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Abstract. The paper presents current research results of the HYBAT project, in
which a hybrid lithium-ion battery storage solution is being developed for three
types of application: self-consumption optimization in industry and commerce,
capacity-firming in a renewable energy park and buffer storage for electric vehicle
charging stations. First, an overview of the principle structure and the functional-
ities of the HYBAT system is given. It features a hybrid storage approach consist-
ing of a high energy and a high power lithium-ion battery and a multi-objective
optimizing energy management. The paper describes the developed energy man-
agement concepts based model predictive control and mixed integer linear pro-
gramming, dynamic programming and reinforcement learning. For the application
field of self-consumption optimization in industry and commerce, a model pre-
dictive, dynamic programming based energy management is presented in detail.
Selected results of simulation-based investigations evaluate the developed energy
management concept based on technical and economic performance criteria. The
advantages of using the developed hybrid battery storage solution for multi-use
applicationswith optimization-based energymanagement concepts are elaborated.
In particular, an improved technical utilization of the storage system, increased
efficiency as well as reduced operating costs will be addressed.

Keywords: hybrid energy storage system (HESS) · energy management system
(EMS) · model predictive control (MPC) · dynamic programming (DP) ·
lithium-ion battery · multi-use application

1 Introduction

The transformation of the energy supply system to accommodate a very high share of
renewable energy generation requires the expansion and intelligent operation of energy
storage systems at all grid levels [1]. Energy storage systems make a significant contri-
bution to the temporal decoupling and adaptation between the fluctuating regenerative
energy supply and electricity demand. Further advantages result from the utilization of
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energy storage systems in the context of decentralized energy supply. Typical storage
applications include optimizing self-consumption of solar or wind power in the resi-
dential and commercial sectors as well as the provision of grid services (e.g. frequency
regulation, black start capability, uninterruptible power supply). Different energy storage
technologies are also utilized for peak-shaving applications. Multi-use concepts are able
to improve economic efficiency and better exploit the technical potentials of energy stor-
age systems [2–5]. According to [5], batteries in single-use applications remain unused
in 50% to 95% of their lifetime. In [3] and [5] the technical and economic combination
of different applications are evaluated. This shows that in many cases a multi-use of
two or more applications is possible. In [6] and [7] it is shown that the combination of
multiple applications increases the economic benefit in all investigated cases.

Hybrid energy storage systems (HESS) are experiencing increasing importance in
stationary [8–12] and mobile applications [12–14, 14, 15] due to their ability to improve
efficiency, performance, and component lifetime while reducing system costs compared
to single-storage solutions. There have been several research projects involving HESS
and multi-use applications. In “Smart Region Pellworm”, a lithium-ion and a redox-
flow battery have been combined into a HESS, which in turn plays a central role in
the intelligent management of the island of Pellworm’s energy resources [16, 17]. In
the “M5BAT” project, a demonstration plant combining various lithium-ion and lead-
acid batteries was built and various energy management strategies have been tested
[18]. One of the first large-scale commercial HESS in Germany was the “hybrid storage
Braderup”, where a lithium-ion battery and a redox-flow battery have been combined
to store energy from a wind farm when the grid is overloaded [19]. The “NETfficient”
project, demonstrated gains in energy efficiency and economics for smart communities
through hybridization of a lithium-ion battery providing energy-related services and a
supercap providing power-related services to the grid and the community [20].

However, so far, the potential of HESS is rarely fully exploited. Most importantly,
there is a lack of suitable, optimizing energy management concepts for power flow con-
trol and linkage with highly accurate models of voltage-current characteristic, charging
losses, and aging behavior of the storage systems.

Figure 1 shows the overall system structure of the hybrid lithium-ion battery storage
solution HYBAT featuring 1500V power converter technology, innovative thermal man-
agement, online condition monitoring and a multi-objective optimizing energy manage-
ment. A HYBAT system consists of a high energy and a high power lithium-ion battery.

Fig. 1. Principle structure of the developed hybrid lithium-ion battery storage solution HYBAT.
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These are connected to the DC-bus via a DC-DC converter. Themaximum power of each
DC-DC converter and each inverter is 150 kW. The energy management is responsible
for the central control of the overall system. Intelligent operating approaches can, for
example, increase the SOC range and performance while maintaining the same lifetime.
Moreover, the HYBAT system includes an integrated cooling system, and an online
condition monitoring, that determines essential information about the charging, aging,
functional conditions and temperature of the batteries, which are not presented in this
article.

The paper is structured as follows. In Sect. 2 an overview of the considered fields of
application and the developed energy management concepts is given. Section 3 presents
the simulation model of the HYBAT system. In Sect. 4 the energy management concept
for the application example extended self-consumption optimization in industry and
commerce including the problem formulation, the performance criteria and the simula-
tion settings is presented. Furthermore, results of simulation-based analyses are shown.
The paper closes with a short summary and gives an outlook on future research and
project activities.

2 Hybrid Lithium-Ion Battery Storage Solution

2.1 Fields of Application

Extended self-consumption optimization
An important objective of residential battery storage systems is to maximize self-
sufficiency by optimally utilizing solar energy from local sources [21–23].High purchase
prices for electrical energy and significantly lower feed-in tariffs, especially for private
households, make an increase of solar energy in self-use attractive from an economic per-
spective as well. An additional objective is to minimize curtailment losses. When using
time-variable energy tariffs, the minimization of electricity costs through time-shifting
of the purchase or the feed-in of surpluses plays an important role [24–26]. The mini-
mization of the grid consumption power is particularly relevant in Germany for industry
and commerce with a total annual consumption of more than 100000 kWh. Further suit-
able applications are spot market trading, balancing group management, providing local
network services and emergency power supply [7, 27–29].

Capacity firming
Capacity firming is intended to smooth and stabilize power generation from renew-
able energies [29–31]. The objectives are to reduce grid repercussions due to voltage
and power fluctuations, to comply with generation schedules or avoid penalties, and to
increase the reliability and availability of power generation. Further suitable applications
are providing local grid services [31].

Buffer storage for electric vehicle charging station
The task of a battery buffer storage at an electric vehicle charging station is to reduce
the load peaks that occur and the associated grid power peaks [32, 35]. This reduces
the electricity costs and the investment costs, since less powerful power converters are
needed and a possible grid expansion is not required. In addition, the power grid is
relieved by the avoidance of load peaks. Further applications are participation in the
balancing group management and providing local grid services [33, 34, 40].
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2.2 Energy Management Concepts

For each of the three identified application areas, a new, customized energy management
concept was developed, functional tests were carried out and the performance was com-
pared with conventional energy management approaches. In the following, an overview
of the basic functionalities and the special features of the respective energy management
concepts are presented.

2.2.1 Model Predictive Dynamic Programming-Based Optimizing Energy Man-
agement

The model predictive control (MPC) is often used for the optimization of the power
flows in battery storage systems with a PV plant [21, 34, 35, 40]. The optimization is
carried out using PV and load forecasts. Due to the fact that the forecasts are subject
to errors, the determined power flow will also only provide optimal results with respect
to the selected input data. One possibility to compensate the occurring forecast errors
is the model predictive control, which re-evaluates the optimization problem in regular
intervals. Only a part of the optimal control trajectory is given to the real system. In the
next optimization time step, the optimization is repeated with updated system states and
forecast information.

Dynamic programming is amethod for solvingoptimizationproblemsbydividing the
problem into sub-problems, which was introduced by Bellman in 1954 [36]. Depending
on the discretization, the results represents the global optimum. No special solver is
required to determine the optimal trajectory. Since it is still a deterministic procedure,
it is already clear at the beginning of the optimization how many calculation steps are
necessary. This method doesn’t involve any restrictions for the objective function, the
constraints and the system model. The disadvantage is that the result is only available
at the end of the optimization. Furthermore, the number of calculation steps increases
progressively with the number of system states considered.

The model predictive, dynamic programming based energy management (MPC-DP)
is presented in detail for the application field self-consumption optimization in industry
and commerce in Sect. 4.

2.2.2 Model Predictive Mixed Integer Linear Programming-Based Optimizing
Energy Management

AMPC in combinationwith themixed integer linear programming is very often used as a
solution approach for the energymanagement of renewable energies with energy storage
systems [10, 24–26, 37, 44]. The disadvantage that objective function and constraints
have to be linear can be limited by piecewise linearization. For convex functions, this
can also be implemented in a very computationally efficient way. In the project, the
method was used for the application field capacity firming. Taking into account the PV
forecast, spot market prices and information from the high energy batteries (state of
charge limits and aging behaviour), the grid capacity is optimized until the end of the
current day. To find out the marginal cost of the storage for the arbitrage, the expected
degradation is translated into costs and explicitly considered in the objective function
(piecewise linearization). To reduce model and forecast uncertainties, the optimization
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is performed in a model predictive approach. The PV forecast and the state information
of the high energy battery are updated in a regular time interval.

2.2.3 Reinforcement Learning-Based Energy Management

Reinforcement Learning (RL) is another method, that can be used to derive locally
optimal energy management policies from a data-driven, simulation-based training pro-
cedure prior to the actual usage of the energy management [38–40]. RL is a promising
approach to overcome many of the limitations of the widely used energy management
concepts. Firstly, no restrictions need to be imposed on the modelling of the objective
function as opposed to linear programming, which assumes a linear objective function.
Secondly, RL can optimize the energy management over an infinite horizon by estimat-
ing the state values with a separate fitted estimation function. This is different fromMPC
approaches, where optimization is carried out over a finite horizon, and especially useful
for long-term optimization targets such as reducing battery aging. Furthermore, no mod-
els of the system dynamics or forecasts need to be formulated for the energymanagement
as they are implicitly learned during the training procedure. This also saves computa-
tional power during the application of the energy management, because no model of the
system needs to be simulated.

The energymanagement policymaps system states to actions and is represented by an
artificial neural network (ANN). During the iterative training procedure, the parameters
of the policy ANN are optimized in such a way, that actions leading to higher rewards
become more likely and actions leading to lower rewards become less likely and thus
maximizing the expected value of received rewards. In case of the HYBAT system under
consideration the state vector contains the state of charge of the high energy and the high
power battery, the power of the PV plant and the load in the previous time steps. The
action vector contains the set points of the power for the high energy and the high
power battery. The reward function, acting as target for the policy optimization, is a
weighted sum of all operational cost, that are to be considered, such as energy cost,
feed-in compensation, cost of battery degradation or power demand fees for example.
Using RL for the energy management of a hybrid energy storage system poses some
challenges, however. The energy management policy is not guaranteed to converge to an
optimal policy during the training and the stochastic nature of the processes of the load
and PV generation make convergence even more difficult. Therefore, it is investigated if
the theoretical advantages of RL-based approaches translate to the practical application
of the energy management of hybrid energy storages.

3 Simulation Model

In order to investigate the developed energymanagement concepts for the different fields
of application a generic simulation model was implemented. The approach allows the
number of high energy and high power batteries, DC-DC converters, and inverters to
be freely selected depending on the application example. The structure of the generic
topology-coupling architecture is shown in Fig. 2.

The lithium-ion batteries aremodelled using an electrical circuit based approach [48].
All parameters in the proposed model are functions of the state of charge SOC and the
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Table 1. Specification of the utilized lithium-ion batteries

Name A B C D

Cbatt,nom in Ah 150 37 37 60

Ubatt,nom in V 665 666 661 486

Pmax,ch/disch in kW 80/100 77/77 36/50 175/175

Ebatt,nom in kWh 98 33 24 29

Cycle life >4000 >3000 >3000 >16000

Fig. 2. Principle structure of the generic simulation model.

current Ibatt . The chosenmodel consists of a voltage sourceUOCV , a serial resistance R0,
and twoRC-elements. The nonlinear relationship between the open circuit voltageUOCV

and the battery state of charge SOC is represented by the OCV-SOC-characteristic. The
serial resistance R0 characterizes the ohmic losses. The two RC-elements represent the
dynamic behavior of the battery. The state of charge SOC is calculated from Coulomb-
countingwith the battery current Ibatt as input. Charge and discharge losses are neglected
in this model. The aging model of the lithium-ion battery is based on the semi-empirical
approach presented in [41]. Based on extensive measurements the remaining capacity
and the internal resistance are fitted with mathematical functions depending on the
voltage, the temperature, current throughput and the depth of discharge. Table 1 shows
the datasheet details of selected batteries used for the investigations.

The losses of the DC-DC converters and the inverter are modelled on the basis of
voltage dependent efficiency power curves. These curves have been computed on the
basis of dynamic simulations of the power electronic converter topologies at Fraunhofer
ISE. Exemplary the Efficiency curves of two voltage levels on DC side are shown in
Fig. 3.

The simulationmodel is implemented on the basis of object-oriented programming in
MATLAB.All components and energymanagement sub-modules are written in the form
of classes. This approach ensures a clear structure and also enables a generic structure
of the HYBAT topologies. Furthermore, the contents of the classes can be exchanged
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Fig. 3. Efficiency curves for the whole conversion path (AC to DC) for a DC voltage of 600 V
(blue line) and 1480 V (red line).

without any problems. In order to realize an increase of the computation speed, the
parallelization of the data processing takes place on several computing cores.

4 Case Study – Extended Self-consumption Optimization

In this section the energy management concept MPC-DP for the application field self-
consumption optimization in industry and commerce will be described in detail. The
objectives are minimizing the electricity costs taking into account time-variable tariffs
(energy price and capacity charge), minimizing the PV system losses and enhance life-
time of the HYBAT system. The input variables are quarter-hourly resolved forecasts of
PV and load power profiles over a prediction horizon of 24 h as well as the current state
of charge of the high energy battery.

However, a major challenge is the coupling of the partly competing energy man-
agement objectives, which are additionally characterized by different impact horizons.
Conceptual considerations on the overall structure of the energy management concept
have shown that a division into an upper level energy management and a lower level
energy management is advantageous. The upper level energy management is oriented
towards the application side (e.g. peak shaving, maximization of PV utilization, reduc-
tion of power exchanged with the grid, reaction to external incentive signals). The lower
level energymanagement is responsible for the power flow partitioningwithin the hybrid
energy storage system, which focuses on increasing conversion efficiency and compo-
nent lifetime. The subdivision into lower and upper level makes it possible to combine
several energy management variants with different individual strategies in a modular
way.

4.1 Problem Formulation

4.1.1 Upper Level Energy Management

For the discrete time case, the system behavior can be formally described by the system
state x[k] and the control variable u[k] in a transition function:

x[k + 1] = f (x[k], u[k]) (1)

The strategy π = {u[0], u[1],…,u[N-1]} denotes a control sequence that generates
the cost g(x[k],u([k]),k) when the decision u is chosen in the state x. The total cost J
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is calculated after applying the strategy π. The cost function g describes the transition
costs from state x[k] to state x[k + 1].

J = g(x[N ]) +
∑N−1

k=0
g(x[k], u[k], k) (2)

The objective is to minimize the quality functional J over the decision horizon N by
an optimal sequence.

For the storage system under consideration, the state variable x represents the state
of charge of the high energy battery SOCHE . The control decision u corresponds to the
power of the high energy battery Pbatt,HE . The transition costs g (Eq. 3) are composed
of the electricity costs Cec (work price), the maximum grid feed-in power CP,fi, the
maximum grid import power CP,imp, and the distance to 50% of the charge level CSOC .

g = Cec + α · CP,fi + β · CP,imp + γ · CSOC (3)

All individual costs are expressed via monetary quantities. The conversion losses are
implicitly taken into account via the cost share of the energy fed-in and purchased. The
weighting of the objectives is carried out empirically on the basis of expert knowledge.

Cec = Egrid ,imp · kEGP − Egrid ,fi · kFIT (4)

CP,fi = (
Pfi − Pfi,max

)2∀Pfi > Pfi,max (5)

CP,imp = (
Pgrid ,imp

)2 (6)

CSOC = |SOC − 0, 5| (7)

The state of charge limits of the lithium-ion battery must not be exceeded.

SOCmin < SOCbatt < SOCmax (8)

The limits of themaximumcharging and discharging power of the lithium-ion battery
must not be exceeded.

Pbatt,min < Pbatt < Pbatt,max (9)

In the simulation, it is assumed that the grid connection point is controlled within
a few milliseconds. The set point adjustment is carried without delay. Therefore, the
power balance on the AC-side applies for the calculation of the battery power (Eq. 10).

Pbatt,HE[k] = Pgrid ,set[k] + PPV [k] + Pload [k] (10)

Optimization is performed using a simple systemmodel and forecasts for PV power,
load, energy cost, and feed-in tariff. The optimization is performed over the decision
horizon tpred with a resolution tstep. The re-execution in the interval tex using the current
estimated system state corresponds to a feedback of the variable to be controlled and
thus to a control loop structure. The result of the optimization is the trajectory of the
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control variable over the decision horizon. The model predictive control consists of re-
execution of dynamic programming to minimize the objective function. It increases the
robustness of the control method against forecast errors and model inaccuracies. Further
information on the implementation of the MPC-DP energy management, especially the
limitation of state transitions, shortening of the decision horizon and the analysis of the
influence of the weighting factors, can be found in [42].

4.1.2 Lower Level Energy Management

The control of the power of the high energy and high power lithium-ion battery takes
place along the tasks of each battery: The high energy battery takes over the power
demand planned at the upper level energy management. The high power battery takes
over the deviations from the real power demand, which result from forecast and model
errors.

Pbatt,HP[k] = Pgrid ,set[k] + PPV [k] + Pload [k] − Pbatt,HE[k] (11)

If the state of charge of the high power battery approaches the limit, it is splitted
according to the division between high energy and high power batteries presented in [51].
The power ratio of the batteries is calculated from the ratio of the currently available
capacity of the high energy battery to the available capacity of the whole hybrid energy
storage.

The upper level energy management returns the hybrid storage to the non-critical
SOC range in the next optimization interval, if this is possible under the system
constraints.

4.2 Reference Application

For the modelling of the PV plant, the global radiation measurement of the HTW-Berlin
is available for the period 01.11.2020–30.10.2021. The calculation of the PV power is
based on the single-diode model. The annual generation of the PV plant was scaled to
the company’s annual consumption of 1189 MWh.

Figure 4 shows an example week of the data set of HTW Berlin. The feed-in limit
is set to 500 kW. For the forecast of the PV time series, in addition to the ideal forecast
(averaging of the measured data in 15 min intervals), commercial forecasts from the
German weather service on the one hand and a practical approach [37] based on the

Fig. 4. Weekly power profile of the PV plant.
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Fig. 5. Weekly power profile of the reference company.

clear sky index in combination with the maximum power of the last days (csi-envelope)
on the other hand are used.

Chemnitzer Präzisionstechnik GmbH (CPT) was chosen as a typical industrial ref-
erence application. CPT produces complex turned and milled parts on 30 CNC lathes
and milling machines with a high capacity utilization. The annual energy consumption
of CPT is about 1189 MWh with a 15-min peak load of 240 kW. An example week is
shown in Fig. 5. The measurement data originate from a measurement campaign which
is documented in [43]. For the forecast of the consumption it is assumed that the occu-
pancy of the machines and the parts to be produced is known for the next 24 h. Thus,
the load time-series is only averaged to 15 min values.

The basic structure of the HYBAT system configuration selected for the application
example consists of seven high energy batteries (type A, Table 1) and eleven high power
batteries (type B, Table 1). Two inverters are used. The energy price kEP varies between 4
and 10 Eurocent/kWh depending on the time of the day. The feed-in tariff kFIT amounts
to 5 Eurocent/kWh. The energy content of the whole HYBAT configuration is 960 kWh.
Further simulation settings are summarized in Table 2.

Table 2. Simulation settings

Name Value

Simulation time tsim in years 1

Simulation time step ttimestep in min 1

Decision horizon Tpred in h 24

Optimization time step Topt in min 15

SOC discretization DSOC 0,002

Execution interval Tex in min 15
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4.3 Performance Criteria

For the evaluation of the simulations, several performance criteria were employed.
Because of the systembeingused for self-consumption, first the degree of self-sufficiency

kss = 100% ·
∑(

Pload − Pgrid ,imp
)

∑
(Pload )

(12)

and the degree of self-consumption

ksc = 100% ·
∑(

PPV − Pgrid ,fi
)

∑
(PPV )

(13)

as well as the operating costs kec considering the feed-in Tariff kFIT , the capacity charge
kcc and the energy price kEP should be evaluated.

kec =
∑(

Pgrid ,fi · kFIT − Pgrid ,imp · kEP

)
· ttimestep

+ Pmax,15min · kCC (14)

Curtailment losses occur when the power fed into the grid is greater than the
maximum feed-in power limitation.

kct = 100% ·
∑(

PPV ,ct
)

∑
(PPV )

(15)

The battery full cycles kcycl are an indicator of the utilization of the lithium-ion
batteries. They are calculated from the battery power in relation to the nominal energy
amount.

kcycl =
∑|PBatt | · ttimestep

2 · EBatt
(16)

Finally, the maximum power imported by the grid, averaged over 15 min in relation
to the maximum power of the original time series is taken into account.

kP,red = 100% · max(Pgrid ,imp,15)

max(Pload ,15)
(17)

4.4 Simulation Results

4.4.1 Qualitative Analysis of an Example week

For the PV and load profiles shown in Fig. 4 and Fig. 5, the power curves and the
resulting state of charge curve are shown in Fig. 6. The maximum grid power in this
week is 160 kW. This corresponds to a reduction of 24% compared to the original load
profile. The surplus PV energy is primarily charged into the battery during the day. The
curtailment losses amount to 6.7% (peak-shaving 8.0% and rule based approach 10.7%)
in the sample week. At the weekend, the batteries are actively discharged into the grid
to temporarily store as much PV energy as possible on the following day. In order to
relief the grid, the feed-in takes place with low power.
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Table 3. Results of the annual simulation

Rule-based Peak-
shaving

Peak-
shaving

Peak-
shaving

MPC-DP MPC-DP MPC-DP

PV
forecast

- Perfect Commercial CSI-envelope Perfect Commercial CSI-envelope

kss in % 52.7 52.3 51.6 51.5 52.1 50.0 50.5

ksc in % 53.6 53.2 52.5 52.3 53.1 50.9 51.4

kct in % 12.7 9.6 10.2 10.3 7.9 9.1 9.0

kec in Te 37.8 36.2 36.5 36.6 30.4 33.7 33.9

kcycl,HE 166 160 152 150 246 226 235

kcycl,HP 173 171 165 165 265 248 261

kP,red in
%

13.5 13.5 13.5 13.5 28.7 22.0 22.1

Efeed-in in
MWh

336 371 372 373 389 399 394

Eimport in
MWh

473 477 484 485 479 500 495

Fig. 6. Power and SOC profiles of an example week.

4.4.2 Results of the Annual Simulation

The results of the annual simulation are listed in Table 3. The first three columns show the
results of the reference methods. One reference method is a simple rule-based approach,
which maximizes only the self-consumption of solar energy. If there is more PV power
available than the consumer demand and the battery is not fully charged, the energy is
stored. If the consumption is higher than the PVpower, the load is supplied by the battery.
The second reference approach additionally relieves the grid by reducing the maximum
feed-in power atmidday and obtain a fully charged battery in the evening (peak-shaving).
Even though both approaches are not able to account for several objectives, they give a
first indication in the comparison of the technical performance criteria.
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At 50.5%, the degree of self-sufficiency is only about 1.6% below the best value
of the MPC-DP. The rule-based approach reaches the overall maximum of self-
sufficiency (52.7%) and also self-consumption (53.6%). Analyzing the curtailment
losses, it becomes clear thatMPC-DP can reduce even further compared to peak-shaving.
The reason for this is the active discharge of surplus power into the grid in the early
morning hour. This also leads to the increased feed-in of PV energy into the grid. This is
contrasted by the greater utilization of the high energy and high power battery, which is
particularly noticeable in a higher full cycle number. With ideal PV forecast, a reduction
of the reference power (15-min average) by 28.7% is possible and under real conditions
by 22.0%. With regard to the evaluation criteria, the influence of the forecast (commer-
cial or csi-envelope) used is negligible for the peak-shaving approach as well as for the
MPC-DP concept. For the electricity prices and remunerations utilized, the costs are
33.7 Te for MPC-DP, 37.8 Te for rule-based and 36.5 Te for peak-shaving.

5 Conclusion

This paper presented current research results of the HYBAT project, which is develop-
ing an innovative hybrid lithium-ion battery storage solution, consisting of high energy
and high power batteries, 1500 V based power electronics, an integrated thermal man-
agement, and a multi objective optimizing energy management system with an online
condition monitoring. The interesting application fields: self-consumption optimization
in industry and commerce, capacity-firming in a renewable energy park and buffer stor-
age for electric vehicle charging stations are introduced and the functionality of suitable
energymanagement concepts is described. The results of the simulation based investiga-
tions of the case study point out that the developedMPC-DP energymanagement reduces
the maximum power imported from the grid, increases the utilization of PV-energy and
reduces curtailment losses in comparison to a rule based and a peak-shaving approach.
Moreover, for the selected scenario with the MPC-DP energy management the energy
costs can be reduced round about 8% in comparison to the peak-shaving and 10% to
the rule based approach. Current research is focusing on the development, investigation
and experimental testing of the online condition monitoring and as well as the testing of
the energy management concept under real conditions at a demonstrator of the HYBAT
system.

Acknowledgments. The presented paper is based on the results of the research project “HYBAT–
Hybrid lithium-ion battery storage solution with 1500 V system technology, innovative thermal
management and optimized systemmanagement”, supported by the Federal Ministry of economic
affairs and Climate action (funding code: 03EI3009C).
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