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Abstract. Sorption heat storage is expected to play an important role in future
thermal energy systems, particularly in buildings and industrial processes. For
optimal operation, it is important to control the parameters of heat storage systems,
such as the state-of-charge. In this study, we show the possibility to use compact
and cost-effective micro-opto-electro-mechanical spectroscopic sensors for state-
of-charge control of diverse sorption heat storage materials.
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1 Introduction

Global energy challenges urge the development of new energy storage solutions. A
diversified, renewable, and decentralized energy supply is critical to ensure the future
energy security. An optimized balancing of energy flows between energy producers and
consumers should reduce possible losses and increase the resilience of energy networks.

Thermal energy storage systems are well-suited to store geothermal and solar energy,
both for seasonal and daily demands. The three main types of thermal energy storage
are sensible, latent, and thermochemical heat storage, the latter being based on either
chemical reactions or sorption processes. In recent years, increasingly more attention
has been paid to sorption heat energy storage. In comparison to sensible and latent heat
storages, thermochemical heat storage is notable for high energy densities, robustness,
low heat losses, and good cycling stability [1, 2].

Some important characteristics of sorption heat storage materials are adsorption
capacity, cyclability, state-of-health (SOH) as well as state-of-charge (SOC) which in
case of sorption heat storage refers to the relative amount of sorbate (e.g. water) taken up
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Fig. 1. The absorption spectrum of water with different wavelength regions shown (adapted from
[7]).

by the sorbent. A suitable technology to control these parameters in real-time is required
to ensure the efficient operation.

To the best of our knowledge, no specific sensors to estimate the real-time SOC of
sorption heat storage systems are available on the market today. Recently, a capacitive
SOC sensor prototype has been developed,which employs the relative change ofmaterial
permittivity during water sorption and desorption processes [3]. Another promising
approach is the use of infrared spectroscopic sensors to estimate the amount of sorbate
adsorbed by the storage material.

Infrared spectroscopy allows identification and quantification of substances in a
contactless and non-destructive way, based on their characteristic absorption bands.
Enabled by the specific absorption bands of water located in the infrared region (Fig. 1),
the method is generally suitable for quantitative determination of water adsorbed by
solids. Examples are known from pharmaceutical [4], food [5], textile [6], and other
industries. Recent advances such as the development of micro-opto-electro-mechanical
(MOEMS) devices enable a cost-effective IR spectroscopic process analytics [8, 9].

Earlier, the feasibility of SOC prediction using near-infrared (NIR) MOEMS tech-
nology was demonstrated in lab scale on a zeolite material [10]. In the present study, we
demonstrate the use of the MOEMS-based NIR spectrometer technology for real-time
SOC estimation of various sorption heat storage materials, including microporous silica
gel, zeolites as well as in-house prepared salt-hydrate composites.

2 Materials and Methods

2.1 Materials

Silica gel beads for this study were purchased from OKER-CHEMIE GmbH (Ger-
many). Zeolite materials were acquired from CWK Chemiewerk Bad Köstritz GmbH
(Germany). Three different zeolite materials were investigated, viz. Two A-type zeolites
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Table 1. Essential material properties according to the material datasheets [12]–[15] (if applica-
ble). A hyphen (-) denotes no data available.

Material type Trade name or
designation

Chemical composition Bead /
granule
size, mm

Pore
size, Å

Water vapor
adsorption
capacity,
wt%

A-type zeolite
(LTA)

KÖSTROLITH®
4AK

Na2O·Al2O3·2SiO2·nH2O
(+ binder)

1.6–2.5 4 ≥ 21.5 (20 °C,
55% RH)

A-type zeolite
(LTA),
binder-free

KÖSTROLITH®
4ABFK

Na2O·Al2O3·2SiO2·nH2O 2.5–5.0 4 ≥ 24.0 (20 °C,
55% RH)

NaY-type
zeolite (FAU),
binder-free

KÖSTROLITH®
NaYBFK

Na2O·Al2O3·mSiO2·nH2O
(m ~ 5)

1.6–2.5 9 ≥ 29 (20 °C,
55% RH)

Silica gel SIOGEL®
microporous,
white, beads

SiO2·nH2O 2.5–4.0 - ≥ 10.0 (23 °C,
20% RH)
≥ 21.5 (23 °C,
40% RH)
≥ 31.0 (23 °C,
80% RH)

Salt-hydrate
composite

Salt-hydrate
composite A

Clinoptilolite: 75 wt%
CaCl2·2H2O + LiCl·H2O:
20 wt% (mixing ratio 7:1)
Portland cement: 5 wt%

> 4 - -

Salt-hydrate
composite

Salt-hydrate
composite B

Clinoptilolite + birch fibers:
40 wt%
CaCl2·2H2O + LiCl·H2O:
40 wt% (mixing ratio 9:1)
Buzzi Unicem Next base
CSA cement: 20 wt%

~ 7 (in
diameter)

- -

(binder-containing and binder-free) and a binder-free NaY-type zeolite. Salt-hydrate
composites were prepared by the granulation method as described in [11]. In this study,
they are designated as salt-hydrate composite A and salt-hydrate composite B. Figure 2
shows the appearance of the materials under study, while chemical compositions and
physical characteristics are summarized in Table 1.

Prior to each measurement, the samples were charged in a drying chamber (FED
115, BINDER, Germany), then cooled down to the room temperature in a desiccator.
Silica gel and zeolite samples were dried for 3 h at 150 °C and 250 °C, respectively.
Salt-hydrate composite samples was dried for 2 h at 100 °C, then for another 2 h at
200 °C.

2.2 Data Acquisition

Water sorption measurements of the charged heat storage materials were carried out on
a lab-scale set-up that enables a probeless and non-invasive acquisition of NIR spectra
in diffuse reflection geometry (Fig. 3).
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Fig. 2. Tested thermal energy storagematerials: a)A-type zeolite; b)A-type zeolite binder-free; c)
NaY-type zeolite binder-free; d) silica gel; e) salt-hydrate composite A; f) salt-hydrate composite
B.

Fig. 3. Schematic image explaining the principle of a NIR measurement in diffuse reflection
geometry.

NIR spectroscopic measurements were performed in the spectral range of 1750–
2150 nmwith a step of 5 nmusing aNIRFabry–Pérotmicro-spectrometerwith integrated
light sources (NIRONE 2.2, Spectral Engines, Finland). Sheet aluminium served as the
reference standard.

Changes in sample mass were recorded using an analytical balance (CP224S-0CE,
Sartorius,Germany) having a precision of 0.1mg. The initial samplemass (in the charged
state) was in the range of 16–28 g, which depends on the material.

All measurements were conducted in ambient conditions. A typical experiment
duration was 5–6 days. Spectral and gravimetric data were collected every 120 s.
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2.3 Data Preprocessing and Chemometric Modelling

As the signals acquired by the spectrometer module and by the balance were not syn-
chronized, an interpolation of the sample mass readings was performed (method: cubic
spline). Before the interpolation, gravimetric data were smoothed (adjacent-averaging
filter, 5 points window, polynomial order: 2).

Partial least squares (PLS) regression models were developed using the Origin-
Pro 2021b software package. The full spectrum dataset was used for modelling. The
absorbances at each wavelength served as the independent variables and the relative
mass change (in % to the initial mass of the sample after drying) was used as the depen-
dent variable. The maximum number of factors was set to 10. The root mean square
error of cross-validation (RMSECV) as well as the R-squared (R2) were calculated in
the traditional way.

3 Results and Discussion

Although water has several absorption bands in the NIR spectral region (Fig. 1), the
absorption band at about 5150 cm−1 (λ ≈ 1940 nm), representing a combination of
asymmetric stretching and bending vibrations of watermolecules, is particularly suitable
for quantification of adsorbed water in various materials [16, 17]. Based on this, a
spectral range of 1750–2150 nm was chosen for the measurements, which covers the
aforementioned absorption band of water.

Figure 4 visualizes the absorption NIR spectra of the studied materials as 2D contour
plots where absorbance is plotted in colour scale. The respective gravimetric curves are
presented at the top of each plot.

Water uptake occurs fast at the beginning but gradually slows down until saturation
is achieved when the mass change curve reaches a plateau. Slight fluctuations in the
mass of the samples could be caused by daily changes in the ambient air temperature
and humidity. The achieved maximum water uptake values of commercial materials
(zeolites, silica gel) are in good agreement with the water adsorption capacities specified
in the material datasheets (Table 1). Among the commercial materials, the highest water
vapor adsorption capacity was achieved for the binder-free NaY-type zeolite, followed
by the binder-free and the binder-containing A-type zeolites. The in-house prepared
salt-hydrate composite A exhibits a good storage stability as well as a high water vapor
adsorption capacity comparable to those of the zeolite materials. The maximum mass
change achieved for this material under the conditions of the experiment was 24%which
suggests a water content of at least 19 wt% in the discharged material.

The obtained predicted vs. reference plots for water uptake are presented in Fig. 5. In
most cases, the use of 6 latent variables was necessary for a satisfactory PLS model. The
achieved R-squared exhibit values of at least 0.9955, while RMSECV values were all
below 0.01. The analysis shows a satisfactory prediction of the amount of the adsorbed
water.
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Fig. 4. NIR spectra and gravimetric curves of the studied heat storage materials: a) A-type zeo-
lite; b) A-type zeolite, binder-free; c) NaY-type zeolite, binder-free; d) silica gel; e) salt-hydrate
composite A; f) salt-hydrate composite B.

In case of the salt-hydrate composite B,we observed a slight swelling of the granulate
due to water uptake. Because there was a concern that the granulate can come in contact
with the spectrometer,whichwould affect the analytical balance readings, the experiment
was interrupted. Swelling inevitably leads to a change in the optical path length of
infrared light and can have an unfavourable effect on the measurement accuracy. Using a
different optical interface and a different experimental set-up (e.g. in-tankmeasurement)
would supposedly allow that the optical path length changes can be neglected.

It is to mention that no desorptionmeasurements were conducted as part of this study
as the latter was rather designed for fast screening. Lab-scale sorption and desorption
in-tank measurements under controllable conditions are ongoing.
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Fig. 5. Predicted vs. reference plots for the studied heat storage materials: a) A-type zeolite; b) A-
type zeolite, binder-free; c) NaY-type zeolite, binder-free; d) silica gel; e) salt-hydrate composite
A; f) salt-hydrate composite B.

4 Conclusion

In this work we showed that novel MOEMS-based NIR spectrometers can provide an
adequately precise, compact, and low-cost solution for SOC control of heat storage
systems. Based on the water adsorption measurement, we developed PLS models that
show high accuracy of water content prediction. Presented research findings will help to
assess heat storage capacities, improve balancing local heat supplies and demands, and
therefore, increase the resilience of future heat distribution networks.
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Abbreviations

CSA Calcium sulfoaluminate
FAU Faujasite-type zeolite
LTA Linde type-A zeolite
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MOEMS Micro-Opto-Electro-Mechanical Systems
NIR Near-infrared
PLS Partial least squares
RH Relative humidity
RMSECV Root mean square error of cross validation
SOC State-of-charge
SOH State-of-health
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