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Abstract. This contribution introduces an energymanagement concept for multi-
use applications of PV battery storage systems based on reinforcement learning
(RL). The approach uses the state-of-the-art Proximal Policy Optimization algo-
rithm in combination with recurrent Long Short-TermMemory networks to derive
locally optimal energy management policies from a data-driven, simulation-based
training procedure. For this purpose, an AC-coupled residential PV battery storage
system ismodelled and parametrized. Qualitative advantages of theRL-based app-
roach compared to the commonlyusedmodel predictive control (MPC) approaches
with regard to multi-use energy management applications, such as the ability to
optimize a control policy over an infinite, discounted time horizon, are highlighted.
From a large-scale training run of over 200 hyperparameter configurations, the
five best energy management policies are selected and evaluated against state-
of-the-art MPC and rule-based energy management concepts. In the evaluation
over one year it is shown, that the energy management learned by the RL algo-
rithm reduces curtailment losses from 5.70% to 4.78%, specific energy cost from
7.16 Cent kWh−1 to 7.09 Cent kWh−1 and increase the share of PV energy fed
into the grid under a fixed feed-in limit from 49.95% to 50.99% compared to the
MPC energy management, which is the second best one.

Keywords: PV Battery Storage System (PVBSS) · Energy Management ·
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1 Introduction

The rapid expansion of photovoltaic and wind power to meet the climate protection
targets legally defined by the Federal Republic of Germany [1] is also driving the demand
for stationarybattery storage systems to compensate the volatility of renewable electricity
sources and thereby ensure the stability of the grid [2, 3]. Intelligent energy management
concepts are needed in order to take into account the techno-economic optimization
criteria for the deployment of a battery storage system, such as low operating costs or a
short amortisation period.
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Reinforcement learning (RL) is a model-free method that is used to optimize a con-
trol policy by interacting with an environment – in this case the energy management is
interacting with the PV battery storage system - and thereby receiving and maximizing
rewards [4, 5]. RL offers a number of advantages over the widely used model predic-
tive control (MPC) concepts [6–11], such as the ability to implicitly learn the system
dynamics, without any prior knowledge of the system at hand. Furthermore, the policy
can be optimized over an infinite time horizon a via the learned, state value function. No
restrictions need to be imposed on the modelling of the environment, i.e. the PV battery
storage system, or the target reward function as they are regarded as black-box functions
by the RL algorithm. Practical limitations of the RL method have been a challenge for
its application in real-world problem like the energy management of PV battery stor-
age systems. These limitations include the non-guaranteed convergence of the learning
algorithm to an optimal policy, the possible need for retraining if the change in system
parameters becomes too large compared to the system used for training the policy or the
sensibility to the hyperparameters of the respective algorithm [12, 13]. Advancements
both in the field of RL methodology and machine learning hardware over last decade
have led to the successful application of RL to a diversity of problems [14, 15] and there-
fore make it an interesting candidate to solve complex energy management problems,
such as multi-use energy storage applications.

2 Reference System

The considered reference system is anAC-coupled PV battery storage system, consisting
of a PV generator, cumulative loads, a battery storage and a connection to the power
grid. Both the PV generator and the battery storage have their own inverter and they are
coupled via the common AC grid of the building (s. Fig. 1).

In the simulation needed for the training and evaluation of the RL-based energy,
the loads as well as the solar irradiation are simulated from measured time series pro-
vided by the HTW Berlin [16] and the Chair of Meteorology of the TU Dresden at the
Tharandt weather station respectively. The PV battery storage system is simulated in a
temporal resolution of one minute with control intervals of fifteen minutes. The battery
storage itself is modelled with a constant conversion efficiency of 0.92 and a maximum
inverter power of 4 kW for both the charging and discharging direction as well as a
storage capacity of 7 kWh. An installed PV peak power of 5 kWp, an average yearly
consumption of 4500 kWh, resulting from the input time series, and a feed-in limitation
of 50% of the peak PV power is assumed [17]. The cost for energy drawn from the grid
is set to 0.32 e kWh−1 and the feed-in tariff is 0.08 e kWh−1.

3 Reinforcement Learning Based Energy Management Concept

3.1 Basics of Reinforcement Learning

RL optimizes a policy by maximizing the rewards received from the environment. This
is achieved by interaction of the RL agent with the environment following the current
policy and subsequent parameter optimization of the policy over the set of collected state
transitions. This interaction loop is the basis of all RL algorithms (s. Fig. 2).



208 F. Härtel and T. Bocklisch

Fig. 1. Modelled PV battery storage systemwith energy management, input values for the energy
management (blue) and output values (red).

Fig. 2. Interaction loop between the RL agent and the environment [4].

The agent is the controllable part of a RL problem, optimized in the process: The
policy of the energy management π(st) as well as the auxiliary state value function
V (st), needed for the RL algorithm. The environment, on the other hand, is the part of
the RL problem whose system dynamics and reward structure are to be exploited, both
of which are regarded as black box by the RL algorithm.

3.2 State, Action and Reward

In order to formulate a RL problem from the given energy management task, three core
values need to be defined first: the state vector st describing the state of the PV battery
system at each time step, the action vector at containing all the setpoints to be executed
by the system in the next time step and the reward scalar rt used as optimization criterion
for the RL algorithm.

In case of the PV battery system under consideration the state vector st contains the
state of charge of the battery storage SOCt , the energy generated by the PV generator
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EPV ,t and the energy consumed by the loads in the previous time step EL,t .

st =
⎡
⎣

SOCt

ELoad ,t

EPV ,t

⎤
⎦ (1)

The action vector at contains the reference value for the grid power of the PV battery
storage system, which the energy management is then trying to hold by charging and
discharging the battery.

at =
[
PBAC,set,t
PBAC,max

]
(2)

The reward rt is the sum of the income from energy fed into the grid minus the costs
of energy drawn from the grid.

rt = EFeed ,tpFeed ,t − EDraw,tpDraw,t (3)

Since the reward depends on the input time series of load and solar irradiation and
the RL agent has no knowledge about these system dynamics, they are regarded as
stochastic processes and therefore the reward is regarded as stochastic function of the
current policy, too.

rt ∼ R(·|π) (4)

3.3 Algorithm and Neural Network Topology

While iterating the RL interaction loop (s. Fig. 2) the generated transition tuples
(st, at, rt, st+1) are stored. A multitude of different RL algorithms exist to optimize the
parameterized policy π(st) from these collected transitions. The state-of-the-art Prox-
imal Policy Optimization (PPO) algorithm is chosen as RL algorithm, which has been
demonstrated to reach faster convergence and produce better policies than other RL
algorithms in a variety of continuous control problems [18, 19].

Artificial neural networks (ANN) are utilized as parametrized functions for the pol-
icy π(st), which maps states st to actionsat , and the auxiliary state value functionV (st),
which is needed for the PPO algorithm in order to estimate the value of a given statest .
To exploit temporal information from past load and PV power data for the energy man-
agement, a recurrent Long Short-TermMemory (LSTM) network [20] is shared between
the policy π(st) the state value function V (st) (s. Fig. 3). This so-called state encoder
reduces the temporal dimension of a series of past state observations o≤t to a vector of
useful features – the encoded states∗t .

The prediction targets of the state value function – the returns Rt - are defined as the
discounted sum of rewards over an infinite time horizon.

Rt = ∑∞
i=0 rt+iγ

i (5)

This infinite geometric series can be truncated by recursively estimating the value
of the terminal state of the collected transitions V (sT ).

Rt = ∑T−1
i=0 rt+iγ

i + V (sT ) (6)
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Fig. 3. Neural network topology of the policy π(st) and state value function V (st). Both share the
LSTM state encoder in their computation path, which is used to reduce the temporal dimension
and extract meaningful features from a series of past states.

The discounting factor γ ∈ [0, 1) controls how quick the exponential weights are
decaying and thus how far future rewards are regarded for the policy optimization. This
ability to estimate the value of states over an infinite time horizon sets apart the RL-
based concept fromMPC-based concepts: It allows the energy management policy to be
optimized for reward signals that may occur many time steps in the future. In multi-use
energy management applications this might be used to minimize power demand fees,
which are only accounted a few times per year, or for minimizing battery aging.

4 Evaluation Results

After the trainingof the policy is finished, the convergedpolicy canbeused for evaluation.
For this purpose, separate time series of the load and solar radiation are held back from the
training dataset and form separate evaluation episodeswith a length of one year. A simple
priority-based (PRIO) [21, 22] and a MPC-based peak shaving energy management
(MPC-PS) [17, 22] are used as reference energy managements for the evaluation. The
amounts of energy of the load ELoad , the PV generator EPV , the PV curtailment losses
ECL, energy drawn from the grid EDraw and fed into the grid EFeed for each time step
are summed over the whole year.

Ex = ∑
t
Ex,t (7)
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The degree of self-sufficiency kSS , the self-consumption kSC , the relative curtailment
losses kCL, the share of PV energy fed into the grid kFI and the specific energy costs
kSEC are used as evaluation criteria.

kSS = ELoad−EDraw
ELoad

(8)

kSC = EPV−EFeed−ECL
EPV

(9)

kCL = ECL
EPV

(10)

kFI = EFeed
EPV

(11)

kSEC = pDrawEDraw−pFeedEFeed
ELoad

(12)

In a large-scale training run prior to the evaluation, over 200 policies were learned
with different hyperparameters [23], which serve as tuning parameters for the RL algo-
rithm. The five best performing policies from this training RL- < 1–5 > are evaluated
against the references MPC-PS and PRIO.

The analysis of evaluation episode 1 (s. Table 1), which has a cumulative energy
consumption ELoad of 4210 kWh and PV generation EPV of 6104 kWh, shows the RL-
based energy management RL-3 beats both PRIO and MPC-PS in terms of reduced
curtailment losses kCL and increased share of PV energy fed into the grid kFI under the
fixed feed-in limit. However, the degree of self-sufficiency kSS and self-consumption
kSC is slightly worse, where PRIO performs best, as expected. The increased energy
fed into the grid however causes the specific energy price kSEC to be the lowest with
RL-3. The evaluation suggests, that the RL-based concept is able to optimize for the
multi-use target of maximizing self-sufficiency, while minimizing curtailment losses. It
is important to point out that all of this is possible only by defining the energy cost as
reward and thus as sole signal for the policy optimization. The RL agent does not have
any knowledge about the dynamics of the PV battery storage or the reward structure
prior to training.

5 Summary and Outlook

In this contribution an energy management concept for PV battery storage systems in
multi-use applications based onRLwas introduced. It can provide a number of qualitative
advantages over the commonly used MPC concepts, such as learning a locally optimal
policywithout any prior assumptions about the systemdynamics or the ability to optimize
over an infinite time horizon via the infinite geometric series of discounted rewards
approximated by the state value function.

An AC-coupled PV battery storage system was modelled and a residential use case
was defined. The evaluation results suggest that the RL-based concept exceeds the per-
formance of the MPC-PS and PRIO reference energy managements in terms of reduced
curtailment losses kCL, specific energy costs kSEC and increased share of PV energy fed
into the grid kFI under a fixed feed-in limit.
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Table 1. Comparative metrics for the evaluation of episode 1.

Energy Management kSS
(%)

kSC
(%)

kCL
(%)

kFI
(%)

kSEC(
Cent
kWh

)

PRIO 59.98 44.73 9.87 45.39 7.54

MPC-PS 59.51 44.35 5.70 49.95 7.16

RL-1 59.20 44.10 5.08 50.82 7.16

RL-2 59.18 44.08 5.09 50.82 7.17

RL-3 59.36 44.23 4.78 50.99 7.09

RL-4 59.43 44.28 5.18 50.54 7.12

RL-5 59.57 44.40 5.69 49.91 7.15

The ability of regarding a very long time horizon for the policy optimization via
the auxiliary state value function makes RL a promising candidate for multi-use energy
management applications with long-term optimization objectives, such as minimization
of power demand fees or battery aging. The inclusion of these shares of cost as well as
time-variable energy tariffs are currently investigated. Another interesting extension is
the application of this concept for hybrid energy storage systems [24] with more than
one degree of freedom, which has also been conceptualized.
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