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Abstract. Recent research has shown that model predictive control (MPC) is a
practical tool for the realization of an intelligent single- or multi-use energy man-
agement for both single and hybrid energy storage systems. Based on a system
model and forecasts of external influences, such a controller will find the suppos-
edly optimum decision to take in the immediate future. However, this decision
will only be optimal for the given forecast and model. The inevitable model and
forecast uncertainties may lead to decisions that are mathematically infeasible.
Usually, underlying control loops ensure system stability and safety. However,
uncertainties can be detrimental to the performance of the MPC, especially in
multi-use applications, which have been shown to be preferable in practice due to
a more economical usage of the storage devices.

For this study, the authors carried out various analyses on the impact of both
model and forecast uncertainties on the performance of the MPC in the case
of a PV-Battery-Heat Pump-Heat Storage system in a single-family house pro-
viding self-consumption optimization and grid relief. Concerning the impact of
model uncertainties, the use case was simulated repeatedly, varying both struc-
ture (linear and quadratic) and parameters of the optimization model. The impact
of forecast uncertainties was investigated by simulating with real and ideal fore-
casts and identifying “typical” forecast errors that led to deviations in the system’s
behaviour using statistical methods. The results show that the influence of forecast
uncertainties is usually higher than that of model uncertainties, but large model
uncertainties may drastically alter the MPC’s usage of a hybrid energy storage
system. The identification of the most influential uncertainties forms the basis for
developing a more robust MPC-based energy management technique.

Keywords: energy management · model predictive control · PV battery energy
storage system · heat pump · modeling

1 Introduction

Decarbonisation of all energy sectors depends on the wide-spread use of renewable
energies. Formany countries, wind and solar power are themost promising technologies.
With the supply of both fluctuating on various time scales and resources being scarce,
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the expansion of renewable energy production has to be accompanied by an expansion
of energy storage capacities and their intelligent use.

One important sector of energy consumption is private households, making up about
28% of Germany’s end use energy demand [1]. This paper is concerned with a single-
family house in Germany with a rooftop solar photovoltaics (PV) plant, a lithium-ion
battery and a heat pump and heat storage for domestic hot water (DHW) supply, forming
a hybrid energy storage system (HESS) that enables the partial replacement of fossil
fuels in electricity and heat consumption with locally produced renewable energy. The
application of HESS allows to couple various energy sectors in a decentralized manner
and adds degrees of freedom that can be used to optimize the use of energy resources
for costs, efficiency, component lifetime and other objectives [2, 3].

For many different stationary energy storage systems (ESS) it has furthermore been
shown that including multiple tasks into their energy management strategies maximizes
the benefit that can be drawn from a given ESS in its lifetime. This is usually referred to
as multi-use energy management. In [4], a large-scale battery ESS serving a commercial
consumer was investigated. The study included ageing effects and shows that combining
spot market trading, frequency containment reserve and load peak shaving into one
multi-use energy management system (EMS) increases profitability while only slightly
increasing battery ageing.

For single-family houses, it is evident that the primary goal is to ensure a highly
secure and economic operation. If only PV and a battery system are involved, and the
electricity price is constant over time, maximizing the use of locally produced PV power
minimizes costs [5]. For systems with an air-source heat pump, a further dimension to
optimizing costs is introduced by volatile heat source temperatures. Optimizing the use
of the heat pump can decrease energy costs significantly [6, 7]. A further goal has been
imposed by German legislation, demanding that PV systems never feed more than 60%
(using certain subsidies: 50%) of their nominal power into the grid. This reduces the
maximum power flowing into the distribution grid, usually with a high coincidence of
several PV plants in the same grid. Several publications addressed this restriction by
suggesting to incorporate some kind of feed-in peak shaving into the usual PV self-
consumption optimization operation [8–10]. In [11], this was expanded to a HESS with
a heat pump and heat storage device while also adding load peak shaving with the same
motivation of reducing stress on the distribution grid. For an industrial consumer, load
peak shaving can reduce costs due to capacity pricing of their grid connection [12].
For household consumers, however, feed-in and load peak shaving do not increase the
profitability of a given energy storage device under German legislation. Nevertheless,
there is an evident benefit for the distribution grid operator (deferral or avoidance of
grid expansion). Furthermore, batteries are operated at lower powers and spending more
time at medium states of charge (SOC), potentially increasing their lifetime. However,
if legislation allows it, there are also possibilities to directly increase profitability by
combining several use cases. The authors of [13] investigated adding the provision of
frequency containment reserve to the operation of a residential PV-battery-heat pump-
heat storage system. They found a 15% reduction of the negative annuity of the system.
There is also a vast body of literature on the optimal use of ESS for cost optimization in
scenarios with time-of-use and fully flexible electricity prices [14–16].
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Multi-use energymanagement is a complex optimal control problemsubject to uncer-
tainty. Such control problems can be solved in various ways [17, 18]. A very popular
method in recent research is model predictive control (MPC). In MPC, the optimiza-
tion problem is modelled and solved explicitly for a finite horizon (e.g. one day) into
the future. The first part of the solution (e.g. quarter of an hour) is applied. After an
adaptation interval passed, the horizon is moved forward and the optimization is carried
out again using any newly available information. Although some of these studies do
not explicitly name their strategy accordingly, references [4, 6, 7, 10–12] use the MPC
scheme and demonstrate its ability to handle complex control problems.

However, MPC in an energy management application relies on both a model of the
controlled system and on forecasts of uncertain variables. Both models and forecasts
can never be absolutely accurate, which means that decisions taken on the basis of
such imperfect information will be imperfect as well. Several of the aforementioned
studies compared the performance of their proposed methods when using real forecasts
to the performance when using ideal forecasts [10, 11] or even when using different
optimization models and solvers [7]. These comparisons show that forecast errors and
model errors impact performance of theMPC negatively to an extent that depends on the
single- or multi-use application that is investigated and model types, forecast methods
and energy time series that are used.

These comparisons, however, usually remain superficial, remaining unhelpful for
identifying the most pressing concerns that should be addressed first when designing
improved energymanagement concepts. Therefore, the aim of this paper is to investigate
the effects of model and forecast uncertainties on the performance of the investigated
system in detail. The results contribute to the development of an EMS that is more robust
against the most impactful uncertainties.

Section 2 of this paper presents the system to be controlled, the MPC scheme, the
optimization objectives and formulations and the performance criteria used in this study.
In Sect. 3 the investigation of the impact of model uncertainties is shown. Section 4 con-
tains the investigation of the impact of forecast uncertainties. Finally, Sect. 5 summarizes
the findings, discusses the limitations of the study and gives an outlook on future research.

2 HESS Energy Management

2.1 Controlled System

This paper studies the operation of a battery and a combined heat pump and heat storage
device in a single-family house with 4 MWh annual electrical load, 5 MWh local PV
production and 2.55 MWh of domestic hot water (DHW) consumption. Figure 1 shows
the layout of the system. According to German legislation, no more than 50% of the
5.7 kW nominal PV power can be fed into the grid. Any surplus that remains unused
within the system is curtailed. The electricity price is assumed to be 0.30 e/kWh and
the feed-in tariff is 0.10 e/kWh.

2.2 EMS Objectives and MPC Scheme

While the system remained the same, due to new insights some minor details of the
control concept changed between the analyses carried out for Sects. 3 and 4. In both
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Fig. 1. System overview.

cases, the EMS is a model predictive control as shown in Fig. 2. The formulation for
the optimization problem is presented in the following Subsection, with the equations
describing the battery being varied as described in Subsects. 3.1 and 4.1.

The EMS for both analyses primarily aims to keep the DHW storage temperature
at above 50 °C and to minimize operation cost. The optimizer directly controls the heat
pump power.

For the analysis in Sect. 3, the EMS directly sets a grid power and additionally aims
to minimize both the maximum power fed into the grid as well as that drawn from the
grid. This results in a type of dynamic double peak shaving with load levelling features.
All forecast errors and variability within an adaptation interval of the MPC are handled
by the battery, as long as it is not completely charged or discharged. The adaptation
interval is 30 min, and the prediction horizon is 18 h.

For the analysis in Sect. 4, the EMS only sets a maximum grid power, allowing
grid power to vary between zero and that variable maximum, while additionally to the
common goals aiming to minimize only the maximum power fed into the grid. This
results in a dynamic feed-in peak shaving without load levelling features. Some of the
forecast errors and variability within an adaptation interval of the MPC are handled by
the grid. The adaptation interval is 15 min and the prediction horizon is 16 h.

2.3 Optimization Problem Formulation

The optimization part of an MPC consists of a description of the physical system and its
socio-economic environment, as well as an objective function.While someminor details
changed, the optimization problem formulation of both analyses presented in this paper
is similar to the one in [11]. The aims of the EMS are expressed using a weighted sum
F ,

minF = C + αPG,B,max + βPG,FI,max + γFthermal, (1)
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where C is the operation cost that would result from the predicted grid import und feed-
in, PG,B,max and PG,FI,max are auxiliary variables representing the dynamic peak shaving
limits,Fthermal is a penalty term for the heat storage temperature violating a lower limit of
50 °C and α through γ are weighting factors. For the analysis in Sect. 3, β = −α = 0.1
and γ = 10. For the analysis in Sect. 4, α = 0, whereas the rest is unchanged. The
penalty term is calculated as

Fthermal =
K∑

k=1

Upenalty(k) · �t (2)

with

U (k) + Upenalty(k) ≥ Umin∀k, (3)

where U (k) is the thermal energy content of the DHW storage at time step k, Umin is
the energy content corresponding to the lower temperature limit (50 °C) and Upenalty is
an auxiliary variable. This construct is also known as a soft constraint.

In order to represent the physical system behaviour, several energy balances are used,
which translate to equality constraints. The battery energy balance is varied in Sect. 3,
which is why it is described there. The DHW storage energy balance is described by

U (k) − U (k − 1)

�t
= εCOPPHP(k) − Q̇dhw,f (k) − Rth,sd∀k, (4)

where εCOP is the average heat pump COP, PHP is the electrical heat pump power, Q̇dhw,f
is the forecasted energy flow due to DHW being drawn and Rth,sd is the self-discharge
rate of the DHW storage. The forecasts are described in Sect. 4, because they are still
assumed to be perfect in Sect. 3. The electrical power balance is described by

PPV,f(k) − PL,f (k) = PB,c(k) − PB,d(k) + PHP(k)

+PPV,ct(k) + PG,FI(k) − PG,B(k)∀k, (5)

Fig. 2. Structure of the control system with the MPC as the outer control loop and the grid power
controller as the inner loop.
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where PPV,f and PL,f are the forecasted PV and load powers, PB,c and PB,d are the
battery charging and discharging powers, PPV,ct is PV curtailment and PG,FI and PG,B
are powers fed into and imported from the grid.

Several inequality constraints are needed in order to correctly represent the behaviour
and interplay of the previously introduced variables. Inequalities (6) and (7) ensure that
the dynamic peak shaving limits are respected.

PG,B(k) ≤ PG,B,max∀k (6)

PG,FI(k) ≤ PG,FI,max∀k (7)

Inequalities (8) through (10) ensure that the battery cannot be charged and discharged
at the same time.

PB,C(k) ≤ sB,C(k) · PB,c,max∀k, (8)

PB,D(k) ≤ sB,D(k) · PB,d,max∀k, (9)

sB,C(k) + sB,D(k) ≤ 1∀k, (10)

where sB,c and sB,d are binary variables indicating that charging or discharging takes
place in the respective time step and PB,c,max and PB,d,max are the maximum charging
and discharging power, respectively.

Finally, inequalities (11) and (12) ensure that the heat pump has to either be operated
between a minimum and a maximum power or be switched off:

PHP(k) ≥ sHP(k) · PHP,min∀k, (11)

PHP(k) ≤ sHP(k) · PHP,max∀k. (12)

where sHP is another binary variable indicating the on/off state of the heat pump, PHP,min
is the minimum heat pump power when switched on and PHP,max is the maximum heat
pump power.

For the analysis in Sect. 3, the EMS applied the grid power of the first time step
of the optimization result as the set point for the inner control loop. For the analysis in
Sect. 4, the feed-in limit was set to the grid power of the first time step of the optimization
if it was positive or to zero otherwise. If there is a deficit of PV production, the inner
control loop will always try to discharge the battery before using the grid, regardless of
the optimization result.

2.4 Performance Criteria

For the described system, many criteria can be used to assess the performance of the
EMS. For this paper, only five criteria, which are closely related to the common goals
of both EMS presented in Subsect. 2.2, are examined:

• operation cost: koc = ∑
iPG,b(τi)pG,b − PG,fi(τi)pG,fi
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• self-sufficiency: kss = 1 −
∑

iPG,b(τi)∑
iPL(τi)+PHP(τi)

• self-consumption: ksc = 1 −
∑

iPG,fi(τi)∑
iPPV,max(τi)−PPV,ct(τi)

• PV curtailment: kpvc =
∑

iPPV,ct(τi)∑
iPPV,max(τi)• fraction of DHW drawn at less than 50 °C:

• kdhw =
∑

iQ̇dhw(τi)IT (τi)∑
iQ̇dhw(τi)

with IT (τi) =
{
1, if THS(τi) < 50 ◦C
0, else

3 Impact of Model Uncertainties

3.1 Models and Simulations

In order to assess the impact of model uncertainties, the system was simulated varying
both the structure and the parameters of the description of the battery within the opti-
mization model used by the MPC. As a plant model representing the controlled system,
a simple quadratic fit for the energy losses of the battery was used:

�EB

�t
= PB,c − PB,d − PB,l (13)

PB,l = a + b1|PB| + b2P
2
B + c1EB + c2E

2
B + d |PB|EB (14)

whereEB is the battery energy content,PB,l are battery losses, a through d are regression
parameters, PB = PB,c − PB,d and |·| denotes the absolute value, respectively.

This description can also be used in a mixed-integer quadratically constrained pro-
gram (MIQCP) resulting in a situationwhere the optimizationmodel and the plant model
of the battery are identical. However, it is much more common to use (mixed-integer)
linear programs (MILP) within the MPC framework to control such a system. It is pos-
sible to use piecewise approximations in order to accurately represent the nonlinearities
within the system, but it is also common to use a simpler linear representation of the
battery:

�EB

�t
= ηcPB,c − PB,d

ηd
− PB,sd, (15)

where ηc and ηd denote the charging and discharging efficiencies of the battery
(approximated as constants) and PB,sd is the battery’s self-discharge rate.

Comparing the performance of the MPC with this simple MILP representation and
the “perfect” (i.e. plant and optimization model are identical) MIQCP representation,
both with ideal forecasts (i.e. forecast for prediction time step = mean of the actual
powers that will occur in the simulation time steps corresponding to the prediction time
step), allows to assess the impact of the uncertainty of the model structure within the
optimization model.

In order to assess the impact of model parameters within the optimization model, the
MIQCP structure was chosen and the six parameters of Eq. (14) are varied using three
scaling parameters v1 through v3:

PB,l = v1a + v2b1|PB| + v2b2P
2
B + v3c1SOE
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+v3c2SOE
2+v2v3d |PB|SOE (16)

These scaling parameters where set to the levels 0, 0.5, 0.9, 1.0, 1.1, 1.5, and 2.0
allowing to control the level of simulated uncertainty of the model parameters.

3.2 Results

3.2.1 Model Structure

Most performance criteria, presented inTable 1, showedvery little sensitivity to changing
the optimization model structure (koc, kss and ksc) or are at a very low level (kpvc, due to
the use of ideal forecasts). The exception was the fraction of DHW drawn at less than
50 °C, changing from about 6.7% for the quadratic model to about 14.6% for the linear
model.

Further analysis demonstrates that theMILP andMIQCP use the two storage devices
differently. Figure 3 shows that theMIQCP charges the battery and the heat storage at the
same time much more often than the MILP, while reducing the occurrences of charging
the heat storage using energy stored in the battery.

Figure 4 and Fig. 5 also implicate that the MILP prefers to charge the battery first,
while the heat storage temperature remains low, whereas the MIQCP charges the heat
storage first before charging the battery. This obviously reduces the occurrences of DHW
drawings at low heat storage temperatures.

Table 1. Performance criteria when varying optimization model structure.

MILP MIQCP

operation cost, koc 475.12 e 472.33 e

self-sufficiency, kss 53.86% 53.99%

self-consumption, ksc 61.83% 61.69%

PV curtailment, kpvc 1.23 · 10−4 1.20 · 10−4

fraction of DHW drawn at less than 50 °C, kdhw 14.57% 6.71%

Fig. 3. Joint operation of heat pump and battery over one year. The percentages are time steps,
where each combination of positive or negative power with zero or positive heat pump power
occurred divided by the total number of time steps.
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Fig. 4. Jointplot (combination of two kernel density estimate [kde] plots and a scatterplot) visu-
alizing the single and joint distributions of the two system states for the linear optimization
model.

Fig. 5. Jointplot visualizing the single and joint distributions of the two system states for the
quadratic optimization model.

3.2.2 Model Parameters

The overall sensitivity of the performance criteria towards the scaling parameters varied
between the criteria. Figure 6 shows four of the five criteria normalized to their value
at v1 = v2 = v3 = 1.0 for “small” (all vi ∈ [0.9, 1.1]), “moderate” (at least one vi
outside [0.9, 1.1] but still vi ∈ [0.5, 1.5]) and “large” (at least one vi outside “moderate”
range) errors. PV curtailment is not shown because the base level is so small that the
relative variability would be high although the absolute values do not matter at all in
practice. It is clear that, the larger the errors get, the larger the spread of the criteria
becomes. Furthermore, the fraction of DHW drawn at less than 50 °C again has the
largest variability.

Figure 7 shows the fraction of DHW drawn at less than 50 °C when varying both
v2 (under- or overestimating the effects of battery power on losses) on one axis and v1
together with v3 (primarily associated with self-discharge) on the other. The white area
represents simulations that could not be carried out because the matrix of quadratic and
collinear elements in the battery loss model was not positive semi-definite, which is a
prerequisite for finding a solution to anMIQCP. Underestimating the influence of battery
power on the losses (low v2) and overestimating self-discharge (high v1 and v3) decreases
this fraction. This is due to the model suggesting to the MPC that it is more attractive to
store surplus PV energy in the heat storage, which leads to the heat storage being at a
higher temperature more often than in the case of the “correct model”. Underestimating



Impact of Model and Forecast Uncertainties 171

Fig. 6. Bee swarm plot of relative change of evaluation criteria, highlighting their variability, in
presence of small, moderate and large model parameter errors.

Fig. 7. Fraction of DHW drawn at less than 50 °C when varying the optimization model
parameters.

self-discharge, however, increases the fraction due to theMPC preferring to store surplus
energy in the battery because it believes it to have much smaller losses than the heat
storage.

In contrast, self-sufficiency, shown in Fig. 8, decreases when the influence of the bat-
tery power on losses is underestimated. This behaviour seems to be almost unchanged
by an under- or overestimation of battery self-discharge. Note that, confirming the inter-
pretation of Fig. 6, the total difference between the highest and lowest self-sufficiencies
obtained from these simulations was rather small in comparison to the change of the
domestic hot water drawn at less than 50 °C.

It can be argued that the decrease of domestic hot water drawn at less than 50 °C
is worth the trade-off in self-sufficiency. This is similar to multi-objective optimization,
where many solutions can be optimal forming a pareto-front and choosing “the best”

Fig. 8. Self-sufficiency when varying the optimization model parameters.
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Fig. 9. Objective function without soft constraint term and scaled to one year when varying
optimization model parameters.

solution is subjective or needs further well defined criteria. In this case, it makes sense
to refer back to the objective function of the optimization solved by the MPC in Eq. (1).
This objective function was scaled up from the prediction horizon to one year. The term
penalizing DHW drawn at less than 50 °C, was neglected due to it dominating the result
although it is only a soft constraint, not an actual objective.

Figure 9 shows that the scaled objective function has a plateau around the “cor-
rect” model, with the optimum being close to it. The objective function increases in all
directions from there, especially for large model parameter errors. This suggests that
small errors in the optimization model parameters, as they are to be expected in a real
application, are uncritical, whereas large errors, i.e. inappropriate models, will result in a
drastically different behavior of the system, which will cause some performance criteria
to deteriorate considerably.

4 Impact of Forecast Uncertainties

4.1 Methods

In order to assess the impact of forecast uncertainties, the MILP version of the MPC
in Subsect. 3.1 with the modifications to the objective function, prediction interval and
horizon and the grid power control discussed in Subsect. 2.2 was simulated both with
real and ideal forecasts. The real forecasts used in this study are based on [19], with
minor modifications.

4.1.1 Forecasts

The PV forecasts use the equation

PPV,f(t + k�t) = kscale(t) · PPV,env(t + k�t), (17)

where t is the current time, �t = 0.25h the time step width, k ∈ N ∧ 1 ≤ k ≤ 64 the
time index, kscale a scaling parameter roughly representing the current cloud cover and
PPV,env an empirical envelope of the PV power under clear sky conditions. These two
parameters are calculated as follows:

kscale(t) = 1

12
·

12∑

k=1

PPV(t − k�t)

PPV,env(t − k�t)
(18)
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PPV,env(t + k�t) = max
j
PPV(t − j · 24h + k�t), (19)

where j ∈ N ∧ 1 ≤ j ≤ 10, i.e. the mean of the measured PV power divided by
the corresponding envelope of the previous three hours (different from [19], where the
energies are summed upfirst, and divided afterwards,making this versionmore dynamic)
and the maximum measured PV power of the corresponding time of day during the last
ten days. For each time step during the night, the fraction within the mean in Eq. (18)
would be undefined. Therefore, it is replaced by the last kscale value of the previous
evening, capped to values between 0.5 and 1, with the reasoning that both higher and
lower values than that are more likely to be numerical artefacts than a real weather
situation that still persists the following morning.

The load forecast combines an exponential smoothing of the current load power with
daily and weekly persistence:

PL,f (t + k�t) = kexp(k)PL(t) + (
1 − kexp(k)

)

PL(t + k�t − 24h) + PL(t + k�t − 7d)

2
(20)

The exponential smoothing factor is calculated as

kexp(k) = exp

(
1 − k

10

)
. (21)

DHW consumption of a single household is much more erratic than electricity con-
sumption. An exponential smoothing of the current DHW flow rate or heat flow would
not represent the patterns well. As a simple approach to get at least more or less correct
forecasts for the necessary thermal energy, a persistence forecast of the measured heat
flows of one day and one week ago is used:

Q̇dhw,f(t + k�t)

= Q̇dhw(t + k�t − 24h) + Q̇dhw(t + k�t − 7d)

2
(22)

4.1.2 Forecast Errors

Forecast errors for each of the three physical quantities are a two-dimensional matrix:
at each adaptation of the MPC, i.e. every quarter of an hour for one year (8760 h), one
average power value for every quarter hour interval over the next 16 h is forecasted,
resulting in 35040 × 64 values.

Owing to the structure of all three forecasts, the errors of the 64 forecasted powers
of one adaptation step are causally related to each other. For the PV power either the
scaling parameter or the envelope or both might be erroneous, which could cause PV
powers at many time steps to be over- or underestimated. Because of the use of one scal-
ing parameter for the whole prediction horizon, the forecast usually cannot successfully
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predict days with varying weather conditions. Similarly, when there is an exceptionally
high peak in the load power, it will not be predicted beforehand (underestimation) and,
because of the exponential smoothing, at the timewhen it occurs, it often causes overesti-
mation of load power for several more hours into the future. Similarly, errors committed
at different adaptation steps are often causally related to each other, especially where
periodic (daily/weekly) persistence is used.

4.2 Feature Engineering

It is nearly impossible to identify individual forecast error impacts by just looking at
individual time series (trajectories of powers and states) resulting from differences in
the decisions of an MPC with real and one with ideal forecasts. This can be attributed
to two reasons:

• As discussed in the previous Subsection, forecast errors are causally related to each
other, happening in a two-dimensional space (adaptation steps and prediction horizon)
and occurring simultaneously for three physical variables.

• A difference in heat storage temperature or battery state of charge trajectory does not
necessarily mean that the two trajectories do not reach the main goals of the EMS
equally well (e.g. charging both storages simultaneously vs. first charging the heat
storage and later charging the battery).

It is more promising to look at the performance criteria defined in Subsect. 2.2. These
have been shown to differ between simulations with real and ideal forecasts [10, 11].
However, these criteria are cumulative, meaning that usually they are only calculated
once at the end of a simulation or in real operation for past time intervals (days, months,
years). This does not allow to identify the impact of individual forecast errors, only the
impact of there being forecast errors at all. Therefore, for this study, all performance
criteria have been calculated for every time step in which the MPC made a new decision
from the start of the simulation until that point in time. The resulting time series of the
five performance criteria for the operation with real and ideal forecasts were subtracted
from one another so that a positive value in the time series means that the MPC with
real forecasts had a worse performance than the MPC with ideal forecasts. In the case of
the operation cost, the resulting time series of cost differences is not stationary. It was
detrended by calculating the change from one time step to the next (compare the integral
part in the ARIMAmodeling framework). For some criteria negative values are possible
for a short time because of short-sighted decisions that improve performance for a few
hours but impact the ability of the MPC to reach its goals later on. For the same reason,
the time series of criteria differences are not monotonically increasing.

With 3 × 64 values being forecasted every quarter of an hour, the forecast errors
themselves are hard to keep track of. However, it can be expected that an error far into
the prediction horizon will not have a large individual impact on the performance of the
MPC. It is much more likely that there are certain features of the forecast errors that
have an impact. For this analysis, the error in the forecasted power in the next time step,
the error in the energy content of a power variable over the prediction horizon and the
error of the predicted maximum power of that variable within the prediction horizon are
taken into account.
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Figure 10 shows the spearman correlations between these forecast error features.
There is practically no correlation between the forecast errors of the three different
physical variables. The correlations between the forecast errors of the next powers to
the corresponding errors of forecasted energy contents and maximum powers are rather
small with values ranging from 0.11 to 0.27. The correlations between the error of the
maximum forecasted powers and the related energy contents are rather high, ranging
from 0.57 to 0.81. This means that a potentially observed correlation between the error
of a maximum power with a criterion could be due to the correlation between these
two features and the actual causal relationship being between the error of the forecasted
energy content and the criterion - or vice versa.

For these features and the time series of criteria differences, classicalmethods of time
series analysis led to inconclusive results. There was no clear influence of individual lags
of forecast error features on deterioration of criteria differences with absolute values of
spearman rank correlation coefficients ranging from 0 to about 0.3. Figure 11 shows the
spearman correlations of lagged copies of all the forecast error features to the change of
cost difference as an example. Most correlation coefficients are insignificant or close to
insignificant with only very few small and broad peaks for some forecast error features.
Even for the significant values of spearman correlation, such small absolute values
indicate no real predictive power of the forecast errors. This makes sense because,
depending on states of storage devices and load situation, the exact time passing between
an impactful forecast error occurring and its effect materializing can vary.

Therefore, one further abstraction step has been carried out. Instead of looking at the
numerical correlation between lagged copies of forecast error features and the criteria
differences, two new time series were defined, looking just at extreme forecast errors

Fig. 10. Plot of the matrix of Spearman rank correlation coefficients between all forecast error
features. Due to space constraints, the forecast error features had to be abbreviated. L stands for
the electric load, Th for the thermal load, Pnt is power in the next time step, E is energy content
and mP is maximum power in the forecast horizon.
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Fig. 11. Spearman correlation coefficients of lagged copies of forecast error features with the
change of cost difference.

and extreme deteriorations of the criteria difference. For the purpose of this study, an
extreme forecast error is one where one of the previously defined features is greater than
the 97.5th percentile or smaller than the 2.5th percentile of that feature. Deteriorations
of criteria often happen in situations that span over multiple time steps, often hours, in
small steps. Calculating the 95th percentile or the 99th percentile of the change of the cri-
teria difference often leads to detecting only some of these events that don’t necessarily
account for the majority of the criteria difference. Therefore, in order to identify extreme
deteriorations of a performance criterion, the 2 h changes of a criterion difference are
divided by its rolling 7-day mean first. An extreme deterioration of a performance crite-
rion then is one where this relative 2 h change is above the 99th percentile of all relative
2 h changes.

This results in a reduction of the high complexity to a series of two binary variables
for each pair of forecast error feature and performance criterion. A forecast error feature
is now considered to have an impact if, in some horizon x (up to 24 h) before an extreme
deterioration of a criterion, it is more likely that there was an occurrence of that error
feature than if there was no relationship between forecast error feature and performance
criterion at all. Figure 12 and Fig. 13 summarize all the manipulations carried out for
the forecast error features and the criteria (leaving out the detrending of the operation
cost), respectively.
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Fig. 12. Abstraction from real and ideal forecasts to binary variable indicating occurrences of
"extreme" forecast errors in past 24 h.
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Fig. 13. Abstraction from power and state trajectories to indicator of "extreme" increase in the dif-
ference of criteria of simulations with real and ideal forecasts. Note that the signs of the subtraction
are swapped when a high value of the criterion is considered advantageous.
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Fig. 14. System states, error of forecasted load energy and difference of curtailment fractions
over time.

4.3 Exploratory Data Analysis

In order to answer, which forecast error features impact which performance criteria and
howmuch, graphical methods and accompanying calculations of summary statistics can
give a good first impression. Later, statistical tests can answer whether the obtained
graphical and numerical results have not just been obtained by chance. In this paper,
only a selection of graphics is presented.

Table 2 shows the performance criteria for the adapted EMSwithout load peak shav-
ing and capacity firming. It can be seen that the costs and fraction of DHW drawn at
less than 50 °C are much lower than even in the ideal case of the EMS in Sect. 3. How-
ever, the differences between operation cost, self-sufficiency, self-consumption and PV
curtailment with real and ideal forecasts are much higher than the differences between
linear and quadratic model with ideal forecasts in Sect. 3. Figure 14 shows the sys-
tem states (SOC and DHW storage temperature) for the simulation with real forecasts,
the error of the forecasted PV energy and the curtailment fraction difference for the

Table 2. Performance criteria for the MILP-based MPC for pure feed-in peak shaving with real
and ideal forecasts.

real forecasts ideal forecasts

operation cost, koc 350.88 e 330.71 e

self-sufficiency, kss 62.85% 63.90%

self-consumption, ksc 62.53% 62.74%

PV curtailment, kpvc 0.71% 0.48%

fraction of DHW drawn at less than 50 °C, kdhw 3.82% 0.01%
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whole simulated period of one year. Extreme increases of the curtailment fraction differ-
ence according to the methodology described in Subsect. 4.1 are marked, with different
markers for coincidences with extremely over- or underforecasted load energy and for
no coincidence with extreme load energy forecast errors. Most increases in the curtail-
ment fraction difference occur in late spring and early summer, between days 130 and
155. At about 142 days, one such considerable increase happens with a clear coinci-
dence with extremely underforecasted PV energy. Two more strong increases at about
133 days and 152 days happen without there being a coincidence with underforecasted
PVenergy. Fromdays 90 through 100 there is a periodwith a lot of occurences of extreme
underforecasts, but the curtailment fraction difference does not increase considerably.

This illustrates that

a) several factors influencewhether a performance criterionwill be affected by a forecast
error: with the present EMS, curtailment will only occur when the SOC is high and
the PV power surplus exceeds 50% of the nominal PV power. The SOC might be
high due to other forecast errors (e.g. overforecasted load energy).

b) Furthermore, it is important to keep in mind the long chain of manipulations shown
in Figs. 11 and 12. If there is a high PV power surplus and the battery is fully
charged, PV power will be curtailed due to the limitations of the battery even when
there where ideal forecasts. This explains why the curtailment fraction difference
(difference between real and ideal forecasts) does not increase substantially in mid
and late summer, although a lot of actual curtailment is expected to happen then.
However, this curtailment is due to the physical limitations of the battery, not due to
forecast errors, which is why it is of no particular interest for this analysis.

Figure 15 illustrates the single and joint distributions of the battery state of charge
and the occurrence of extreme PV energy forecast errors for extreme increases of the
curtailment fraction difference (distribution over SOC is shown for non-extreme changes
of curtailment fraction difference for comparison). It is clear that the battery is often either
fully charged or completely discharged. Most occurrences of extreme deteriorations of
the curtailment fraction differences happened when the SOC was close to one, some
when it was zero and very few when it was in between.

Comparing this to Fig. 14, the “extreme” increases of curtailment fraction difference
at zero SOC correspond to the violet crosses up to day 90. These seem to be numeri-
cal artefacts due to there being practically zero curtailment, leading to problems when
dividing the 2 h changes by their seven-day rolling mean. The increases of curtailment
fraction difference where SOC is between zero and one are probably artefacts of the
feature extraction process as well. Using the 2 h change of the criteria, it is likely that
these points represent cases where “extreme” curtailment occurred in the preceding 2 h,
directly followed by a period of considerable discharge. The remaining points at high or
full SOC are expected and are almost evenly split between cases where PV energy was
at least once considerably underforecasted in the preceding 24 h and cases where it was
either overforecasted or PV energy forecast errors were non-extreme. This observation
is commensurate with Fig. 14, indicating that high SOC and PV energy underforecasts
are considerable influences on PV curtailment but there being more than that.

Figure 16 shows an extension of the histogram in Fig. 15 for all forecast error
features. High orange bars with no other bar being comparably high indicate that the
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Fig. 15. Jointplot visualizing the single- and bivariate distributions of battery SOC and extreme
or non-extreme PV energy forecast errors for extreme and non-extreme changes of the curtail-
ment fraction difference. The histogram on the left has four categories for extreme increases of
curtailment fraction difference (PV energy forecast error was non-extreme/normal during the past
24 h, there were extreme overforecasts, extreme underforecasts or both). The fifth category is not
in the histogram due to a much higher count of occurrences, but shown in the beeswarm plot in
the bottom right for comparison.

Fig. 16. Histogram of coincidences of extreme deteriorations of curtailment fraction difference
with extraordinarily low and high forecast error features.

respective forecast error feature probably has no large impact on the curtailment fraction
difference. This seems to be the case for thermal energy and maximum thermal power.
PV energy and maximum PV power underforecasts and load energy and maximum load
power overforecasts occur quite frequently, pointing to a potential connection. The high
green bars for all three powers at the next time step are primarily due to the forecast
methods often producing an overforecast shortly after occurrences of underforecasts
and vice versa. Therefore, they may not be indicative of real connections, although
such connections cannot be ruled out. The corresponding histograms for the other four
performance criteria are in the appendix (Figs. 21, 22, 23 and 24).
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4.4 Significance Tests Using Bootstrapping

While itmakes sense that underforecastedPVenergy andoverforecasted load energymay
lead to avoidable PV curtailment, the observation of there being considerable numbers
of these forecast error features coinciding with increased curtailment fraction difference
is not sufficient to prove a causal relation. Therefore, a significance test has been carried
out for each combination of high or low forecast error feature and performance criteria.

In this case, a nonparametric bootstrap test was used. First, the null hypothesis was
stated as “there is no (causal) relationship between the occurrence of an extreme value
of an error feature in the past x h (with x being varied from 1 to 24 h) and an extreme
deterioration of a performance criterion.” The test statistic was defined as the number
of time steps where there was a recent occurrence of an extreme forecast error feature
value (high and low extremes are counted and tested separately) and an extreme increase
in the respective criterion. Bootstrap tests simulate the null hypothesis many times and
count how often an equally or more extreme (in this case: higher) test statistic was
obtained in comparison to the observed test statistic. If the fraction of simulations with
more extreme test statistic values is higher than a predefined statistical significance level
(here 5%), then there is not enough evidence to refuse the null hypothesis (i.e. it may be
that this particular forecast error feature has no influence on the performance criterion).
If it is lower than the significance level, there is enough evidence to refuse the null
hypothesis (i.e. it is likely that this particular forecast error feature does indeed have an
influence on the performance criterion). The statistical simulation is of course dependent
on assumptions about the statistical behaviour of the criteria difference and forecast error
features. These assumptions need to be informed by some further analysis of the time
series to be modelled.

With the null hypothesis being no causal relation between a criterion and a forecast
error feature, it is necessary to reasonably “mix up” one of both. However, both are
obviously autocorrelated, the error features because of the data-driven forecast approach
and the criteria due to their cumulative character. Therefore, results would certainly be
incorrect if we just bootstrapped a new time series from the distribution of one of these
time series.

Figure 17 shows the absolute and partial autocorrelations of the change of curtailment
fraction difference. The partial autocorrelation suggests that it might be possible to
model the change of curtailment fraction difference reasonably well by using a simple
first order autoregressive model. The same is true for all other performance criteria,

Fig. 17. Autocorrelation and partial autocorrelation of change of curtailment fraction difference.
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while the forecast error features seemed to be better modelled by using second and third
order autoregressive models. Therefore, for the first iteration of the bootstrap test, the
performance criteria were “mixed up” by fitting a first-order autoregressive model and
bootstrapping the innovations/errors of that model. In theory, regression implicates the
assumption that these model errors are normally distributed. Figure 18 shows that this
is almost surely not the case. We still decided to use the autoregressive model and draw
the innovations from the empirical distribution of the model errors instead of from a
normal distribution, coming closer to the actual behaviour of the performance criteria
than a simple bootstrap directly from the observed values.

Figure 19 shows 50 of the 1000 replicated time series of curtailment fraction dif-
ference for the bootstrap test in comparison to the actual time series. Obviously, the
seasonal behaviour (most of the difference stemming from early summer) is not rep-
resented well. The final value of the actual time series, however, is very close to the
mean of the distribution of final values of the replicated time series. Considering that
any correction of the simulation to represent seasonal behaviour would greatly reduce
the degrees of freedom and therefore the probabilistic characteristics of the simulation,
we consider this approach sufficient for now.

Table 3 shows the number of coincidences of low and high forecast error features
in the past 24 h with extreme deteriorations of the performance criteria, analogous to
Fig. 16, with all fields where the previously described bootstrap test rejected the null

Table 3. Number of coincidences of high (overforecast) or low (underforecast) forecast error
features with extreme deteriorations of criteria. Statistically significant influences coloured blue.
Results for occurences in past 24 h.

Fig. 18. Histogram of errors of AR1 model for curtailment fraction difference.
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Fig. 19. Actual and replicated curtailment fraction difference.

hypothesis (meaning: “there is not enough evidence to be sure there is no connection”)
coloured blue.

Interpreting this table has several stumbling blocks:

a) Even small (cor-)relations can be statistically significant, even when engineers
wouldn’t consider them practically significant.

b) Because the forecast errors of the maximum powers are correlated to the forecast
errors of the energy contents, a significant correlation between a maximum power
forecast error and the deterioration of a criterion could also point to the actual causality
being between the energy content forecast error and the deterioration of the criterion.

c) There might be more complex relations not simulated by the test. Consider the 221
occurences of there being a heavily overforecasted load energy within 24 h before
the occurrence of an extreme increase in operation cost. The difference in operation
cost can increase when there is not enough energy left in the battery to power all
loads or when the battery is fully charged and curtailment occurs. When the load
energy is overforecasted, this leads to a reduction of the PV power fed into the grid,
so the battery can prepare for the high load by charging as much as possible. If the
overforecast occurs when the SOC is low or there is not enough PV energy to fully
charge the battery, there will be no unnecessary curtailment and therefore no loss of
feed-in remuneration. If, however, the overforecast occurs when the SOC is already
high, there will be more curtailment than in the case of ideal forecasts, resulting in a
loss of feed-in remuneration.

a) and b) will be addressed in the next Subsection. In order to address c), another
test was carried out that preserved the relationship between system states and changes in
the performance criteria. In order to achieve this, it was necessary to now “mix up” the
time series of forecast error features instead of the performance criteria. We followed
the same procedure, building autoregressive models of the forecast error features (now
third order, due to the earlier discussion) and simulated their behaviour by randomly
drawing innovations from the empirical errors of that model. The test statistic changed
from “number of coincidences of extreme deteriorations of criteria with extreme over-
/underforecasts” to “number of coincidences of extreme deteriorations of criteria with
extreme over-/underforecasts and high/low system state”, replacing “system state” with
either SOC or DHW storage temperature. Low and high SOC were defined as below 0.2
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Table 4. Number of coincidences of highor low forecast error featureswith extremedeteriorations
of criteria. Statistically significant influences of forecast error features by themselves coloured blue
and statistically significant influences of forecast errors in certain system states coloured orange.
Results for occurences in past 24 h.

and above 0.8, respectively, and low and high temperature as below 51 and above 58 °C,
respectively.

This procedure led to many more forecast error features being considered to have
statistically significant impact on performance criteria when system states are in these
ranges. Table 4 shows the same as Table 3, now with these new statistically significant
influences coloured orange. This implicates that, under certain circumstances, almost
all forecast errors can have a significant impact on the deterioration of performance
criteria. Of course, this further complicates the attribution of deteriorations of criteria to
the different forecast error features.

4.5 Impact Estimates Using Logistic Regression

As previously stated, statistical significance does not necessarily imply practical rele-
vance. Therefore, as a last step, logistic regression has been carried out. The predicted
variable is the probability that an extreme increase in the performance criterion occurs.
The predictor variables are all influences that have been identified as statistically sig-
nificant (extreme states and forecast error features in the past x h either alone or in
conjunction with extreme states), an intercept, the first-order lags of the criterion and the
indicator variable for it being extreme, as well as the linear interaction between these last
two. In logistic regression, the linear combination of these predictors is the input into a
transformation function that translates this weighted sum into a conditional probability.
The logistic regression has been carried out for various “horizons” for looking back at
extreme forecast error features.

The MATLAB function used for this regression internally carries out a statistical
test, testing whether each parameter individually is significantly different from zero. As
long as this test reported a p-value above 0.05 for any parameter, the parameter with the
highest p-value was removed and the regression carried out again. For each performance
criterion, the horizon that yielded the model with the lowest Bayesian Information Cri-
terion (BIC, measuring predictive power in relation to number of explanatory variables)
is reported in more detail.
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Fig. 20. Bayesian information criteria for fitted models over length of horizon taken into account
for extreme features.

Figure 20 shows the BIC of the final fitted models over the length of the horizon for
each criterion and the models that have been chosen for further evaluation. All chosen
models apart from the one for change of cost difference reached R2-values between 0.71
and 0.78. The model for change of cost difference had an R2-value of 0.11, meaning
that the change of cost difference is practically unpredictable by the previously defined
predictors. However, costs are closely linked to self-sufficiency, self-consumption and
curtailment, where clear influences have been found.

Apart from the intercept, the autoregressive term of the absolute value of the criterion
itself and its linear interaction with the indicator value of it being extreme, all terms are
binary. This implicates that the values of the regression parameters are the same if
two variables have the same impact. In turn, this means that we can measure the relative
impact of forecast error features on a criterion by comparing the values of their regression
coefficients.

Tables 5, 6, 7, 8 and 9 report the regression coefficients for the five chosen models.
For all of the following tables, it should be kept in mind that there is a high correlation
between energy forecast errors and maximum power forecast errors. For future research,
it would be an interesting question whether excluding either one of them a priori as
predictor variables still yields similar results.

Table 5. Estimates of impacts of forecast error features and extreme states in the form of logistic
regression coefficients on self-sufficiency difference. A note on units: all but the autoregressive
predictors, in this table “last time step’s self-sufficiency difference”, are dimensionless, meaning
that all autoregressive parameters and those of the linear interactions have to be of the dimension

(unitofcriterion)−1.

Intercept −9.5310

Low SOC 2.3621

Underestimation of next time step’s thermal power 1.8280

High T and underestimation of load energy 1.9488

Last time step’s indicator for extreme self-sufficiency difference 7.7539

Last time step’s self-sufficiency difference 100.7252
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For self-sufficiency difference, shown in Table 5, the 1 h horizon was chosen. The
regression ascribes the highest influence to the SOC being low, meaning that there is
not enough energy to cover the current loads. Another important influence is seen in
underestimating next time step’s thermal power. This may lead to not using energy from
the PV plant or the battery to increase DHW storage temperature before a consumption
event occurs, instead feeding it into the grid, resulting in the need to cover the heating
power from the grid. Underestimation of load energy has been included in conjunction
with high DHW storage temperature with an impact between the previously mentioned
ones. While underestimation of load energy should theoretically be able to cause reduc-
tions in self-sufficiency due to similar reasons as underestimations of thermal power,
the connection to high DHW storage temperature does not seem so clear. It might be an
artefact due to a possible error of the second kind (false negative) excluding load energy
underestimations in the first hypothesis test but including it in the second iteration only
in connection with extreme system states. It is also interesting to see that no kind of PV
forecast error feature has been included. They may be included indirectly by the low
SOC which could not only be due to low PV availability but also due to overforecasts
dating further back than one hour. This is especially true for the aim of modeling differ-
ences in the criteria between real and ideal forecasts (instead of all deteriorations of the
criteria themselves), because in the ideal case PV availability would be the same. These
two surprising results may point to the variation of the horizon for the past occurences
of forecast errors for all features at the same time to be inadequate. In future research, it
might be an interesting analysis to vary the horizons for all features independently.

Table 6 shows the regression coefficients for the self-consumption difference, for
which also the 1 h horizon was chosen. The highest impact is attributed to underforecasts
of PV power in the next time step in combination to high DHW storage temperature,
describing situations in which the heat storage is not available for storing surplus PV
power that was unexpected. Another influence connected to the supply side, however
considered the smallest, is the underestimation of PV energy. On the demand side,
underforecasts of load energy or maximum thermal power, the latter connected to high
DHW storage temperatures, are considered similarly influential on a medium level.

Table 6. Estimates of impacts of forecast error features and extreme states in the form of logistic
regression coefficients on self-consumption difference.

Intercept −7.1270

Overforecast of PV energy 1.0977

Underforecast of load energy 1.6174

High T and underforecast of next time step’s PV power 2.3963

High T and underforecast of maximum thermal power 1.5236

Last time step’s indicator for extreme self-consumption difference 9.0397

Last time step’s self-consumption difference multiplied with last time step’s
indicator for extreme self-consumption difference

−167.5227
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Table 7. Estimates of impacts of forecast error features and extreme states in the form of logistic
regression coefficients on change of cost difference.

Intercept −7.9707

Low SOC 2.6137

High SOC 2.7450

Low T 1.2584

Overforecast of next time step’s PV power 1.3600

Underforecast of next time step’s load power 0.6970

Underforecast of next time step’s thermal power 1.4452

Underforecast of thermal energy 0.5374

Low SOC and overforecast of PV energy 0.8764

Last time step’s indicator for extreme change of cost difference 3.0867

Last time step’s change of cost difference 25.8152

Last time step’s change of cost difference multiplied with last time step’s
indicator for extreme change of cost difference

−31.9412

These errors lead the optimizer to feed more power into the grid that in the ideal case
are stored to cover later consumption events.

In the case of the change of cost difference, shown in Table 7, there is a rather
high number of influences. However, it should be remembered that the R2-value was
very low. The highest influences are the SOC being either high or low. At high SOCs,
the feed-in limit may cause PV curtailment, reducing feed-in remuneration. Low SOCs
mean that loads cannot be fully covered from the battery. The same is true for the DHW
load when DHW storage temperature is low, which is considered to have a medium
impact. Supply side overforecasts have low (PV energy) to medium (next time step’s PV
power in combination with low SOC) individual impacts. Underforecasts of electrical
and thermal powers also have low to medium individual impacts, but make up a higher
portion than PV overforecasts. All of these are very probably made up of cases where
PV energy was fed into the grid when it would have been needed for covering the loads.

Table 8 shows the regression coefficients for the curtailment fraction difference,
for which the 2 h horizon was chosen. The highest influence is again ascribed to high
SOC. In fact, in the system configuration of this study, only if SOC is high there should
be PV curtailment at all, because the nominal power of the battery is high enough for
any PV surplus that could occur. Given this necessary condition, it makes sense that
underforecasting the PV power in the next time step (the highest of the forecast error
feature impacts) or overforecasting the maximum load power (the smallest impact) may
lead to decisions where less energy is fed into the grid than what would be possible.
Underforecasts of the maximum thermal power (medium impact) may lead to the heat
storage not being charged when, in fact, it would make sense to accept higher losses (due
to moving energy from one storage to another and self-discharge of the DHW storage).
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The second medium influence of low SOC and underestimation of the thermal power in
the next time step is another surprise, that may be an artefact.

Finally, Table 9 shows the regression coefficients for DHW drawn at less than 50 °C,
forwhich also the 2 h horizonwas chosen. The highest impact by far are underforecasts of
the thermal power in the next time step, pointing to situations where the optimizer is not
aware that the necessary action to take would be heating the DHW storage. The medium
impact by underforecasts of maximum thermal power point to the same situation. As
was the case with PV curtailment, the medium impact of low DHW storage temperature
is due to it being a necessary condition for the criterion to deteriorate. The rather small
impact of low SOC is probably due to the MILP optimizer prioritizing battery storage
charging over heat storage charging, as was found in Subsect. 3.2. The medium impact
of high SOC in combination with underforecasts of PV energy, however, is another
surprising result, that may be due to chance.

Table 8. Estimates of impacts of forecast error features and extreme states in the form of logistic
regression coefficients on curtailment fraction difference.

Intercept −7.4310

High SOC 1.8717

Underforecast of next time step’s PV power 1.5695

Overforecast of maximum load power 0.8223

Underforecast of maximum thermal power 1.3928

Low SOC and underforecast of next time step’s thermal power 1.3791

Last time step’s indicator for extreme curtailment fraction difference 7.6738

Last time step’s curtailment fraction difference −310.4605

Table 9. Estimates of impacts of forecast error features and extreme states in the form of logistic
regression coefficients on fraction of DHW drawn at less than 50 °C.

Intercept −11.0265

Low SOC 0.6462

Low T 2.1187

Underforecast of next time step’s thermal power 5.1319

Underforecast of maximum thermal power 1.6589

High SOC and underforecast of PV energy 2.3857

Last time step’s indicator for extreme fraction of DHW drawn at less than
50 °C

7.7495
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5 Summary and Outlook

5.1 Summarizing the Results

In this study, three different sources of uncertainty in theMPCof a residential PV-battery-
heat pump-heat storage system providing DHW, self-consumption optimization and grid
power peak shaving have been analysed. These were the structure and parameters of the
optimizationmodel and forecast errors.Due to the different natures of these uncertainties,
different methods had to be applied.

It was found that, in the case of thisHESS, the structure of the optimizationmodel can
have a profound impact on the use of the two storage devices. The optimal parameters
for a linear model led to the optimizer prioritizing the charging of the battery over
the DHW storage. The quadratic model, in that simulation considered identical to the
actual controlled system, prioritized charging theDHWstorage.Whilemost performance
criteria have not been impacted by this difference in priorities, the fraction ofDHWdrawn
at less than 50 °C, representing quality of heat supply, was considerably worse in the
case of the linear model.

The impact of small differences of model parameters from the real system, as they
will surely occur in real control systems, were found to be small. Large differences of
these model parameters, however, had a similar impact to the model structure, causing
profoundly different behaviour of the system which, depending on the nature of the
differences, caused some performance criteria to improve while deteriorating others.
The trade-off represented by the optimization’s objective function was shown to be best
for low model parameter differences from the real system.

Comparing the numbers in Sect. 4 to those in Sect. 3 shows that the cumulative
influence of forecast errors is higher than that of an oversimplified optimization model
structure for four out of five performance criteria in this study. For all performance cri-
teria, an effort to identify the most impactful forecast errors was made by a combination
of exploratory data analysis, feature engineering, statistical tests and logistic regression.
The results show that the forecast error features that have been defined do indeed impact
the criteria of interest but don’t explain them fully. Furthermore, different forecast errors
influence different criteria. While many of the identified influences made sense in the
context of the system, some expected influences have not been included by the regres-
sion method and some identified influences could not be explained by the authors. These
unexpected outcomes warrant further investigation.

5.2 Limits of the Study

All results have been obtained for just one set of time series and with one HESS con-
figuration. This means that it still remains to be seen if the findings in this study can be
generalized for other households (other time series) and for other ESS configurations.
With the reason for the impacts of model uncertainties on performance lying in changing
priorities between storage devices, it can be expected that the impact of model uncer-
tainties on single ESS is negligible. For other HESS configurations, whether model
uncertainties have an impact, may depend on the number and types of energy stor-
age devices involved. It is still expected that forecast uncertainties impact performance
similarly for single ESS.
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The exact setup of the EMS was different between Sects. 3 and 4, limiting the
possibility of comparisons between the impacts of model and forecast uncertainties. In
future research both analyses should be carried out for a broader range of multi-use
applications, also addressing the topic of generalization capability.

5.3 Conclusions and Outlook

5.3.1 Improving MPC for Residential HESS

The results inSect. 3 highlight the importance of usingoptimizationmodels that represent
the real system well when controlling a HESS. Using oversimplified models might
lead the optimization solver to take decisions that are far from optimal, at least with
respect to some goals of the energy management. Small deviations of the model from
the real system, as they will inevitably occur, usually should be handled well by the
MPC approach with its frequent adaptations to new information on system states.

The impact of errors of the rather simple forecasts used in this study have been
shown to be a lot larger than those of model uncertainties. In recent years this has been
addressed by a lot of research trying to improve the forecasts themselves. While this
approach will surely lead to better results than the simple forecasts used here, there
will always remain considerable forecast errors because electric and thermal loads are
determined by human behaviour which is very hard to predict.

Therefore, we propose to use probabilistic methods to quantify the uncertainty of
forecast uncertainties. This quantitative information could be taken into account in the
optimization by various means, including 2-stage stochastic optimization, robust opti-
mization, chance constraints and affine arithmetics. The findings of Subsect. 4.5 should
be solidified by further detailed analyses, especially by looking into the surprising results.
After that these findings can point to forecast error features that should be the focus in
the design of a probabilistic forecast model.

5.3.2 Future Studies on MPC Robustness

The analyses carried out for this study have been rather insightful. After addressing the
problems of the investigation of the impacts of forecast uncertainties, they should be
carried out for a broader range of multi-use applications and households to test whether
and to what degree the findings in this study can be generalized to guide the design of
future EMS.

However, they have also been very costly in terms of computing power. Therefore, we
propose to find a simpler and less costly method to assess and compare the performance
and robustness of different operating strategies.
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Appendix

Fig. 21. Histogram of coincidences of extreme deteriorations of change of cost difference with
extraordinarily low and high forecast error features.

Fig. 22. Histogram of coincidences of extreme deteriorations of low heat storage temperature
fraction with extraordinarily low and high forecast error features.

Fig. 23. Histogram of coincidences of extreme deteriorations of self-consumption differencewith
extraordinarily low and high forecast error features.

Fig. 24. Histogram of coincidences of extreme deteriorations of self-sufficiency difference with
extraordinarily low and high forecast error features.
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