∗ δk1 ∗ h11

w_new0
1,1 = [0.2004; 0.1001; 0.1001; 0.4005; 0.2002; 0.2002;

w_new0
1,1 = 0.3004; 0.1001; 0.1001]

w_new0
2,1 = w0

2,1 + α ∗ δk2 ∗ h12

w_new0
1,1 = [0.1002; 0.3002; 0.2001; 0.2003; 01001; 0.4002;

w_new0
1,1 = 0.1002; 0.1001; 0.2001]

w_new0
2,1 =

[
w_new0

1,1
w_new0

2,1

]

=
[
0.20040.10010.10010.40050.20020.20020.30040.10010.1001
0.10020.30020.20010.2003010010.40020.10020.10010.2001

]T

• The weights between hidden layer and output layer

w_new1
1 = w1

1 + α ∗ δk1 = 0.2030

w_new1
2 = w1

2 + α ∗ δk2 = 0.1035

w_new1 =
[
w_new1

1
w_new1

2

]

=
[
0.2030
0.1035

]

• Bias between input layer and hidden layer

β_new0
1 = β0

1 + α · δj1 = 0.1013

β_new0
2 = β0

1 + α · δj2 = 0.1012

β_new0 =
[
β_new0

1;β_new0
2;

]
= [0.1119; 0.1131; 0.1146]



Application of Convolutional Neural Network 299

• Bias between hidden layer and output layer

β_new1
1 = β1

1 + α · δj1 = 0.1013

The process is repeated to the feedforward stage until epoch reaches the maximum
number or error tolerance (error_goal). The output value of the neural network is then
used as input to the Softmax Layer.

Softmax Layer

Softmax layer is implemented just before the output layer in neural network. In this
layer, there will be as many probabilities as the output class we specify. An illustration
of the softmax process is shown in Fig. 10 and 11. The output value (logits) is processed
using the softmax function. This layer must have the same number of nodes as the output
layer or the number of classes, in classification problem. The softmax function is often
used as the final activation function of a neural network to normalize the network output
to a probability distribution over predicted output class.

H. Confusion Matrix
A table called a confusion matrix is used to describe how well a classification sys-

tem performs. The output of a classification algorithm is shown and summarized in a
confusion matrix.

This confusion matrix can be used to evaluate the performance of a model, such
as accuracy, precision, and recall. Accuration shows the correctness rate of the model.
Precision compares the amount of data that is classified as true with data that is classified
as true and data that is classified as false from the true class. Recall compares the data
classified as true with data classified as true and data classified as false not from the true
class. Those are calculated using Eqs. (1), (2), and (3).

Accuration = TP + TN

TP + TN + FP + FN
× 100% (1)

Precission = TP

TP + FP
× 100% (2)

Recall = TP

TP + FN
× 100% (3)

Fig. 10 Illustration of the Softmax process with output that does not matches the target.

Fig. 11 Illustration of the Softmax process with output that matches the target.



300 A. F. M. Harvyanti et al.

3 Design and Experiment

In this study, the data set used was taken from cocoa plants grown at the Indonesian
Coffee and Cocoa Research Institute in Jember, East Java. The leaves captured were
healthy and infected with VSD. There are two data classes in this data set, namely
healthy class and VSD class. The distribution of the data set used for network training
and testing can be seen in Table 2.

The data set consists of 1200 images, with 840 images used as training and the
remaining 360 images used as testing. The training stage aims to train the neural network
to recognize the given image input. The output of network training is training accuracy
and training model. In the testing phase, this model is used to recognize new data.

4 Results and Discussion

A. Metrics and Envirenment Setup
In this study, we use Adam optimizer as an algorithm for updating weights and biases

in training stage. The number of epochs that we use in this study is 100 epochs. Other
parameters we used at the training stage are the learning rate at 0,0001 and 10 mini batch
size (Table 1).

The computer used in this study used Matlab 2022a software, DESKTOP-PJ6S0T6
and some hardware: Intel(R) Celeron(R) N4000 CPU@ 1.10GHz 1.10 GHz with 4 GB
of memory.

B. The Evaluation of Training Stage
In this study we used CNN Transfer Learning, which is a model that has been

trained using another data set. In this study, we use Alexnet, SqueezeNet, DarkNet-19,
and Modified CNN. Each of these models is identical to the original architecture, but
without the fully-connected layer.

Table 1. Confusion Matrix

True False

True True Positive (TP) False Positive (FP)

False False Negative (FN) True Negative (TN)

Table 2. Data Set

Class Data Set

Training Testing

VSD 420 Images 180 Images

Healthy 420 Images 180 Images

Total 840 Images 360 Images



Application of Convolutional Neural Network 301

Table 3. Training and Testing Accuracy

Model CNN Train Accuracy Time Train Test Accuracy

Modified CNN 100% 6970 s 94,17%

SqueezeNet 97,62% 8615 s 97,5%

Alexnet 98,69% 7846 s 97,78%

DarkNet-19 99,76% 8460 s 98,61%

Fig. 12 Comparison of Plot Training on Four CNN Models.

Each CNNmodel generates training and loss plots in training stage. We can observe
the training accuracy and its loss as the epoch goes on. The higher the accuracy value,
the lower the loss value of the model (Fig. 12).

C. The Evaluation of Testing Stage
The trained model is tested on new data, which is called test data. In this test, we can

observe the level of accuracy of the model we have. We use the resulting test accuracy
value as a benchmark for model accuracy. Based on Table 3, the best CNN model is
produced by DarkNet-19 with a test accuracy of 98,61%. It is followed by AlexNet
97,78%, SqueezeNet 97,5%, and Modified CNN 94,17%. Each of these models ithen
measured its performance with a confusion matrix. The comparison of the confusion
matrix in each CNN model is shown in Fig. 13.

In Fig. 13 the smallest number of errors is owned by DarkNet-19. This is why the
accuracy of the DarkNet-19 test reaches 98.61%. The model that generates the most
errors is Modified CNN.

We calculate accuracy (Eq. 1), precision (Eq. 2), and recall (Eq. 3). In this study, we
use accuracy, precision, and recall as benchmarks for the performanceof the classification
model. Figure 13 shows the performance of the four classification models.

Based on the confusionmatrix, the best classificationmodel is produced byDarkNet-
19, with 98,61% accuracy, 98,60% precision, and 98,62% recall. Accuracy shows how
much the accuracy of themodel is, whichmeans that the greater the accuracy, the smaller
the error. Precision indicates how much data belonging to one class is misclassified as



302 A. F. M. Harvyanti et al.

Fig. 13 The Confusion Matrix of Four CNN Models.

another class. The greater the precision value, the smaller the error made. Meanwhile,
recall shows how many other classes are incorrectly classified as a class. The greater the
recall value indicates the smaller the error made by the system.

5 Conclusions and Future Works

Agroindustry is a very important aspect of supporting the community’s economy. Cocoa
is an agroindustrial product that is an export commodity. However, the level of cacao
production is low due to the high spread of a deadly disease, namely VSD. For this
reason, it is necessary to create a system model that can identify diseases quickly and
efficiently so that treatment can be carried out immediately. Nowadays, artificial neural
network is widely used to do precision agriculture. In this study, we implemented deep
learning, especially convolutional neural networks to classify healthy and VSD-infected
cocoa plants. For comparison, we used four CNN models to see which one was more
effective in solving our problem. We use four models, namely Modified CNN, AlexNet,
SqueezeNet, and DarkNet-19. The best results were obtained using the DarkNet-19
model, with a test accuracy of 98.61%.

Acknowledgment. This project is funded by PUI-PT Combinatorics and Graph, CGANT,
University of Jember 2023.

References

1. O. Abdel-Hamid, A.R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, “Convolutional
Neural Networks for Speech Recognition” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 22, no. 10, October 2014, pp. 1533–1545

2. M. Brahimi, B. Kamel, A. Moussaoui, “Deep Learning for Tomato Diseases: Classification
and Symptoms Visualization” Applied Artificial Intelligence, 6 April 2017, 31, pp 1-17



Application of Convolutional Neural Network 303

3. Dafik, Z. R. Ridlo, I. H. Agustin, R. I. Baihaki, F. G. Febrinanto, R. Nisviasari, Suhardi,
and A. Riski, “The Implementation of Artificial Neural Networks and Resolving Efficient
Dominating Set for Time Series Forecasting on Soil Moisture to Advance the Automatic
Irrigation System on Vertical Farming” in press

4. A. Darwish, D. Ezzat, A. E. Hassanien, “An Optimized Model Based On Convolutional
Neural Networks And Orthogonal Learning Particle Swarm Optimization Algorithm For
Plant Diseases Diagnosis” Swarm and Evolutionary Computation, vol. 52, 2020

5. C. DeChant, T. Wiesner-Hanks, S. Chen, E. L. Stewart, J. Yosinski, M. A. Gore, R. J. Nelson,
H. Lipson, “Automated Identification of Northern Leaf Blight-Infected Maize Plants from
Field Imagery Using Deep Learning” Phytopathology, 2017, pp 1426–1432

6. F. N. Iandola, S. Han,M.W.Moskewicz, K. Ashraf,W. J. Dally, andK.Keutzer, “SqueezeNet:
AlexNet-level Accuracy with 50x Fewer Parameters and <0.5MB Model Size” Computer
Vision and Pattern Recognition, 24 February 2016

7. A. Kamilaris, F. X. Prenafeta-Boldú, “Disaster Monitoring Using Unmanned Aerial Vehi-
cles and Deep Learning” Disaster Management for Resilience and Public Safety Workshop,
Proceedings of EnviroInfo, Luxembourg : 2017

8. P. Keane and C. Prior 1991 “Vascular Streak Dieback Of Cacao” Phytopathological Papers,
p 33 1–39

9. L. Bin, Y. Zhang, D. He, Y. Li, “Identification of Apple Leaf Diseases Based on Deep
Convolutional Neural Networks” Symmetry, 2017

10. M. Afifi andM. S. Brown. “What Else Can Fool Deep Learning? Addressing Color Constancy
Errors on Deep Neural Network Performance” International Conference on Computer Vision
(ICCV), 2019

11. L. G. Nachtigall, R. M. Araujo, and G. R. Nachtigall, “Classification of Apple Tree Disor-
ders Using Convolutional Neural Networks” In Proceedings of the 28th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), San Jose: 6–8 November 2016,
pp. 472–476

12. R. Ploetz 2016 “The Impact of Diseases on Cacao Production: AGlobal Overview” In: Bailey
ABandMeinhardtWL, eds. CacaoDiseases:AHistory ofOldEnemies andNewEncounters,
New York: December 2017

13. R. I. Baihaki and D. R. Sulistyaningrum, “COVID-19 Classification from CT-Scan Images
using Convolutional Neural Networks”, Proceedings of International Seminar on Machine
Learning, Optimization, and Data Science (ISMODE), Jakarta: 29 January 2022, pp. 75–80

14. R. I. Baihaki, Dafik, I. H. Agustin, Z. R. Ridlo, and E. Y. Kurniawati, “The Comparison of
Convolutional Neural Networks Architectures on Classification Potato Leaf Disease” in press

15. C. Shorten, T.M.Khoshgoftaar, “ASurvey on ImageDataAugmentation forDeepLearning” J
Big Data 6, 60, 2019

16. M.Sibiya,M.A.Sumbwanyambe, “Computational Procedure forTheRecognition andClassi-
ficationofMaizeLeafDiseasesOut ofHealthyLeavesUsingConvolutionalNeuralNetworks”
AgriEngineering, 2019, 1, pp 119–131

17. Z. R. Ridlo, I. K. Mahardika, J. Waluyo, R. I. Baihaki, and Dafik, “Design of IOT Based on
Nodemcu for Monitoring of Temperature, Soil Moisture, and Relative Humidity as Tools for
Precision Agriculture” in press



304 A. F. M. Harvyanti et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by-nc/4.0/

	Application of Convolutional Neural Network for Identifying Cocoa Leaf Disease
	1 Introduction
	2 Methods
	3 Design and Experiment
	4 Results and Discussion
	5 Conclusions and Future Works
	References




