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Abstract. Precision agriculture has greatly improved the quality and quantity
of crop yield over the last four decades. However, this approach depends on the
availability of sufficient quality data. Determining the amount of weed coverage
and crop damage is crucial in crop management. In addition, water stress, which
has been exacerbated because of Climate Change, has significantly affected crop
yield. All this while population growth is increasing the need for improved food
security. We report on the results of a project funded by the National Geographic
Society on the application of Artificial Intelligence (AI) to Precision Agriculture.
We use AI to investigate weed detection and water-stress estimation on a tropical
island. These algorithms are built on data collected with an Unmanned Aerial
Vehicle (UAV). We used several Machine Learning models including XG-Boost,
Support Vector Machine (SVM), Naive Bayes, Convolutional Neural Networks
(CNN), Mobile-Net and Random Forest. Data collected for use with these models
is being made available to the public.
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1 Introduction

Themaintaining of crop yield, when faced with climate change and its impacts, has been
mitigated using precision agriculture techniques [1, 4]. Precision agriculture techniques
can achieve this through the continuous surveying of an area for key indicators and
applying localized solutions [5]. In tropical areas the application of pesticides, herbicides
and fertilizers must be done with precision to prevent an excess of chemical run off since
rainfall occurs for 6 months in a year. A proposed solution is robotic systems that can
replace manual procedures that are precise enough to minimize harsh chemical run off.

AI is being applied to various areas of agriculture for both large and small-scale
farming [7, 9, 14]. This project is aimed at small-scale farming since most farms in
tropical islands are limited in size [6].

We focused on building machine learning models which can be used by farmers
for weed detection in their local environments. The resulting Farming Adaptation and
Artificial Intelligence for Resilience (FAAIR) project seeks to build tropical crop data
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sets and AI-powered applications which can assist local small-holder farmers in these
areas [16].

TheFAAIRproject has initially chosen crops grownby small-holder farmers, namely,
Capsicum Chinensis which is harvested throughout the year [2, 3]. The team is collabo-
rating with several small-holder farmers across the country for the experimental use of
their farms. FAAIR uses Computer Vision to process images and videos. The machine
learning models used will perform Image Segmentation on the image data collected to
label the pixels as weeds or crops and to detect water stress [15].

In addition, we are developing an AI-powered mobile application that can assess
water-stress levels of Brassica Chinensis L., determine the commercial viability of the
crops, and determine the weed-crop ratio in a specified area via image segmentation.
These functions can be summarized into three main solutions referred to asWater-Stress
Detection, Commercial Viability Predictions and Weed Detection. The application is
being built with local farmers in mind. Farmers will be able to upload images of Brassica
Chinensis L. and view the parts of the crop which are water stressed. Farmers will
also be able to upload images of their Capsicum Chinensis plants and receive data and
suggestions relating to weed coverage around the crops.

Site specific weed control is a weed management approach where weed control
treatments are applied only to targeted weeds, thus reducing the overall volume of
treatment used [8]. The success of this method is highly dependent on the accurate
detection and localisation of weeds. Weed detection can prove to be quite challenging
in scenarios where there are closely related species of weeds and crops in one area. The
open-sourced Weed-AI repository allows users to upload or browse and select weed
image data from their online repository and access the relevant metadata such as camera
specifications, crop stage and background conditions [10, 17]. We recognised the lack of
available tropical weed and crop image data and so, as part of this project, have developed
our own dataset.

Hassanein et al. [18] proposed a new weed detection methodology. They used a low-
cost UAV system for detecting the high-density vegetation spots as indication for weed
patches in various cropped agricultural fields at flight heights of 20, 40, 80, and 120 m.
In contrast, the FAAIR project used flight heights of 5 m and below, accommodating
for both mobile and drone imagery. Hassanein et al. also discussed several traditional
strategies such as Expósito et al. [20] and Göktoǧan et al. [19] where factors such as
geometry, elevation and vegetation density were used. However, these approaches were
either inapplicable to regular agricultural fields or required time-consuming processes.

Barragán et al. [21] later began using a combination of crop row detection and
vegetation indices such as Normalized Difference Vegetation Index (NDVI) to detect
weedswith improved accuracy. Hassanein et al.’s [18] approach involved the detection of
weed patches as opposed to individual weed plants since the spatial resolution required
for weed patches is lower. For this reason, the UAV must be flown higher [13].

The FAAIR project’s approach on weed detection differs from Hassanein et al. in
this regard. Using a pixel classification approach [11, 12], our goal is to produce highly
accurate weed detection results for every individual weed plant.

With increased global food production needs compounded with limited water
resources, irrigation scheduling has also grown in importance [22].
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Soil moisture measurements and meteorological variables are conventionally used
for monitoring crop water stress by estimating the amount of water lost from a plant-soil
system [23].

Other methods of water stress detection in crops involve soil water balance calcula-
tions and direct or indirectmeasurement of plantwater status. Although these approaches
are considered reliable, they are also labour intensive, destructive, and unsuitable for
automation [22].

Ramos-Giraldo et al. [24] developed a smart camera system to detect water stress
in corn and soybean crops using a low-cost smart camera system. The authors created a
computer vision andMachine Learning systemwith aWiFi-enabled embedded platform.
Cameras were mounted at different angles depending on the crop and photos were auto-
matically taken at regular intervals throughout the day. The camera system comprised
of different Raspberry Pi devices and sensors which were used for data collection. The
authors were able to achieve 74 percent accuracy with a TensorFlow lite model.

Instead of using a camera system,FAAIR’s applications are created for use by farmers
who already own a smart phone with no further requirements.

Freeman et al. [25] also did some work around water stress detection by assessing
the use of cloud-based AI to detect early indicators of such. Using a small, unmanned
aircraft system, images were taken at a height of 30 m. The plants were separated into
three categories, no, low, and high-water stress conditions. With a total of 150 images of
36 plants, the IBMWatson Visual Recognition tool generated models [25] that were able
to detect early indicators of water stress after only 48 h of water deprivation, and some
after 24 h of water deprivation. FAAIR uses a similar approach to data collection where
three categories of water stressed Bok Choy plants were used in the experimental set up.
However, in contrast to Freeman et al., we programmed our own artificial intelligence
models using severalwell-known classicalmachine learning algorithms rather than using
an analytics tool with computer vision capabilities. Note that we tried all the major
algorithms that are used for this type of analysis to see which works best. In general, we
found XG-Boost performed optimally.

2 Methodology

Small scale vegetable farmers were approached for data collection. The video data of
the Capsicum annum mono-cropped field was collected using a DJI Phantom V4 Pro
drone. For this proof of concept, we used Brassica Chinensis L and Capsicum annum
as shown in Figs. 1 and 2 respectively. It takes images at approximately 3 m off the
ground at a speed of 2 m/s. A video is collected, and frames are extracted at intervals
of 30 frames. The extracted images are then filtered for duplicates and redundant data.
The images are scanned and filtered for any inappropriate objects or reflective surfaces.
Image augmentation techniques such as filtering, rotating, flipping, cropping and more
are then applied to the images to generate additional data which makes the models more
robust. The images are then uploaded into MATLAB where they are labelled by trained
individuals.

Since DJI drones are highly dependent on GPS, small farms near residential areas
and farms with soil that had a high metal content posed a challenge since the drone
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Fig. 1. Crops for Experiments (Bok Choy)

Fig. 2. Crops for Experiments (Peppers).

must be a considerable distance away from all metal, buildings, and tall trees for proper
satellite signal strength.Wewaited until the sun was at an appropriate position to prevent
the formation of major shadowing around the crops or on the crops from the shadow of
the drone itself. In areas where the land was not level, we carefully adjusted the height
of the drone to maintain a 3-m distance from the ground. We were unable to effectively
use the NDVI sensor for the small-holder farms visited since the sensor can only be
activated when the camera is used at a height of 50 m above ground.

We trained some students to perform labelling of weeds and crops and showed them
how to identify and label water-stressed plants.

Collected images were automatically synced to an iPad where they could easily be
uploaded to a Shared Drive so all members of the labelling team had access. Images were
uploaded as 2D image files to MATLAB’s Image Label Application in the Computer
Vision Toolbox.

Labels were set up as ROI pixel labels and a unique colour and name was assigned to
each label. When the relevant labels were completed, the images were then exported as
ground truth labelled PNG files along with their corresponding image labelling session
files. These files were then saved in the same order as the order in the folder containing
the original images.
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One completion of the project the data sets generated will be uploaded to the UCI
Machine Learning repository to produce open-source data sets of Brassica Chinensis L
and Capsicum annum.

3 Experimental Results

The dataset was split with 70% used for training and 30% used for testing themodel. The
K-fold cross-validation setup was repeated 3 times per model and the average accuracy
of these computed.

We ran several algorithms including Random Forest, Naive Bayes, Support Vector
Machine (SVM), UNet, SegNet, DeepLab and XG-Boost. In the Random Forest algo-
rithm, multiple decision trees are built using different sample subsets and the majority
vote classification is then used. Naive Bayes is a statistical technique based on Bayes’
Theorem in which the most probable class is chosen for a given sample. Support Vector
Machine finds the hyperplane that maximizes the separation of the training samples and
then uses it to classify unknown samples. UNet, SegNet and DeepLab are all based on
fully convolutional neural networks which are decision networks that attempt to emulate
the human brain. Finally,

XG-Boost is a popular implementation of the gradient boosted trees algorithm in
which many simple, weak models are combined using a gradient boosting framework
for improved predictions.

For each of these algorithms we computed the mean IoU metric. IoU (Intersection
over Union) is the area of overlap between the predicted and ground truth areas divided
by the union of these areas. The mean IoU is calculated by taking the IoU of each class
and averaging them. Therefore, perfect prediction results in a score of 100%. The values
for the various algorithms are provided in Table 1. Note that these algorithms are most
used for this type of analysis which is why we applied each of them.

We can also demonstrate results by using a distinct colour for the detected weeds.
The best results were obtained for XG-Boost with an accuracy of 92%. For this algorithm
we provide, a sample of an image of crops and weeds in Fig. 3 and the results of weed
detection for this image in brown areas in Fig. 4. We believe that we can significantly
improve performance by using a larger dataset.

Table 1. Accuracy of Machine Learning Models for Weed detection.

Model Accuracy

Support Vector Machine 0.48

Random Forest 0.88

Naïve Bayes 0.32

XGBoost 0.92

UNet 0.79

SegNet 0.76

DeepLab 0.71
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Fig. 3. Original Image.

Fig. 4. Brown =Weed, Green = Plant

In addition to detecting weeds, we also compute weed density values and categorized
as High, Medium and Low values. These metrics can be used to trigger certain actions
to be taken (e.g., apply weedicide when density exceeds some value). Figure 5 contains
an example of images and the classified categories. The classifications (high, moderate,
and minimal) were determined by using Machine Learning algorithms to estimate the
fraction of plant contained in the image and using a threshold to determine the class.

We also did some multi-class classification with each class being a growing stage of
the crop. One can estimate crop maturity to compare growth rate on different parts of
the farm. For this problem we obtained an accuracy of 90%. This was achieved with a
Convolutional Neural Network (CNN) with a dataset of over 600 images. The CNNwas
trained using tagged images with different crop stages. Figure 6 contains an example of
sampled crops at different stages of growth.

Next, we describe our water-stress experiments. For this objective we got access to
an experimental Government farm to generate the data required to train the machine
learning models. Hence, we needed samples at different levels of water stress. The clay
like soil retained water extremely well and was a suitable medium for this experiment.
A 50 by 40-m area was separated into nine beds. The beds were at a 15-degree slope to
get a variation of samples. The first three rows were over-watered, rows four to six were
moderately watered and rows seven to nine were not watered. Drip feed watering was
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Fig. 5. Weed Density Examples

Fig. 6. Crop Stage Determination

used whereby, using a measuring cylinder, the water at the end of the feed was collected
through a feed hole until the desired threshold was met. The plants were planted 30 cm
apart. The over-watered plants were providedwith at least 76ml of water, themoderately
watered plants were given 50–60 ml of water and the rest were not watered [3].

With this approachwe observed the physical changes the plantwent through based on
watering. The models directly learn the features of over-watering through the labelling
of images.

The soil type was ideal since it allowed for the retention of water but the time of year
the experiment was conducted introduced limitations in collecting under-watered crop
data. The data is labelled in a binary format to facilitate the use of binary classifiers.
The images were labelled using MATLAB with semantic segmentation techniques. The
resulting accuracy results for the various algorithms are provided in Table 2. XG-Boost
again performed the best but this time with an accuracy of 76%. Figure 8 provides a
visual example of the result for the XG-Boost case for the original image shown in Fig. 8.
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Table 2. Accuracy of models for Water Stress Classification

Model Accuracy

Support Vector Machine 0.37

Random Forest 0.70

Naive Bayes 0.40

XG-Boost 0.76

U-Net 0.48

Fig. 7. Test image used for water-stress detection.

Fig. 8. Detected Water Stress (green).

4 Conclusion

The objective of this project was to illustrate that, even in Small Island Developing
States, Data Science techniques can be applied to improve crop yield by early detection
of problems such as weed growth and water stress. Our environment is unique since
farms are small, we must deal with climate change and our crops are not typical. This
requires an understanding of what advanced technologies are suitable and cost effective
for our environment. We plan to extend our work to other crops and to include objectives
such as pest infestations. We are also developing web and mobile applications for use
by farmers. Since farmers cannot afford drones, we are working with the Government
to help them provide this service to farmers at a minimal fee. Our results illustrate that,
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in general, the XG-Boost algorithm works best because of its robust performance and
its avoidance to over-fitting.
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