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Abstract. Karst area poses distinctive landform features on its surface such as
karst hills, cave entrances, sinking streams, and doline. Identification of surface
karst features in detail will greatly help understand the hydrogeological system of
an area. However, the availability of open-source high-resolution spatial data is
scarce. This study aims to identify karst features in the Pindul Cave Karst Area is
part of theGunungsewuGeoparkArea using amultirotor unmanned aerial vehicle.
Identification of surface karst features solely based on orthomosaic images is
challenging. The use of a digital elevation model for more detailed topographic
expression is necessary. The digital terrain model is more reliable for karst feature
identification compared to the digital surface model. In the small study area, dense
vegetation cover often leads to misinterpretation of karst features, while the digital
terrain model provides stronger topographic expression.

Keywords: UAV · Karst · Gunungsewu · DEM

1 Introduction

Topographic data are an essential source of information for various studies, espe-
cially earth science. The use of digital elevation data for geomorphological studies has
increased due to the availability of open-source terrain data such as SRTM, ALOS PAL-
SAR, ASTER, etc. [1, 2]. Digital elevation data are powerful for morphometric and
morphology analysis because they store quantitative parameters that allow better spatial
analysis [3]. From the digital elevation model, various terrain information such as slope,
aspects, and landform classification can be retrieved at a local or regional level [4, 5].
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In Indonesia, the Geospatial Information Agency (Badan Informasi Geospatial)
provides a national digital elevation model (DEMNAS) for almost the whole coun-
try through their portal (https://tanahair.indonesia.go.id/demnas/#/). The availability of
elevation data with medium to high spatial resolution plays an essential role in land
and environmental analysis, including in the karst area. Karst is a distinctive landform
characterized by particular features such as caves and extensive underground water
systems that developed on soluble rocks [6, 7]. The identification of karst features, espe-
cially surface features could be done by interpreting the morphology using a digital
elevation model. However, in such a small-scale research area, the data available with
sufficient spatial resolution digital elevation model is often scarce. The developments
of Unmanned Aerial Vehicles (UAVs) in recent few years have helped scientists to pro-
vide high-resolution DEM for vulnerable environment studies, including karst areas [8,
9] UAV-derived DEM data allow more detailed terrain analysis and accurate feature
identification on karst terrain that cannot be done using open-source DEM data [10].

Identification of karst geomorphological features in detail will greatly help under-
stand the hydrogeological system of an area [11, 12]. This will facilitate the next survey
stages such as cavemapping studies, flow connectivity, defining the karst drainage basin,
as well as a complete description of the hydrogeological system of an area [13–16].With
the availability of detailed data related to geomorphological features in an area, surveys
and subsequent research activities will be very fast and easy compared to terrestrial sur-
veys by relying on small-scale topographic maps [17, 18]. Based on this, studies related
to mapping geomorphological features are very important. This study aims to identify
the karst features using high-resolution aerial photographs generated from the UAV. This
study is expected to contribute to the next study in karst areas, especially in tropical karst
areas such as Indonesia which has karst features that are generally small in size.

2 Methods

The research location is in the Pindul Cave Karst Area which is part of the Gunungsewu
Geopark Area. The Gunungsewu karst is established as UNESCO global geopark with
more than 30 geo-sites scattered in three regencies: Gunungkidul,Wonogiri, and Pacitan.
There are some cave sites situated inGunungkidulRegency such as PindulCave,Kalisuci
Cave, Jomblang Cave, Cokro Cave, and Ngingrong Cave, with Pindul Cave as the most
visited by tourists among others. Pindul Cave is located in the Wonosari Basin and
consists of Miocene limestone from the Wonosari and Kepek Formations. The Pindul
Cave karst system is characterized by a 300 m-long cave passage and a 15.44 km2

catchment area with some cave entrances in the area [19, 20] (Fig. 1). This research aims
to identify karst features using detailed UAV-DEM in Pindul Cave Area, Gunungkidul,
Special Region of Yogyakarta, Indonesia.

The aerial photograph data was collected using a quadcopter-type unmanned aerial
vehicle DJIMavic 2 zooms. This multirotor UAV is equipped with 1/2.3" CMOS camera
(24–48 mm focal length) that is mounted to a 3-axis gimbal to stabilize the camera
movement. The autonomous flight control is run by drone deploy software and onboard
flight control system that allow the UAV to fly on autopilot mode. The data acquisition
was conducted on July 2nd, 2022 as a beyond visual line of sight operation (BVLOS).

https://tanahair.indonesia.go.id/demnas/#/
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Fig. 1. Geological map of the study area [21]

The UAV deployed at 120 m above ground level with 75% front overlap, 65% side
overlap, and 10 m/s flight speed. Two flight mission was done with area coverage of
43 ha and 37 ha respectively. The first flight mission successfully acquired 202 images
while the second mission captured 213 images. The data processing was done using a
computerwith Intel core i7 2.50GHzCPUs, and 16GBofRAM.Orthomosaic image and
DEMgenerationwas performed using the photogrammetry softwareAgisoftMetashape.
The step of generating orthomosaic images from the raw data includes several steps
that produce 3D point clouds, 3D meshes, DSM, and Orthophoto. The first step of
photogrammetry computing started with photo alignment based on camera locations
and camera parameters. This process resulted in the generation of point clouds from
overlapping images with a rough 3D perspective of the area. The next step is the dense
point cloud calculation. This step was done using medium quality with unclassified
dense points. The results from Digital Surface Model (DSM) data were then processed
using PCI Geomatica 2015 software for land cover filtering and Digital Terrain Model
(DTM) generation. The land cover was removed using a set of combination between
terrain filter and bump removal. This process was done by delineating the land covers
using polygons and applying the terrain filter in the selected polygons.
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3 Result and Discussion

3.1 Orthomosaic Image

The study area is divided into two different locations that are adjacent. The first location
is focused on the passage of Pindul Cave, with the extent of the flight mission covering
the input and output of Pindul Cave, while the second location is focused on Kedung-
buntung Cave. Based on the Structure fromMotion (SfM) processing using Agisoft, the
Orthomosaic image results have a Ground Sample Distance of four centimeters. While
the digital elevation model spatial resolution is 20 cm.

The first step of karst feature identification is started with a visual interpretation
of orthomosaic results. In the first location (Pindul passage), the surface karst features
that were recognizable were the input and output of the Pindul Cave passage. The water
bodies at the input and output are visible from the aerial photographs.Manual delineation
was done on the identified water bodies, with the size of the detected object being 441.62
square meters for cave input, and 403.13 square meters for the output respectively. The
distance between the two objects was 197.425 m measured using a straight line with
NE-NW direction. This passage is classified as a linear passage that is controlled by
a local structural setting [19]. The interpretation of karst features and the orthomosaic
results is depicted in Fig. 2.

Adjacent to the first location, another water body was identified by visual interpre-
tation. A similar opening with a water body presumed to be underground river output

Fig. 2. Result of surface karst features at Pindul Cave Passage using the Orthomosaic image.
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Fig. 3. Interpretation result of surface karst features at Kalibuntung sinking stream using the
Orthomosaic image.

was identified based on its color and shape. However, relying on visual interpretation
techniques is limited to some extent without enough experience [22]. Validated with the
field survey, the water body that was identified as cave output based on its shape, color,
and association, it is found that the object was a sinking stream. The disadvantage of
visual interpretation is the sense of direction is weak, so we are not able to tell whether
the object was cave input (sinking stream) or cave output without a field validation. The
object that is identified was known as Kalibuntung sinking stream. The interpretation of
Kalibuntung and the orthomosaic results of the second location is shown in Fig. 3.

3.2 Digital Elevation Model

Identification of karst features solely based on visual interpretation is difficult. Shaded
relief from the digital elevation model can help visual interpretation of feature identi-
fication [13]. Digital Elevation Model was created using the dense cloud results from
photo alignment. This digital elevation model represents the surface elevation of the area
(digital surface model/ DSM). The digital surface model’s spatial resolution is 20 cm.
Based on the DSM data, several features have appeared which were initially quite dif-
ficult to identify from interpretation. Figure 4 shows a very clear depression at the inlet
and outlet of Pindul Cave which is the main tourist attraction at the study site. Figure 5
clearly shows some of the more complex features, such as Suruh Cave (Karst Window),
Sioyot Cave Entrance, Ngancar Spring and Ngancar Cave (Karst Window), Kedungbun-
tung Sinking Stream, and the depression in Tanding Cave which is an artificial cave.
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Fig. 4. Digital Surface model of Pindul Cave Passage; A) Input and B) output appear as low
elevation area compared to surrounding.

The detection of the Kedungbuntung Sinking Stream very clearly shows the ability of
DEM-UAV to provide data on allogenic rivers that recharge groundwater in the karst
area. This result will make it easier to map the karst buffer area which is part of the
allogenic river catchment area.

Although the DSM data is quite good in describing small karst features, the char-
acteristics of tropical karst areas with dense vegetation often lead to misinterpretation
because it does not appear that the karst depression is completely or even completely
covered by vegetation. However, processing DSM data into DTMwas able to overcome
this problem (Fig. 6 and Fig. 7). DTM also shows a clearer surface morphology, so that
it can be used to better identify positive and negative morphological forms in the study
area. The results of the analysis of surface morphology using DTM show that the surface
morphology of the karst area at the study site has differences from theGunungsewuKarst
Area in general. The shape of the karst hills in the Gunungsewu Karst Area is generally
in the form of a conical hill or some experts call it a hemispherical shape or like steamed
buns. It appears that at the study site the positive morphological form seems to indicate
hills with large sizes with many small peaks. This shows that karst hill development
is less intensive than the Gunungsewu Karst Area in the south Gunungkidul District.
However, this study shows that the subsurface part of the study site has developed cave
systems and underground rivers as indicated by the number of surface depressions, karst
windows, cave entrances, sinking streams, and springs or resurgence of underground
rivers.
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Fig. 5. Digital surface model of Kedungbuntung cave complex; A) Suruh Cave, B) Sioyot Cave,
C) Ngancar Spring, D) Ngancar Cave, E) Kalibuntung Sinking Stream, F) Tanding Cave

Fig. 6. Digital terain model of pindul cave passage
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Fig. 7. Digital Terrain Model of Kedungbuntung Cave Complex

3.3 The Progress and the Challenges for the Future Research

The results of this study have shown that the DEM-UAV can be used to identify features
in small karst areas, such as those found in tropical karst areas such as Gunungsewu. The
results of the study can be followed up by surveying the cave system, connectivity testing
by mapping cave passages and tracer tests, as well as defining karst drainage basins in
both allogenic and autogenic recharge areas. The definition of a good hydrogeological
system will greatly support the better management of the Pindul Cave karst area in the
future.

Although it has shown encouraging results in studies in the Pindul Cave Karst Area,
in the future the challenge of mapping in a wider area is still difficult to do. Mapping a
very large area is needed to cover the entire karst area so that the geomorphological and
hydrogeological characteristics of the karst area can be described as a whole. Currently,
UAVs still have relatively narrow mapping capabilities, although several UAVs with the
fixed wing type have shown quite wide results in themapping area. However, in mapping
karst areas that have a large area such as the Gunungsewu Karst Area, data acquisition
using UAVs still requires enormous effort, time, and cost.

4 Conclusion

The aerial photograph using the multirotor unmanned aerial vehicle in this study has a
spatial resolution of four centimeters while the digital elevation model was 20 cm. This
study shows that surface small karst features in the study area can be identified by the



An Example of Karst Features Identification 173

orthomosaic image results. Several objects such as cave entrances, karst windows, karst
depression (doline), sinking streams, and karst hills can be identified well. Shaded relief
from the digital elevation model can help the visual nterpretation of feature identifica-
tion. In a small study area, the digital terrain model shows a more distinct topographic
impression compared to the digital surface model.
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