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Abstract. Rice plant disease is one of the factors causing high losses due to
crop failure. Plant-disturbing organisms often attack rice plants, especially on the
leaves. This can damage rice plants and cause crop failure. Manual diagnostic
activities on rice plant leaves will help identify and classify the types of diseases
suffered by rice plant leaves. This study aims to be able to detect diseases that
occur in the leaves of rice plants using the Convolutional Neural Network (CNN)
method. Convolutional Neural Network is one method that is quite effective for
image classification. Imagewill go through the Pre-Processing, Feature Extraction
and Evaluation processes. The dataset used is RiceLeafs Diseases from kaggle
with a total of 3000 samples of rice leaf images, 2100 images for training and 300
images for testing. In our research we used 3 different epoch numbers to find the
value that produces the highest accuracy. Based on the research, it was found that
75 epochs had the highest accuracy value namely 85.67%.

Keywords: rice plant diseases · convolutional neural networks · image
classification

1 Introduction

Rice is a plant commodity that has been cultivated by farmers, especially in Indonesia, for
centuries. Plants with high economic value will be needed forever because rice is a rice-
producing crop for food consumption and nutritional needs for all mankind. However,
Plant Pest Organisms (OPT) often disturb rice plants, especially on the leaves, this can
cause crop failure resulting in huge losses for farmers [1]. The cultivation of rice plants
is inseparable from the threat of pests and diseases that often attack plants if the control
is not appropriate can reduce the productivity of rice plants [10]. Therefore, a manual
diagnosis is needed to identify the types of pests and diseases on the leaves of rice plants
so that farmers can identify and apply appropriate controls. By controlling pests and
diseases, the cultivation goals will be achieved [2].
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The current development of science has encouraged the discovery of ways to detect
diseases in plants automatically by using a computer. Disease detection using a com-
puter is quite recommended because computer-generated detection is considered quite
accurate. Several studies on the detection of plant pests and diseases have been carried
out and some of them use the Deep Learning method [3].

Utilization of Machine Learning (ML) technology is an effective tool in increasing
the effectiveness of control management systems in agriculture [4]. Machine learning is
part of artificial intelligence. The goal of machine learning is to create machine learning
by recognizing given object [7]. One method that includes machine learning is artificial
neural network (ANN) [5]. Deep Learning is part of Machine Learning which uses the
Neural Network method to solve a problem. Convolutional Neural Network (CNN) is
one of the Deep Learning algorithms that is often used to solve image classification
problems [8]. CNN is known to produce a significant level of accuracy because this
method has a high network depth and is able to study the features contained in complex
images. Therefore, in this research we carried out the study on disease classification in
rice plant leaves Convolutional Neural Network (CNN).

In this study we will classify the disease in rice plant leaves. The method used is
Deep Learning using a Convolutional Neural Network (CNN). The input data used is
the image of diseased rice plant leaves, then the image will be classified to determine
whether there is disease on the rice plant leaves. The plants we used were rice leaves
plants with 3 types of disease, namely Brownspot, Hispa, and Leaf Blast, bringing the
total to 3 classes. Our classification is only done to detect one disease from one leaf
image. The image data taken has a fairly clear lighting.

A. Leaf Disease of Rice Plants
1) Brownspot
Disease caused by the fungus Cochliobolus miyabeanus. Symptoms start with round

or oval brown spots with a yellow halo. On susceptible varieties, the lesions can be
5–14 mm long and can cause wilting of the leaves. This causes incomplete grain filling
which can reduce grain quality. An example of an image can be seen in Fig. 1 [1].

2) Hispa
Disease caused by adult insects and rice hispa larvae (Dicladispa Armigera) by

eroding the upper surface of the leaf blade and leaving only the lower epidermis. Adult’s
insects feed on the outer epidermis causing white patches to appear. The larvae feed
on the green tissue between the leaf epidermis which also causes white spots. Affected
leaves dry up and from a distance the badly damaged land looks like i on fire. An example
of an image can be seen in Fig. 2 [1].

Fig. 1. Brownspot
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Fig. 2. Hispa

Fig. 3. Leafblast

3) Leaf Blast
Disease caused by the fungus Pyricularia Grisea. At the growth stage of seedlings

and rice, this fungus infects the leaves and causes disease symptoms in the form of brown
rhombuses which can result in death of the rice plants. An example of an image can be
seen in Fig. 3 [9].

2 Method

The design method we propose can be seen in Fig. 4. There are three stages that we carry
out, namely (i) Pre-Processing, (ii) Feature Extraction, (iii) Evaluation [5].

Fig. 4. Proposed Method in This Study
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A. Digital Image Processing

The image is defined as a two-dimensional function, f (x, y)where and are the spatial
coordinates (plane), and the amplitude f in the coordinate pair (x, y) is called the intensity
or grayscale level of the image at that point. If x, y and intensity values f are all limits,
the magnitude is discrete, the image can be said to be a digital image [6].

2.1 Backpropagation Neural Network

Suppose W = (wij) is a matrix that represents the weights, namely the relationship
between one neuron and another neuron. The network input to the target unit Yj (with
no bias to unit j) is the simple dot product of the vector x = (x1, x2, . . . , xn) where n is
the number of inputs and wj where j is the number of columns in the weight matrix. So

that Y
∧

= x.wj = ∑n
i=1xiwij Fig. 5 illustrates a simple neural network. The bias (β) can

be included in vector x by adding vector components x0 = 1, so that vector x becomes
x = (1, x1, x2, . . . , xn).

Bias is considered like other weights, namely w0j = βj. The network input to unit
Yj is given as Eq. (1) below

Y
∧

=
∑n

i=1
xiwij = w0j +

∑n

i=1
xiwij = βj +

∑n

i=1
xiwij (1)

The basic operation of a neural network is the addition and multiplication between
the weights and the input signal and applying them to the activation function. There are
several types of activation functions.

1. Linear activation function Y
∧

= f (x) = ax + b, when a = 1, b = 0 is identity.
2. Binary activation function with threshold θ .

Y
∧

= f (x) =
{
1 if x ≥ θ

0 if x < θ

Fig. 5. Simple Artificial Neural Network
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3. Sigmoid binary activation function

Y
∧

= f (x) = 1

1+e−σx
′ dan f

′ = σ f (x)[1 − f (x)]
4. Sigmoid bipolar activation function

Y
∧

= g(x) = 2f (x) − 1 = 1−e−σx

1+e−σx
′ and g

′
(x) = σ

2

[
1 + g(x)

][1 − g(x)]
5. Hyperbolic tangent activation function

Y
∧

= h(x) = ex−e−x

ex+e−x , and h
′
(x) = [1 + h(x)][1 − h(x)]

Backpropagation Algorithm

Step 0. Initialize the weights w, β, α, error_goal.

Step 1. Feedward Stage
hi = β + ∑n

i=0 xi · wi,j where n is the number of input.

Step 2. Calculating Output.
yini = β + ∑n

i=0 wi,j · hi
Step 3. Output activation using sigmoid log.

y
∧

m = 1
1+e−yinm

Step 4. Calculate the error output.

δki = (
t − y

∧

i
)2

MSE =
∑n

i=0

(
t−y

∧

i

)2

n

Step 5. Calculating Backpropagation Error between output layer and hidden layer.

δjji = β
∑n

i=0 wi,j ∗ δki

Step 6. Update weights and bias.
Wnew = Wold + α ∗ δki ∗ hi
βnew = βold + α ∗ δji + xi

Step 7. Checking the termination criteria (epoch reaches the maximum number or
MSE ≤ error_goal)

Step 8. If not, go back to step 1.

• Observation 1

Given a neural network with one hidden layer there are two neurons. Figure 6 illus-
trates this artificial neural network. For example x = {xi|i = 1, 2, . . . , n}, where x is the
input data and n is the number of input data. Suppose that h and β are the number of
hidden layers and bias respectively. The output (y

∧

) is written as y
∧ = 1

1+e−(β1+W1(β0+W0x))
,

where [h1; h2] = β0 + W 0x.

Proof. Input data x = {x1, x2, . . . , xn}.
Since we have one layer and two neurons, we define weights bobot.
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Fig. 6. Artificial Neural Network with 1 Hidden layer

W 0 = [w0
1,1 w

0
1,2 · · · w0

1,n ; w0
2,1 w

0
2,2 · · · w0

2,n ]W 1 = [w1
1 w1

2 ] and bias β0, β1.

[
h1
h2

]

=
[

β0
1

β0
2

]

+
[
w0
1,1

w0
2,1

w0
1,2 · · · w0

1,n
w0
2,1 · · · w0

2,n

]
⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

= β0 + W 0x

Next we obtain y_in as follows

yin = β1 +
[
w1
1

w1
2

][
h1
h2

]

= β1 +
[
w1
1

w1
2

]

·
(
β0 + W 0x

)

= β1 + W 1
(
β0 + W 0x

)

So that the resulting output (y
∧

) is as follows

y
∧ = 1

1 + e−yin

= 1

1 + e−(β1+W 1(β0+W 0x))

That concludes the proof.

• Observation 2

Given aneural network architecturewith twohidden layers. In eachhidden layer there
are two and three neurons. Figure 7 illustrates the architecture of this neural network.
Let h and β be the number of hidden layers and bias, respectively. The output (y

∧

) is
written as y

∧ = 1

1+e−(β1+∑2
i=1 wihi)

where [h1; h2] = β0 + W 0x.

Proof. Input datax = {x1, x2, . . . , xn}, since we have two hidden layers which
have two neurons and three neurons respectively, we define weightsW 0 =
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Fig. 7. Artificial Neural Network with 2 Hidden Layer

[w0
1,1 w

0
1,2 . . . w0

1,n;w0
2,1 w0

2,2 . . . w0
2,n ],W 1 = [w1

1,1 w
1
1,2 ; w1

2,1 w
1
2,2 ; w1

3,1 w
1
3,2 ],

W 2 = [w2
1;w2

2;w2
3] and biasβ0, β1, β2. The output from hidden layer 1 is as follows.

[
h11
h12

]

=
[

β0
1

β0
2

]

+
[
w0
1,1

w0
2,1

w0
1,2 · · · w0

1,n
w0
2,1 · · · w0

2,n

]
⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

= β0 + W 0x

The output of hidden layer 2 is as follows
⎡

⎣
h21
h22
h23

⎤

⎦ =
⎡

⎣
β1
1

β1
2

β1
3

⎤

⎦ +
⎡

⎢
⎣

w1
1,1

w1
2,1

w1
3,1

w1
1,2 · · · w1

1,n
w1
2,1

w1
3,2

· · ·
. . .

w1
2,n

w1
3,2

⎤

⎥
⎦

[
h11
h12

]

=
⎡

⎣
β1
1

β1
2

β1
3

⎤

⎦ +
⎡

⎢
⎣

w1
1,1

w1
2,1

w1
3,1

w1
1,2 · · · w1

1,n
w1
2,1

w1
3,2

· · ·
. . .

w1
2,n

w1
3,2

⎤

⎥
⎦ · (β0 + W 0x)

= β1 + W 1(β0 + W 0x)

Next we obtain y_in as follows

yin = β2 +
⎡

⎣
w2
1

w2
2

w2
3

⎤

⎦

⎡

⎣
h21
h22
h23

⎤

⎦ = β2 +
⎡

⎣
w2
1

w2
2

w2
3

⎤

⎦ ·
(
β1 + W 1

(
β0 + W 0x

))

= β2 + W 2
(
β1 + W 1

(
β0 + W 0x

))

So that the resulting output (y
∧

) is as follows

y
∧ = 1

1 + e−yin
= 1

1 + e−(β2+W 2(β1+W 1(β0+W 0x)))

That concludes the proof.

• Illustration

Suppose there is an image of sizem×n, wherem represents the number of rows and
n represents the number of columns. The CNN image is divided into several parts with
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Fig. 8. Input Image

each part we perform the convolution operation. In each fragment of the image there
are three constituent color channels, namely the red, green and blue color channels. The
three colors contain a matrix like in the Fig. 8.

In the color channel matrix, we provide one row of zero padding. The goal is to
maintain the dimensions of the feature map. Besides that, we also specify that the con-
volution stride is one pixel and the filter size is 3× 3 with random elements. Illustration
of adding zero padding can be seen in the Fig. 9.

Convolution operation in the red channel:

Ired =
⎡

⎣
0 0 0
0 231 232
0 233 233

⎤

⎦ ∗
⎡

⎣
1 0 1
1 −1 1

−1 0 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + · · · + (233 ∗ −1)

= −232

Convolution operation in the green channel:

Igreen =
⎡

⎣
0 0 0
0 221 222
0 223 223

⎤

⎦ ∗
⎡

⎣
1 0 0

−1 1 1
0 1 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + · · · + (223 ∗ −1)

= 443

Fig. 9. Adding Zero Padding to the Matrix
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Convolution operation in the blue channel:

Iblue =
⎡

⎣
0 0 0
0 211 212
0 213 213

⎤

⎦ ∗
⎡

⎣
1 1 0
1 0 1
1 1 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 1) + · · · + (213 ∗ −1)

= 212

Suppose bias (β) = 1, the resulting feature map values are as follows:

C1 = Ired + Igreen + Iblue + β

= −232 + 443 + 212 + 1

= 424

The filter is then shifted one pixel to the right, so that the convolution operation is
illustrated as follows.

Convolution operation in the red channel:

Ired =
⎡

⎣
0 0 0
231 232 232
233 233 232

⎤

⎦ ∗
⎡

⎣
1 0 1
1 −1 1

−1 0 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + · · · + (232 ∗ −1)

= −234

Convolution operation in the green channel:

Igreen =
⎡

⎣
0 0 0
221 222 222
223 223 222

⎤

⎦ ∗
⎡

⎣
1 0 0

−1 1 1
0 1 −1

⎤

⎦

= (0 ∗ 1) + (0 ∗ 0) + · · · + (222 ∗ −1)

= 224

Convolution operation in the blue channel:

Iblue =
⎡

⎣
0 0 0
211 212 212
213 213 212

⎤

⎦ ∗
⎡

⎣
1 1 0
1 0 1
1 1 −1

⎤

⎦
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= (0 ∗ 1) + (0 ∗ 1) + · · · + (212 ∗ −1)

= 637

Then, the resulting feature map values are as follows:

C2 = Ired + Igreen + Iblue + β

= −234 + 224 + 637 + 1 = 628

After going through a series of convolution processes, the following feature map is
obtained:

C =

⎡

⎢
⎢
⎢
⎣

C1 C2

C6 C7
...

...

. . . C5

. . . C10

. . .
...

C21 C22 . . . C25

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

424 628 630
870 1737 1738
873 1744 1278

628 625
1735 1502
1733 1498

873 1744 1740 1733 1498
1106 1994 1989 1984 1086

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Thenext process is to activate the featuremapusing theRectifiedLinearUnit (ReLU).
The following is a feature map that has been activated.

C(σ ) =
{

σ, if σ ≥ 0
0, if σ < 0

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 1744 1278

0 625
1735 1502
1733 1498

0 1744 1740 1733 1498
1106 1994 1989 1984 1086

⎤

⎥
⎥
⎥
⎥
⎥
⎦

The next process is to reduce the dimensions of the feature map using Maxpooling.
The filter used is 3 × 3 and the stride used is one pixel. The filter moves from the top
left corner to the bottom right. The following illustrates the Maxpooling process.

m1 =
⎡

⎣
0 0 0
0 0 0
0 1744 1278

⎤

⎦

max(m1) = −1278
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The next filter shifts 1 pixel to the right, the results of the MaxPooling process on
the filter are illustrated below.

m2 =
⎡

⎣
0 0 0
0 0 1735

1744 1278 1733

⎤

⎦

max(m2) = −1096

After going through a series of MaxPooling processes, the following feature map is
obtained.

C =
⎡

⎣
−1275 −1096 −638
−41 1327 2117
1918 3254 2321

⎤

⎦

Next, we transpose the maxpooling result matrix and convert it into a vector as
follows.

C = [−1275;−1096;−638;−41; 1327; 2117;

1918; 3254; 2321]
Then we normalize the vector C with the following formula

xi = a + (Ci − max(C)) × (b − a)

max(C) − min(C)

wherea = 0.1; b = 0.9.
So, we obtain the input vector for FCNN as follows.

x = [0.15; 0.25; 0.78; 0.83; 0.37; 0.92; 0.61; 0.13; 0.43]
These vectors then become input to Fully-Connected Neural Networks (FCNN).

Some of the parameters we used in FCNN are weights (W 0andW 1), bias (β0andβ1)

learning rate α = 0.1 and target (t).

W 0 =
⎡

⎣
0.1 0.2 0.3
0.3 0.2 0.1
0.2 0.3 0.1

0.1 0.2 0.3
0.3 0.2 0.1
0.2 0.3 0.1

0.1 0.2 0.3
0.3 0.2 0.1
0.2 0.3 0.1

⎤

⎦

W 1 = [0.1; 0.2; 0.3]

β0 = [0.1; 0.1; 0.1]

β1 = [0.1; 0.1; 0.1]

t = [111]
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The first step in FCNN is feedforward neuron one as follows.

h11,1 = β0
1 + x1 ∗ w0

1,1 = 0.1 + 0.15 ∗ 0.1 = 0.1150

h11,2 = β0
1 + x2 ∗ w0

1,2 = 0.1 + 0.25 ∗ 0.2 = 0.1500

...

h11,9 = β0
1 + x9 ∗ w0

1,9 = 0.1 + 0.43 ∗ 0.3 = 0.2290

h11 = [0.1150; 0.1500; 0.3340; 0.1830; 0.1740;

0.3760; 0.1610; 0.1260; 0.2290]
Next is feedforward neuron two as follows.

h12,1 = β0
2 + x1 ∗ w0

2,1 = 0.1 + 0.15 ∗ 0.3 = 0.1450

h12,2 = β0
2 + x2 ∗ w0

2,2 = 0.1 + 0.25 ∗ 0.2 = 0.1500

...

h12,9 = β0
2 + x9 ∗ w0

2,9 = 0.1 + 0.43 ∗ 0.1 = 0.1430

h12 = [0.1450; 0.1500; 0.1780; 0.3490; 0.1740;

0.1920; 0.2830; 0.1260; 0.1430]
The last feedforward is in neuron three, the calculate as follows.

h13,1 = β0
3 + x1 ∗ w0

3,1 = 0.1 + 0.15 ∗ 0.2 = 0.1300

h13,2 = β0
3 + x2 ∗ w0

3,1 = 0.1 + 0.25 ∗ 0.3 = 0.1750

...

h13,9 = β0
3 + x9 ∗ w0

3,9 = 0.1 + 0.43 ∗ 0.1 = 0.2110

h13 = [0.1300; 0.1750; 0.1780; 0.2660; 0.2110;

0.2110; 0.2110; 0.2110; 0.2110]
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Next is to calculate the output (y)

yin1 = β1
1 + w1

1 ∗ h11,1 + w1
1 ∗ h11,2 + · · · + w1

1 ∗ h11,9

= 0.1 + 0.1 ∗ 0.1150 + 0.1 ∗ 0.1500 + · · · + 0.1 ∗ 0.2290

= 0.2848

yin2 = β1
2 + w1

2 ∗ h12,1 + w1
2 ∗ h12,2 + · · · + w1

2 ∗ h12,9

= 0.1 + 0.2 ∗ 0.1450 + 0.2 ∗ 0.1500 + · · · + 0.2 ∗ 0.1430

= 0.4480

yin3 = β1
3 + w1

3 ∗ h13,1 + w1
3 ∗ h13,2 + · · · + w1

3 ∗ h13,9

= 0.1 + 0.3 ∗ 0.1300 + 0.3 ∗ 0.1750 + · · · + 0.3 ∗ 0.2110

= 0.6412

Then activate each neuron output. The activation function used is the sigmoid log.

ym = 1

1 + e−yinm

y1 = 0.5707

y2 = 0.6102

y3 = 0.6550

After obtaining the next output, we can calculate the output error.

δk1 = (t1 − y1)
2

= (1 − 0.5707)2 = 0.1843

δk2 = (t2 − y2)
2

= (1 − 0.6102)2 = 0.1520

δk3 = (t3 − y3)
2
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= (1 − 0.6550)2 = 0.1190

MSE = ((t1 − y1) + (t2 − y2) + (t3 − y3))2

3
= 0.4517

Then calculate the backpropagation error between output layer and hidden layer:

δj01 = β0
1 + w

1
1 ∗ δk1

= 0.1 + 0.1 ∗ 0.1843 = 0.1184

δj02 = β0
2 + w

1
2 ∗ δk2

= 0.1 + 0.2 ∗ 0.1520 = 0.1304

δj03 = β0
3 + w

1
3 ∗ δk3

= 0.1 + 0.3 ∗ 0.1190 = 0.1357

Then calculate the backpropagation error between hidden layer and input layer:

δj11 = w0
1,1 ∗ δk1 + w0

1,2 ∗ δk1 + w0
1,3 ∗ δk1 + · · · + w0

1,9 ∗ δk1

= 0.3317

δj12 = w0
2,1 ∗ δk2 + w0

2,2 ∗ δk2 + w0
2,3 ∗ δk2 + · · · + w0

2,9 ∗ δk2

= 0.2736

δj13 = w0
3,1 ∗ δk3 + w0

3,2 ∗ δk3 + w0
3,3 ∗ δk3 + · · · + w0

3,9 ∗ δk3

= 0.2142

The final step is to update the weights and biases as follows:

• The weights between input layer and hidden layer

w_new0
1,1 = w0

1,1 + α ∗ δk1 ∗ h11 = [0.1014; 0.2018; 0.3040; 0.1022; 0.2021;

0.3045; 0.1019; 0.2015; 0.3027]
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wnew
0
2,1 = w0

2,1 + α ∗ δk2 ∗ h12 = [0.3019; 0.2020; 0.1023; 0.3046; 0.2023; 0.1025

0.3027; 0.2016; 0.1019]

wnew
0
3,1 = w0

3,1 + α ∗ δk3 ∗ h13 = [0.2018; 0.3024; 0.1024; 0.2036; 0.3029; 0.3029

0.3029; 0.3029; 0.3029]

W_new0 =
⎡

⎢
⎣

w_new0
1,1

w_new0
2,1

w_new0
3,1

⎤

⎥
⎦

W_new0 =
⎡

⎣
0.1014 0.2018 0.3040
0.3019 0.2020 0.1023
0.2018 0.3024 0.1024

· · · 0.3027
· · · 0.1019
· · · 0.3029

⎤

⎦

• The weights between hidden layer and output layer

w_new1
1 = w1

1 + α ∗ δk1

= 0.1345

w_new1
2 = w1

2 + α ∗ δk2

= 0.2291

w_new1
3 = w1

3 + α ∗ δk3

= 0.3254

W_new1 =
⎡

⎣
w_new1

1
w_new1

2
w_new1

3

⎤

⎦ =
⎡

⎣
0.1354
0.2291
0.3254

⎤

⎦

• Bias between input layer and hidden layer

β_new0
1 = β0

1 + α ∗ δj1

= 0.1118

β_new0
2 = β0

2 + α ∗ δj2
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Fig. 10. Softmax Process with Output that Matches the Target

Fig. 11. Softmax Process with Output that Does Not Matches the Target

= 0.1130

β_new0
3 = β0

3 + α ∗ δj3

= 0.1136

β_new0 =
⎡

⎣
β_new0

1
β_new0

2
β_new0

3

⎤

⎦ =
⎡

⎣
0.1118
0.1130
0.1136

⎤

⎦

• Bias between hidden layer and output layer

β_new1
1 = β1

1 + α ∗ δj1 = 0.1118

The process is repeated to the feedforward stage until the number of epochs reaches
a maximum. The output value of the neural network is then used as input to the Softmax
Layer. In this layer, there will be as many probabilities as the output class we specify.
An illustration of the softmax process is shown in Fig. 10. The output value (logits)
is processed using the softmax function. Based on the probability value generated, the
system determines the third class as output (Fig. 11).

2.2 Confusion Matrix

The confusion matrix or commonly called the error matrix is a table that provides com-
parative information from the classification that has been carried out by the system. The
table is presented in Table 1. The confusion matrix can also describe the performance
of the classification model on test data.

True Positive (TP)

Is a condition where the model classifies a data as true, and the actual class of the
data is true.
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True Negative (TN)

Is a condition where the model classifies a data as false, and the actual class of the
data is false.

False Positive (FP)

Is a condition where the model classifies a data as true, and the actual class of the
data is false.

False Negative (FN)

Is a condition where the model classifies a data as false, and the actual class of the
data is true.

To evaluate the performance of a model, you can use accuracy, precision, and recall.
Accuration shows how much the model gives the correct classification results for the
entire data. Accuration is calculated using Eq. (1).

Accuration = TP + TN

TP + TN + FP + FN
× 100% (1)

Precision shows a comparison of the amount of data that is classified as true with
data that is classified as true and data that is classified as false but comes from the true
class. Precision can be calculated using Eq. (2).

Precission = TP

TP + FP
× 100% (2)

Recall shows the amount of data classified as true with data classified as true and
data classified as false but not from the true class. Recall can be calculated using Eq. (3).

Recall = TP

TP + FN
× 100% (3)

Table 1. Confusion Matrix

Positive Negatif

Positif True Positive
(TP)

False Negative (FN)

Negatif False Positive (FP) True Negative (TN)
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Table 2. The Divide of Dataset

Class Dataset

Training Testing

Brownspot 700 Images 300 Images

Hispa 700 Images 300 Images

Leafblast 700 Images 300 Images

Total 2100 Images 900 Images

Brownpot   Hispa Leaf Blast 

Fig. 12. The Example of Data Set in This Research

3 Experiment

The data set we used in this study was taken from the Kaggle Rice Disease Leaf Dataset
| Kaggle. There are three classes of data, namely using epoch 50, epoch 75, and epoch
100. The distribution of the data sets used for network training and testing can be seen
in Table 2.

This dataset consists of 3000 images, which 2100 images are used as training and
900 images are used as tests. The training stage aims to train the neural network to
recognize the input image provided. The output of network training is training accuracy
and training models. In the testing phase, this model is used to recognize new data. The
dataset we use can be seen in Fig. 12.

4 Results and Discussion

In this study we used a different number of epochs, namely 50 epochs, 75 epochs, 100
epochs. Accuracy values and accuracy time can be seen in Table 3.

4.1 Training Evaluation Stage

In this study we used basic CNN, commonly used in image data. The image will be
trained using different epoch values to find high accuracy results. When doing training,
we can see the number of epoch and the resulting training accuracy. The higher the
training accuracy, the smaller the resulting loss. The training plot can be seen in Fig. 13.
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Table 3. Training and Testing Accuracy

Number of Epochs Train Accuracy Time Train Test Accuracy

Epoch 50 81% 6550 s 75%

Epoch 75 86% 9825 s 85,7%

Epoch 100 85% 13100 s 82,3%

Fig. 13. Comparison of Plot Training

Training using 50 epochs, 75 epochs and 100 epochs resulted in increasing and
decreasing accuracy. But training using 75 epochs produces a more stable accuracy.
Even though it produces a high accuracy value, the number of epochs determines the
long time to do the training. The fastest time is 50 epochs with about 20 min of training
time. While the longest time is 100 epochs with a training time of about 2 h.

4.2 Testing Evaluation Stage

In the training process, the model that we have trained is stored for use in the testing
phase. This stage aims to measure how accurate the number of epochs that we have
trained is. The benchmark for whether or not the number of epochs used is determined
by the resulting test accuracy value. Based on Table 3, the best number of epochs is
produced by 75 epochs with a test accuracy of 85.7%. Followed by 50 epochs 75% and
100 epochs 82.3%. Then its performance will be measured with a confusion matrix.
Comparison of the confusion matrix in each epoch is shown in Fig. 14.
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Table 4. Model Performance

Number of Epochs Accuracy Precission Recall

Epoch 50 75% 75% 75,25%

Epoch 75 85,67% 85,71% 85,71%

Epoch 100 82,3% 82,3% 82,3%

Fig. 14. The Confusion Matrix of Three Class

After we know the TP, TN, FP, and FN values of each class, the next step is to
calculate Accuracy (1), Precision (2), and Recall (3). In this study, we use Accuracy,
Precision, and Recall as benchmarks of epoch count performance. Ssuccessively 50
epochs, 75 epochs, 100 epochs.

Based on the Table 4, it can be seen that the best number of values is produced by
75 epochs, with an accuracy of 85.67%, a precision of 85.71% and a recall of 85.71%.
Accuracy shows the accuracy of the number of epochs used, whichmeans that the greater
the accuracy, the smaller the error. Precision indicates how much data that belongs to
one class is incorrectly classified as another class. The greater the precision value, the
smaller the error that is made. Meanwhile, recall shows how many other classes are
incorrectly classified as a class. The greater the recall value indicates the smaller the
error made by the system.

5 Conclusions

Rice plants are rice producers to consume food and nutritional needs for humans. How-
ever, plant-disturbingorganisms (OPT) often attack rice plants, especially leaves, causing
crop failure and disturbing human welfare. In this study, we apply deep learning to clas-
sify the types of diseases that attack rice leaves. As a comparison, we used 3 different
number of epochs to see which one produces the highest accuracy value. Based on the
research we were concluded that 75 epochs were the most accurate, reaching 85.67%.



Classification of Disease in Rice Plant Leaves 215

So that we can detect diseases that attack the leaves of rice plants. The training phase
aims to train the machine, then the testing phase produces performance from the training
data with a specified number of epochs.
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provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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